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ABSTRACT: 
Conventional or learning-based 3D reconstruction methods from images have clearly shown their potential for 3D heritage 
documentation. Nevertheless, Neural Radiance Field (NeRF) approaches are recently revolutionising the way a scene can be rendered 
or reconstructed in 3D from a set of oriented images. Therefore the paper wants to review some of the last NeRF methods applied to 
various cultural heritage datasets collected with smartphone videos, touristic approaches or reflex cameras. Firstly several NeRF 
methods are evaluated. It turned out that Instant-NGP and Nerfacto methods achieved the best outcomes, outperforming all other 
methods significantly. Successively qualitative and quantitative analyses are performed on various datasets, revealing the good 
performances of NeRF methods, in particular for areas with uniform texture or shining surfaces, as well as for small datasets of lost 
artefacts. This is for sure opening new frontiers for 3D documentation, visualization and communication purposes of digital heritage. 

a)  b)  c)
Figure 1. The NeRF method is able to optimize a continuous 5D neural radiance field representation of a scene starting from a set 
of oriented images. Some of the used images (a), recovered camera poses and sparse point cloud (b), and rendered 3D view from 
the NeRF representation (c). 

1. INTRODUCTION

The 3D reconstruction and digital documentation of cultural 
heritage artefacts and scenes is an important task to valorize, 
study and safeguard, at least digitally, our patrimony. The 
improvements and efficiency of mass digitisation campaigns of 
cultural heritage have been driven mainly by the growing need 
for their preservation as well as by indubitable opportunities 
offered by digital 3D technologies, artificial intelligence (AI) 
methods and extended reality (XR) solutions for conservation, 
communication and virtual access purposes (Kniaz et al., 2019; 
Teruggi et al., 2021; Verhoeven et al., 2022). Nowadays, active 
and passive sensors, through static or mobile scanning and 
photogrammetric methods, provide reliable, fast and accurate 3D 
results (Di Stefano et al., 2021), often enriched with semantic 
information for further understanding and communication 
purposes (Grilli and Remondino, 2019; Mazzacca et al., 2022). 
The photogrammetric pipeline starts from the acquisition phase, 
which is essential for retrieving high-quality images. Then, most 
of the processing steps are presently performed with automated 
structure from motion (SfM) approaches and multi-view stereo 
(MVS) algorithms (Zhou et al., 2020; Wang et al., 2021a,b).  
A recent innovative approach for 3D scene reconstruction is 
offered by Neural Radiance Fields (NeRF - Figure 1). NeRF 
synthesizes novel views of complex scenes, starting from a set of 
oriented input images and optimizing an underlying continuous 
volumetric scene function (Mildenhall et al., 2020; Mueller et al., 
2022). A neural radiance field is a simple fully connected 
network (weights of a few MB) trained to reproduce input views 
of a single scene using a rendering loss. The network directly 

maps from spatial location and viewing direction (5D input) to 
colour and opacity (4D output).  
The aim of the paper is to shine light on emerging NeRF 
approaches for heritage 3D reconstruction in order to effectively 
use and optimize neural radiance fields to render novel 
photorealistic views of heritage scenes for 3D documentation, 
visualization and communication purposes. 

2. RELATED WORKS

The recovery of 3D information from images is a long-lasting 
problem, solved for many years with conventional geometric-
based approaches (Strecha et al., 2006; Goesele et al., 2007; 
Remondino et al., 2008, 2014; Hirschmuller, 2008; Barnes et al., 
2009; Furukawa and Ponce, 2010; Jancosek and Pajdla, 2011; 
Bleyer et al., 2011; Rothermel et al., 2012; Schoenberger et al., 
2016). Recently, learning-based 3D reconstruction methods 
based on point-, voxel-, mesh- or implicit (and differentiable) 
representations, have shown impressive results (Choy et al., 2016; 
Riegler et al., 2017; Chen and Zhang, 2019; Groueix et al., 2019; 
Wang et al., 2019; Yu and Gao, 2020), even from single images 
(Richter and Roth, 2018; Kniaz et al., 2019; Bath et al., 2023). 
Learning-based algorithms (CNN, GAN, etc.) try to infer a depth 
map from the set of input images, in a stereo or multi-view 
manner, with supervised or unsupervised approaches. Contrary to 
conventional methods based on handcrafted features (e.g., 
photometric consistency) in their cost functions, they try to 
reformulate the problem by also leveraging on semantic cues of 
the scene and learning more complex feature representations. 
Most methods require supervision and ground truth models, 
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which is often hard to obtain for real-world heritage contexts or 
are based on synthetic data. Therefore differentiable volumetric 
rendering (DVR) for implicit representations gained popularity as 
they can train reconstruction models from 2D images and learn 
implicit 3D shapes and textures (Liu et al., 2019; Niemeyer et al., 
2020). Implicit representations represent shape and texture 
continuously and do not suffer, like voxel- and mesh-based 
representations, from discretization or low resolution. 

Figure 2. The basic of NeRF scene representation (built upon 
Mildenhall et al., 2020). 

One of the last recent trends is based on neural scene 
representation (NeRF), which has gained popularity due to its 
expressiveness, speed of computation and, generally, low-
memory need. Starting from the significant advance in the use of 
the attention mechanism (Vaswani et al., 2017), Mildenhall et al. 
(2020) introduced a method able to represent a scene using a deep 
fully-connected neural network without any convolutional layers 
(often referred to as a multilayer perceptron - MLP). The input 
for the neural network is a single continuous 5D coordinate set, 
i.e. spatial locations (x,y,z) and viewing directions (θ,f), whereas
the output is the volume density (s) and view-dependent emitted
radiance (RGB) in each direction and at each location (Figure 2).
Starting from the recovered camera poses, the method is able to
synthesize novel views by querying 5D coordinates along camera
rays, and it uses classic volume rendering techniques to project
the output colours and densities into an image. Further
improvements to increase the performance of NeRF methods
tackled the reduction of training time (Mueller et al., 2022),
dynamic view synthesis (Pumarola 2021), limiting the number of
required input images (Yu et al., 2021; Niemeyer, et al., 2022;
Zhu et al., 2022), artefacts reduction (Barron et al., 2021),
integration of depth supervision with sparse point clouds (Deng
et al., 2022), knowledge incorporation such as Manhattan world
priors (Guo et al., 2022) or monocular geometric cues (Yu et al.,
2022a), upscaling to Street View (Rematas et al., 2022), large-
scale (Yuanbo et al., 2022; Zhang et al., 2022;) and satellite
(Roger et al., 2022) images, etc.

3. WHICH NERF?

Firstly we wanted to identify which NeRF methods were 
outperforming the others. Therefore we utilized SDFStudio1 
unified framework developed by Yu et al. (2022b), Nerfstudio2 
developed by Tancik et al. (2023) and NVlab3 (Table 1). They 
are all consolidated neural implicit surface reconstruction 
approaches, enabling the development and visualization of NeRF 
scenes with controls and an easy workflow. In particular, the 
following methods were tested: Instant-NGP (Mueller et al., 

1 https://autonomousvision.github.io/sdfstudio/ 
2 https://docs.nerf.studio/en/latest/ 

2022), Nerfacto (Tancik et al., 2023), MonoSDF (Yu et al., 
2022a), Tensorf (Chen et al., 2022), VolSDF (Yariv et al., 2021), 
Neus (Wang et al., 2021d), Unisurf (Oechsle et al., 2021), 
MipNeRF (Barron et al., 2022) and some variants like Neus-
Facto, Mono-Neus and Mono-Unisurf. 

Framework Methods 
SDFstudio Neus-Facto, MonoSDF, VolSDF, Mono-Neus, 

Neus, Mono-Unisurf, Unisurf, Mip-NeRF 
NeRFStudio Nerfacto, Tensorf 

NVlabs Instant-NGP 

Table 1. Summary of the tested frameworks and methods. 

The performances of these methods were evaluated, among 
others [Karami et al., 2023], on the Ignatius dataset (Knapitsch et 
al., 2017), which contains 265 sequential images (extracted from 
a video at 1920x1080 px resolution). The comparison results with 
respect to ground truth data are reported in Figure 3. They show 
that Instant-NGP and Nerfacto methods achieved the best 
outcomes, with an error of approximately 1 cm and 1.5 cm, 
respectively, outperforming all other methods.  
Instant-NGP uses multi-resolution hash encoding to reconstruct 
implicit surfaces. It is a practical and efficient learning-based 
approach that automatically identifies relevant details and is built 
upon the Tiny-CUDA-nn framework, which is a self-contained 
framework designed specifically for training and Lquerying 
neural networks. By leveraging these advanced techniques, 
Instant-NGP can achieve high-quality results while maintaining 
a fast computation time. 
Nerfacto combines the latest components of NeRF techniques to 
balance speed and quality while remaining flexible for future 
modifications. It is influenced by MipNeRF-360 (Barron et al., 
2022) but with optimizations and ideas from research papers such 
as NeRF-- (Wang et al., 2021b), NeRF-W (Martin-Brualla et al., 
2021), Ref-NeRF (Verbin et al., 2022) and Instant-NGP (Müller 
et al., 2022). 

(a) (b) 

(c) 
Figure 3. Sample images from the Ignatius dataset (a), 
recovered camera network (b) and comparison of NeRF-based 
methods using various criteria: RMSE, STD and MAE [cm]. 

3 https://github.com/NVlabs/instant-ngp 
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4. EXPERIMENTS

Following the outcomes presented in Section 3, Instant-NGP 
(from NVlabs) and Nerfacto (from Nerfstudio) are used to 
perform various experiments on some heritage datasets featuring 
different characteristics: availability of ground truth (GT) data 
(Section 4.1), presence of textureless/uniform (Section 4.2) or 
reflective (Section 4.3) surfaces and touristic repository of lost 
heritage (Section 4.4). For each dataset, the required camera 
poses are derived using COLMAP4 or Agisoft Metashape5 and 
ad-hoc converters6,7 to import the camera parameters into the 
NeRF. After the training and rendering, a point cloud is generated 
and exported for analysis and visualization (Figure 4). All 
experiments were performed on an Alienware Aurora R12 with 
an 11th Gen Intel® Core™ i7-11700KF 3.60 GHz processor, 
32GB of RAM and an NVIDIA GeForce RTX 3080 (10GB of 
VRAM). 

4.1 Quantitative analysis 

Geometric evaluation of NeRF-based 3D results with respect to 
reference ground truth (GT) or conventional Multi-View Stereo 
(MVS) pipelines are hereafter reported. The evaluation was 
performed by calculating the signed distances between the NeRF 
meshes and the reference one. 

The first dataset consists of a smartphone video sequence (images 
at 960x540 px) acquired around a Mausoleum in Trento (Italy). 
The monument has a diameter of ca 25m and a height of ca 15m 
(without the basement). The acquisitions were performed below 
the main basement, at ca 10m distance from the object, producing 
occlusions. Around 200 frames were extracted to create 3D 
results with MVS (Colmap) and NeRF (Instant-NGP). The 
geometric comparison with the available Terrestrial Laser 
Scanner (TLS) revealed a standard deviation of ca 7.4 cm for the 
photogrammetric approach and ca 15 cm for the NeRF one 
(Figure 4, Table 2). 
The second dataset consists of a smartphone video (3840x2160 
px) of the remains of two arches of a structure situated in the 
archaeological site of Pafos (Cyprus). Approximately 180 
frames, centred around a corner of the structure, and taken at a 
distance of roughly 10m while maintaining a parallel camera 
alignment to the archaeological remains, were extracted to apply 
a NeRF (Nerfacto) and MVS 3D reconstruction. The reference 
3D data (GT) are provided by a photogrammetric dense point 
cloud derived from a set of images acquired with a Nikon D3X 
(6048x4032 px). The geometric comparisons (Figure 5, Table 2) 
indicate a similar standard deviation (less than 5 cm), although 
the Nerfacto output presents significantly more noise and details 
loss along the object’s surfaces.  

a) b)  c)  d)

e)  f)
Figure 4. The smartphone-based Mausoleum (Doss Trento) dataset: some of the used images (a), derived camera network (b), 
InstantNGP NeRF 3D result (c) and TLS ground truth data (d). Geometric comparison of the photogrammetric (e) and NeRF (f) 3D 
results with respect to the TLS GT data (scalar field unit in meters). 

a)  b)  c)  d)

e)  f) g) 
Figure 5. Some frames extracted from the video of the monument in Pafos (a), recovered camera network (b), 3D view of the 
Nerfacto (c) and photogrammetric (d) reconstruction from the extracted frames. Geometric comparison of NeRF (e) and MVS (f) 
with respect to GT (scalar field unit in meters). Accuracy and completeness analysis (g). 

4 https://colmap.github.io/ 
5 https://www.agisoft.com/ 

6 colmap2nerf.py: https://github.com/NVlabs/instant-ngp/tree/master/scripts 
7 agi2nerf: https://github.com/EnricoAhlers/agi2nerf 
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a) b)  c)

d)   e)
Figure 6. Piazza Duomo dataset with the recovered camera network (a), the 3D view of Nerfacto result (b) and the completeness 
evaluation (photogrammetry in blue, NeRF in orange) on the building façades (c). An orthographic view of the photogrammetric 
(d) and NeRF (e) point clouds, highlighting the capabilities of NeRF to better handle textureless areas.

Photogrammetric model NeRF model 
Mean Std Time Mean Std Time 

Doss 3.4 7.4 ca 63 min 5.7 15 ca 30 sec 
Pafos 0.6 4.8 ca 26 min -0.1 4.7 ca 3 min 

Table 2. Quantitative analyses [cm] for the Doss (Figure 4) and 
Pafos (Figure 5) datasets and processing time (3000 epochs for 
the NeRF approaches. 

The Pafos dataset was also used to calculate accuracy and 
completeness (often named as precision and recall, respectively) 
following the approaches of Knapitsch et al. (2017) and Nocerino 
et al. (2020). The two metrics were computed with respect to the 
photogrammetric (Nikon) 3D model. Figure 5g shows how the 
video-based photogrammetric reconstruction is more accurate 
whereas the NeRF 3D model has a higher completeness. 

4.2 Textureless surfaces 

Conventional SfM and MVS methods normally meet problems 
while performing 3D reconstruction of surfaces with uniform 
colours or textureless areas.  
A dataset of 20 high-resolution images (6048x4032 px) taken 
with a Nikon D3X was acquired on some buildings in the 
Trento’s Duomo square (Italy). The images were captured at 
ground level, at varying distances from the building facades 
which have evenly painted plasters. The MVS processing was 
done in Metashape whereas Nerfacto was used for the NeRF 3D 
reconstruction (Figure 6). The 3D result generated with NeRF 
seems to be more complete, with higher density and more 
consistent point distribution in the challenging areas. 
As no real ground truth data were available, the completeness is 
computed with an approach for a planar-like surface built upon 
Knapitsch et al. (2017). First, both point clouds are cropped to 
the common area of interest. A reference plane is determined by 
fitting a plane to a downsampled photogrammetric point cloud 
using a least-squares approach. Both point clouds are then 
projected onto this plane and their 3D coordinates are reduced to 
2D in a new coordinate frame defined by the plane and the 
projections of the original Y and Z axes on it. In this new 
reference frame, a ground truth polygon of the complete façade 

is defined by constructing a concave hull of all evaluated point 
clouds. To evaluate the completeness, for each point in the 
evaluated point clouds, a buffer is calculated at a series of 
distance thresholds τ. The resulting polygons are merged into 
single geometries for each τ and cropped to a common extent 
within the ground truth polygon. The completeness function C(τ) 
is then defined as the ratio between the area of the polygon 
obtained for a certain τ and the total area of the reference façade 
polygon. The results show NeRF outperforming photogrammetry 
at a 1cm distance threshold by 10pp of the completeness metric 
(Figure 6c). 

4.3 Reflective surfaces 

Conventional SfM and MVS methods face problems if reflective 
and shining or transparent surfaces have to be digitized. A dataset 
of about 60 high-resolution images (6048x4032 px) was captured 
with a NIKON D750 camera at the MAG museum in Riva del 
Garda (Italy). The object (Figure 7a) is a small bronze statue 
featuring reflective surfaces and a transparent basement. The 
images were acquired by rotating the object and capturing images 
from both parallel and oblique points of view (Figure 7b).  

a)  b) 
Figure 7. Camera network (a) and closeup of the 3D object (b). 

Figure 8 shows the 3D results of the conventional MVS in 
Metashape, Nerfacto in NerfStudio and Instant-NGP in NVlab. 
The bronze surface was nicely reconstructed by MVS and 
Nerfacto methods but not by Instant-NGP. It is however 
noticeable how the Nerfacto point cloud contains a significant 
amount of noise at the border of the object. Probably with shorter 
baselines (i.e. more images), both NeRF methods would have 
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a) b)  c) d) e) f) 
Figure 8. Photogrammetric MVS (a-b), Nerfacto (c-d) and Instant-NGP (e-f) point clouds of the bronze statue with a transparent 
basement and support.  

performed better. Nerfacto outperformed in reconstructing the 
transparent pedestal and back-support. This highlights the 
potential of (some) NeRF methods in reconstructing transparent 
surfaces in a variety of contexts. The computational time for 
MVS was ca 8 min, ca 3 min for the Nerfacto and ca 40 sec for 
Instant-NGP (3000 epochs). 

4.4 Unconstrained touristic images (Photo-tourism) 

Photogrammetry has been often used to reconstruct lost heritage 
objects or monuments by using tourist or archival photos (Gruen 
et al., 2004). The potential of NeRF methods was tested on a set 
of ca 30 unordered touristic images taken from the online 
repository REKREI8 (Vincent et al., 2015, 2016) focused on the 
Temple of Baalshamin in Palmyra, a monument destroyed in 
2015 (Figure 9a). The dataset contains images of varying 
resolutions and distances, most focusing on the temple’s frontal 
part. For the processing, Colmap was applied as conventional 

MVS approach. On the other hand, the Photo-tourism 
implementation in NerfStudio, probably similar to NeRF-W 
(Martin-Brualla et al., 2021), was chosen as it was developed to 
handle unconstrained image collections “in the wild” and 
different camera models. The processing for Colmap took ca 30 
min whereas the NeRF approach needed ca 2 min. Due to the 
limited number of images from the sides and back, both 
approaches failed to reconstruct those parts. As shown in Figure 
9d, the Colmap dense point cloud shows lower density and 
completeness in a few areas compared to the NeRF results 
(Figure 9e), such as the columns' bases and the inner part of the 
facade. This is possibly due to the large baselines or 
inconsistencies among the images, caused by differences in 
acquisition conditions as well the front columns casting ever-
changing shadows on the inner façade. However, the NeRF dense 
point cloud is noisier compared to the dense point cloud derived 
in Colmap. 

a)  b)

c)  d) e)
Figure 9. Some of the REKREI images utilised for the 3D reconstruction of the Palmyra temple (a) and the recovered 
camera network (b). NeRF-W 3D view (c) and visual comparison of the photogrammetric (b) and NeRF (c) 3D results. 

8 https://rekrei.org/ 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-2-2023 
29th CIPA Symposium “Documenting, Understanding, Preserving Cultural Heritage: 

Humanities and Digital Technologies for Shaping the Future”, 25–30 June 2023, Florence, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1051-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1055



   

 

5. CONCLUSIONS AND FUTURE WORKS 

The work presented an investigation of NeRF methods for 
heritage 3D reconstruction. Qualitative and quantitative results 
reported the capabilities of neural radiance fields to derive quite 
accurate 3D models from a set of images. Textureless, 
transparent and reflective surfaces were also considered as well 
as low- and high-resolution images, acquired with smartphones 
or reflex cameras. 
Instant-NGP and Nerfacto were primarily utilised as they show 
the best performances on a typical historical monument. 
Additionally, the NeRF-W method was employed to process an 
unstructured collection of touristic images representing a heritage 
site that has been destroyed.  
The quantitative analyses indicate a comparable level of accuracy 
to the dense point cloud generated through conventional MVS 
methods, with Colmap having a slightly better accuracy although 
requiring more processing time. Moreover, NeRF methods 
appear to perform better in scenarios where conventional MVS 
techniques usually struggle. Even if more tests are surely needed, 
their performances on textureless surfaces and transparent 
objects seem very promising. Surely, time-wise, the NeRF 
approach is generally faster than a MVS approach.  
This article serves as an initial evaluation of NeRF capabilities in 
producing cultural heritage 3D contents. In the next phase of our 
research, we will narrow our focus to specific tasks to obtain a 
more comprehensive understanding of the behaviour and true 
potential of various NeRF methods in the cultural heritage 
domain. In particular, we will: 
• Investigate the impact of image quality and quantity on the 

accuracy and completeness of NeRF-based 3D 
reconstructions of cultural heritage objects; 

• Perform an extended assessment of NeRF capabilities to 
accurately reconstruct reflective and transparent surfaces; 

• Evaluate reliable approach to remove background which is 
not part of the area/object we want to digitally reconstruct; 

• Explore NeRF’s potential in accurately reconstructing 
cultural heritage objects from tourist datasets with 
unconstrained acquisition conditions, focusing in particular 
on of lost monuments; 

• Finalize the NeRFBK dataset (https://github.com/3DOM-
FBK/NeRFBK) for benchmarking NeRF methods in various 
contexts and scenarios (heritage, industry, urban, etc.). 
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