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ABSTRACT 
 

In recent decades, photogrammetry has re-emerged as a viable solution for heritage documentation. Developments in various 
computer vision methods have helped photogrammetry to compete against the laser scanning technology, eventually becoming 
complementary solutions for the purpose of heritage recording. In the last few years, artificial intelligence (AI) has progressively 
entered various domains including 3D reconstruction. The Neural Radiance Fields (NeRF) method renders a 3D scene from a series 
of overlapping images, similar to photogrammetry. However, instead of relying on geometrical relations between the image and 
world spaces, it uses neural networks to recreate the so-called radiance fields. The result is a significantly faster method of recreating 
3D scenes. While not designed to generate 3D models, simple computer graphics methods can be used to convert these recreated 
radiance fields into the familiar point cloud. In this paper, we implemented the Nerfacto architecture to recreate two instances of 
heritage objects and then compared them to traditional photogrammetric multi-view stereo (MVS). While the initial hypothesis posits 
that NeRF is not yet capable to reach the level of accuracy and density achieved by MVS as can be observed in the results, NeRF 
nevertheless shows a great potential due to its fractionally faster processing speed.  
 

 
*  Corresponding author 
 

1. INTRODUCTION 

Documentation of tangible cultural heritage is an important 
point for its preservation and conservation, enabling its 
archiving and study in posterity. Documentation techniques 
have also evolved continuously: while early documentation uses 
sketches, drawings, and eventually photographs, the use of 3D 
reconstruction methods have gained traction in the last few 
decades. Developments in digital technology in both its 
hardware and software aspects have contributed significantly to 
this fact. The active lidar and passive photogrammetry 
techniques may be considered the two main contenders (or in 
many cases, complements) in the 3D heritage documentation 
domain (Matrone et al., 2020).  
 
Photogrammetry has been used for a lot longer than lidar but 
remained in its shadows due to a more complicated process and 
the need for skilled operators. It was not until the development 
of multi-view stereo (MVS) and dense matching, coupled with 
important improvements in computing capabilities that it 
managed to become a strong competitor to the relatively more 
established lidar technology. While nowadays the 
photogrammetric workflow has more or less been established, 
several questions still remain (Murtiyoso et al., 2022). For 
example, the generation of dense point cloud for reflective 
surfaces remain difficult to be addressed using classical dense 
matching approaches. Recent solutions tend to gear towards the 
use of artificial intelligence (AI) and neural networks, for 
example to aid the reconstruction of textureless objects 
(Stathopoulou et al., 2021), to recover lost heritage from 
historical archives (Condorelli et al., 2020) or to improve 3D 
models via upsampling (Ren et al., 2022). 
 

An interesting recent development is the use of Neural Radiance 
Fields (NeRF) to render a 3D scene of objects (Mildenhall et al., 
2020). NeRF attempts to recreate radiance fields in the form or 
neural networks; it is fundamentally different from pre-existing 
notions of 3D models familiar to photogrammetry users. NeRF, 
in and on itself, represents neither a 3D mesh nor voxels but 
rather a density function describing the transparency or 
opaqueness of a certain object seen from a specific point of 
view (namely the images). As such, NeRF was not originally 
developed for 3D reconstruction but rather 3D rendering, i.e. the 
creation of novel points of view from existing base dataset 
generated by a trained neural network. However, several 
computer graphics techniques may be utilised to convert NeRF 
into either a point cloud or a 3D mesh, for example by using the 
classical marching cubes algorithm (Lorensen & Cline, 1987). 
 
Since its first introduction in 2020 NeRF has gained a lot of 
attention and new implementations improved its speed and 
efficiency in the span of two years. Mip-NeRF was a follow-up 
to the original NeRF paper, increasing its processing speed and 
quality (Barron et al., 2021). Instant-NGP (Müller et al., 2022) 
was able to recreate a 3D scene in seconds. An interesting first 
attempt to use the concept for heritage documentation was 
presented in Sun et al. (2022) based on earlier work on NeRF-W 
(Martin-Brualla et al., 2021) where it was applied to unsorted 
internet images. Finally, Condorelli et al. (2021) presented a 
preliminary attempt in comparing NeRF to traditional MVS 
point cloud in the context of heritage documentation. 
 
In this paper, we attempt to assess the use of state-of-the-art 
NeRF technology for heritage documentation purposes. Three 
main aspects will be discussed: (1) geometric quality of the 
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point cloud, (2) completeness of the point cloud, and (3) the 
density of the point cloud. In addition, the processing time vis-
à-vis classical MVS-based dense matching will also be briefly 
discussed. In the final section of the paper, thoughts will be 
presented on the identified limitations and potential for the 
technology to help document tangible cultural heritage in 3D.  
 

2. METHODOLOGY 

Where NeRF differs from traditional photogrammetry is in its 
way of recreating (or more accurately, predicting) the 3D scene 
and by extension the 3D model. Whereas MVS in its most basic 
setup performs area-based image matching (Remondino et al., 
2014), NeRF determines, based on the input training data, a 
density function of the 3D object or the so-called radiance 
fields. The radiance field consists not only of density, but may 
also include other information including RGB values or even 
semantic attributes (Mildenhall et al., 2020). It is also view-
dependent; this means that different viewpoint may give 
different information, whether density, RGB or others. 
 
The NeRF workflow from a technical point of view is similar to 
that of MVS photogrammetry: overlapping images were taken 
of an object. In photogrammetry the poses of these images were 
then computed in a robust geometric operation (the bundle 
adjustment) and dense image matching was thereafter applied to 
generate a point cloud and subsequently a mesh. NeRF instead 
feeds these images into its neural network. However, NeRF in 
an on itself does not perform image orientation; even though it 
requires the input images to be pre-oriented. In this regard, 
NeRF may be considered as an alternative to traditional dense 
matching step in the photogrammetric workflow. Figure 1 
shows the overall workflow of both NeRF and MVS as it is 
implemented in this study.  
 
Due to these requirements, the workflow implemented in this 
paper starts with the acquisition of multiple overlapping photos 
of an object, similar to classical close-range photogrammetry. 
The images were then oriented using Agisoft Metashape and 
then fed into Nerfstudio (https://docs.nerf.studio/, accessed 11 
April 2023). Nerfstudio is a simplified platform and interface to 
several implementations of NeRF; in this paper the Nerfacto 
(Tancik et al., 2022) variant was used for the experiments. After 
training and recreation of the 3D scene by Nerfstudio, a 
marching cubes algorithm was implemented to convert the 
radiance fields into a 3D point cloud. Conversely, the oriented 
images were thereafter used to also generate a dense point cloud 
using Metashape using the “High” preset. A comparison 

between the two point clouds was then performed using the 
software CloudCompare (https://www.danielgm.net/cc/ 
accessed 11 April 2023). 
 
In this study, two heritage objects were recorded and compared. 
These two datasets include: dataset A comprising 24 images of 
the Reformers’ Wall in the city of Geneva (Switzerland), and 
dataset B made of 85 images of the main entrance to the Bern 
Minster (Bern, Switzerland) with a Gothic tympanum depicting 
the Last Judgement. Dataset A is a simpler case reminiscent of 
the case of classical stereopairs set along one axis with overall 
also simpler object details, while dataset B presented a more 
complex object due to the various sculptures and ornate upper 
part of the tympanum. Both datasets were processed in Agisoft 
Metashape and then their point clouds compared to the ones 
generated by Nerfacto, with future test also planned for 
implementation in Instant-NGP.  
 
Theoretical ground sampling distances (GSD) of 1.3 mm for 
dataset A and between 1 and 3.5 mm for dataset B were 
calculated to manage the expected result for the geometric 
quality. A Nikon Z50 mirrorless camera with a 24 mm lens was 
used to take 24 images for dataset A, while 85 images were 
taken using the same camera with a 28 mm lens setting. 
 

3. RESULTS AND DISCUSSIONS 

Results showed that Nerfacto generated 3D renders in seconds, 
with training process totalling longer but achieving a stable 
result after a few minutes. Point cloud conversion was near 
instantaneous, but as can be seen in Table 1, noise is still 
prominent in both datasets as evidenced by high values of 
standard deviation when compared to the reference Metashape 
point cloud.  
 
Three quality parameters will be considered for each individual 
dataset. First, to check the geometric quality the value of mean 
error (x̅) and standard deviation (σ) from an M3C2 (Lague et al., 
2013) comparison performed in CloudCompare were used to 
assess Nerfacto’s results, in terms of systematic error and 
presence of noise respectively. As both point clouds originate 
from the same network of oriented images, the value of x̅ is 
expected to be close to zero. This hypothesis proved to be more 
or less correct as seen in Table 1, where dataset A registered a 
value of 2 mm whereas dataset B yielded a value of 1 mm. 
These values are well within the expected order of precision and 
tolerated threshold.  

 

 
 
Figure 1. Flowchart of the experiment design used in this study. Nerfstudio (https://docs.nerf.studio/, accessed 11 April 2023) is a 
simplified interface supporting several implementations of NeRF, of which Nerfacto (Tancik et al., 2022) is used in this case. 
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 Dataset A (24 images) Dataset B (85 images) 
M

et
as

h
ap

e 

 

 
8,914,633 points  11,569,500 points 
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1,202,095 points  7,174,407 points 
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x̅ = 0.2 cm; σ = ± 3.5 cm; completeness 92.2% x̅ = 0.1 cm; σ = ± 5.0 cm; completeness 88.7% 

Table 1. Comparison of Metashape and Nerfacto on the two datasets used in this study. The third row shows results from the MC3D 
analysis performed on CloudCompare. The completeness value represents the percentage of inlier points from the Nerfacto point 
cloud as related to the reference Metashape point cloud.  
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 Dataset A Dataset B 
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Average number of neighbours: 821.93 points Average number of neighbours: 29.40 points 

N
er

fa
ct

o  

 

 
Average number of neighbours: 86.75 points Average number of neighbours: 34.00 points 

Table 2. Density analysis as performed in CloudCompare. In this analysis, the number of neighbours were counted for each point 
constituting the point clouds within a sphere with a set radius of 5 cm.  
 
Secondly, a measure of completeness was used. This value was 
obtained by overlaying the two point clouds. By assuming that 
the Metashape point cloud is by default more complete, each 
point in the Nerfacto point cloud is projected to it. Missing 
points are then considered as incomplete points and a 
percentage point representing the completeness rate was 
computed based on this information. Thirdly and finally, a 
density analysis was performed by computing the number of 
neighbours for each point in the Metashape and Nerfacto point 
clouds within a sphere with a radius of 5 cm. The first and 
second parameters are shown in Table 1, while the third 
parameter is described in Table 2. 
 
For dataset A, Nerfacto generated around 1.2 million points 
with notable upper parts lacking in point density. This may be 
due to the fact that the images were taken from a lower point of 
view and oriented upwards; thus, the upper parts of the wall 
present the farthest distance from the camera. It is therefore 
interesting to note that object-to-sensor distance may play a role 
in determining the quality of the point cloud. It managed 
nevertheless to attain a completeness score of 92.2%. In the 
third row of Table 1, missing and incomplete parts of the object 
are coloured grey. In terms of geometric accuracy, it yielded a 

mean error of 2 mm which is consistent with the initial 
hypothesis. It is however more interesting to observe the value 
of the standard deviation, of which a value of 3.5 cm was 
registered. This is more than 25 times higher than the theoretical 
GSD. Furthermore, considering a 2.7σ tolerance as is usual in 
surveying applications, it is about 10 times higher than the 
tolerated threshold. This is also evident visually, as can be seen 
in Table 1.  
 
A similar observation can be seen in dataset B, where Nerfacto 
managed to generate 7.1 million points. The mean error is again 
consistent with the initial assumption, but the standard deviation 
reached 5 cm, which is around 15 times larger than the GSD. 
Within dataset B, missing parts can also be seen where they are 
expected to be, namely image blind spots and higher parts 
where the object to sensor distance is much higher. Indeed, it 
registered a completeness value of 88.7% which is nevertheless 
quite good considering the dimensions of the object (height of 
around 25 meters). An interesting visual observation in Table 1 
may show, however, a discrepancy as regards to the density 
level of the point cloud in several areas.  
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Thirdly and finally, in order to ascertain the quality of the point 
cloud density, Table 2 shows a density analysis as performed in 
the software CloudCompare. In this analysis, the number of 
neighbouring points were counted for each point in the point 
cloud within a spherical radius of 5 cm. In both dataset A and B, 
Metashape showed a very homogeneous density throughout the 
resulting point clouds. While this may be due to point cloud 
post processing algorithms inside Metashape itself, it still 
presents a clean result throughout as far as point cloud density is 
concerned. With Nerfacto, a more heterogeneous density can be 
observed visually from Table 2. 
 
In dataset A, Nerfacto registered a very low average of only 
86.75 neighbours while Metashape gave an almost ten times 
denser value. The higher density area is concentrated on the left, 
central, and lower parts of the object while the upper parts 
registered lower densities. This finding is consistent with the 
previous completeness analysis.  
 
For dataset B, Nerfacto yielded an average number of 
neighbours of 34 points. Interestingly, Metashape gave a 
slightly lower value of 29.40 points. Visual inspection indicate 
that Nerfacto generated very dense point clouds in several 
specific parts of the object, namely the central pillar. A cropped 
image showing more details of this central pillar can be seen in 
Figure 2. Note the higher density of the central part of the 
dataset, which may be explained by the fact that most of the 
images in the dataset is centred on this part, in line with keeping 
a convergent geometry commonly practised in close range 
photogrammetry. This induces more radiance fields on the said 
area, thereby generating a much denser part of the point cloud. 
 
In Figure 2, several parts of the pillar gave a very high density 
value in Nerfacto’s point cloud, averaging on 60 points. In some 
points, the number of neighbours even reach 204. The points 
with the highest density seem to be concentrated on object 
borders, while flat surfaces generally have reduced density. This 
is in sharp contrast to the same part as reconstructed by MVS in 
Metashape, where a very homogeneous density can be observed 
all throughout the central pillar. However, it is also worth noting 
that the results from Metashape is most likely subsampled in a 
post-processing step after the dense matching to obtain this 
homogeneous density. 
 

  

Nerfacto Metashape 
 
Figure 2. A more detailed view of the central pillar point cloud 
as generated by Nerfacto and Metashape. 

4. CONCLUSIONS 

This paper presented a preliminary test on the use of the novel 
NeRF method specifically for use in cultural heritage objects. 
The method performed well in terms of processing time, which 
is a fraction of the time required by traditional MVS. It is also 
accurate as far as point fidelity is concerned, as evidenced by 
the values of M3C2 mean error. It also fared well in the 
completeness test, despite encountering complex cases such as 
the ornate dataset B, scoring 88.7%. The simpler dataset A gave 
a slightly albeit even higher score of 92.2%. 
 
Several limitations can however be identified within the context 
of heritage documentation from the authors’ point of view. The 
current state of NeRF still requires image orientation, which in 
turn requires multiple overlapping images. Therefore, this does 
not reduce the field effort and time required to perform data 
acquisition. The orientation process also relies on two solutions: 
either (1) a traditional SfM photogrammetry process or (2) 
using the help of solid state lidar (SSL), for example as is 
available on modern iPad© and iPhone© devices. However, the 
field of NeRF is evolving in an exponential rate, and it is very 
probable that newer innovations may quickly remedy these 
limitations in the near future. 
 
In terms of geometric precision, NeRF is still a long way from 
fulfilling the requirements of high level of detail documentation. 
The amount of noise generated in the resulting point cloud is 
still too important. This is reminiscent of the results obtained by 
the Apple© SSL technology (Losé et al., 2022; Murtiyoso et al., 
2021), another novel technology which has recently seen 
applications also in heritage documentation. The density of the 
point cloud is also too heterogeneous for a robust 
documentation purpose, although slight modification to the data 
acquisition procedure (e.g., increasing the number of images on 
other areas of interest) may rectify this problem. As NeRF 
becomes more widespread and its workflow more streamlined 
in the future, these problems are expected to be more 
manageable. Indeed, a similar process can be observed during 
the early days of dense matching (Murtiyoso et al., 2016). 
 
Future investigation will involve tests on other variants of NeRF 
and comparison with other established methods for 3D heritage 
documentation, such as laser scanning. It is also interesting to 
note that NeRF emerged virtually in parallel to developments in 
miniaturised solid state lidar showing a very promising future 
for low-cost 3D heritage documentation. The nature of NeRF 
itself then raises the question on how the word “heritage 
documentation” would be defined in the future, specifically 
when used to refer to metric documentation. 
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