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ABSTRACT: 
 
This paper aims at evaluating the possibility of using wearable mobile mapping solutions as a tool for detecting deflections in timber 
floors. These construction systems are prone to present this type of damage due to the mechanical properties of the wood (relatively 
low flexural stiffness and creep behaviour). During this study we have evaluated the chance of introducing an additional stage to the 
general workflow. This stage is devoted to reduce the noise of the 3D point cloud by using the Statistical Outlier Removal filter in 
combination with a noise-reduction filter such as the Anisotropic filter, the PointCleannet or the Scored-based denoised networks 
(Deep Learning methods). According with our results, the use of this strategies improves the quality of the 3D point cloud form a 
qualitative and quantitative point of view. However, these improvements seem to be not sufficient for using this product as a 
universal source of information for deflection analysis. In this sense, and according with the sensor and study case exploited, this 
type of point clouds could be used in floors with 5-8-meter length and a relative deflection of about L/200 or higher.   
 

1. INTRODUCTION 

The guidelines for the conservation of cultural heritage 
buildings, codified in the Krakow Charter, underline the 
importance of studying the construction from a 
multidisciplinary and scientific point of view. Within this 
complex context, 3D point clouds are placed as a valuable 
source of information since they are able to represent the 
construction with great accuracy and resolution. Thanks to this, 
there are plenty of applications that use this product for different 
purposes that includes the diagnosis of the building (i.e. analysis 
of deformations, presence of moisture or generation of HBIM 
models among others) (Yang et al., 2022).  
The acquisition of this valuable information could be carried out 
by using the laser scanning or the structure from motion 
photogrammetry. Concerning the first one, we can highlight the 
emergence of the Mobile LiDAR Systems. This type of laser 
scanner is able to generate 3D point clouds in movement, 
reducing data collection phase. Within this group, Wearable 
Mobile Mapping Systems (also named as Portable Mobile 
Mapping Systems) have been placed in a key position. This type 
of sensors are characterized by its reduced size and weight, 
being possible to  equip them in backs (Nocerino et al., 2019). 
Thanks to this, it is possible to reduce data acquisition times in 
about 10 times (Di Filippo et al., 2018). However the final 
result, the 3D point cloud, is strongly affected by the data 
acquisition protocol as well as the processing parameters 
(Camiña et al., 2022; Di Filippo et al., 2018). Considering this, 
there are different works that deal with the accuracy assessment 
of this sensor, showing values near the centimetre (Camiña et 
al., 2022; Di Filippo et al., 2018; Nocerino et al., 2017; 
Rodríguez-Martín et al., 2018; Sánchez-Aparicio et al., 2019). 
These results place this sensor as a powerful digitalization tool 

for the creation of planimetric products (i.e. plans and sections) 
(Di Filippo et al., 2018). Nevertheless, there is not studies that 
deal with the analysis of this data for technical inspection in 
historic buildings (i.e. evaluation of deformations) 
Under the basis previously exposed, this work aims at 
evaluating the advantages of integrating noise-reduction filters 
within the processing of WMMS point clouds. The goal of this 
application is to evaluate the possibility of integrating this type 
of sensor, which offers great advantages, into inspection tasks 
on which the accuracy is relevant (i.e. the evaluation of 
deflection in timber floors). To this end the article applies 
different filters that includes Deep Learning methods. The 
improvement of these filter is evaluated not only by calculating 
the statistical indexes (i.e. mean and standard deviation) but also 
by including an uncertainty analysis and a cross-validation for 
which a real study case is used. 
 

2. MATERIALS AND METHODS 

As it was stated previously, the aim of this work is to evaluate 
the capability of the novel WMMS sensors for evaluating the 
deflection in timber floors. According to this, it is necessary not 
only to capture the data of the timber floors by using this sensor, 
but also to contrast it with respect to a high-accuracy sensor 
such as a Terrestrial Laser Scanner.  
Within this context the methodology used in this study 
comprised a total of three stages: i) the data acquisition; and ii) 
the data processing; and iii) the uncertainty propagation.  
 
2.1 Data acquisition 

The equipment chosen to perform this study included the used 
of the following LiDAR sensors: i) a Wearable Mobile Mapping 
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System (WMMS); and ii) a Terrestrial Laser Scanner (TLS). 
The first one was chosen due to its portability and performance 
(10 times higher than the static one) (Di Filippo et al., 2018). 
Meanwhile the second one was selected due to its accuracy.  
 
2.1.1 Wearable Mobile Mapping System: The WMMS was 
the Zeb-Revo mobile mapping system (https://geoslam.com/). 
This device integrates a 2D rotating laser scanner head (Hokuyo 
UTM-30LX-F) rigidly coupled to an Inertial Measurement Unit 
(IMU) on a rotary engine. The data captured is stored in a small 
datalogger equipped within a backpack, being extremely 
portable (4.10 kg) and suitable for indoor spaces. This system is 
able to capture 40,000 points per second with a nominal 
accuracy of 1-3 cm and a range that varies from 0.60 to 30 m 
indoor and 0.60 to 15m outdoors. The autonomy of the 
equipment is about 4 hours. 
After the data acquisition it was necessary to convert the 2D 
point cloud captured by the Hokuyo laser scanner and the data 
captured by the IMU. To this end it is necessary to apply the 
well-known Simultaneous Location and Mapping (SLAM) 
algorithm. This approach address with the problem of solving 
the position of a mobile system (such as the WMMS) inside an 
unknow environment, obtaining the 3D point cloud of the site. 
More specifically we use the full SLAM algorithm due to its 
accuracy, being carried out off-line. This approach has an 
incremental and iterative nature that allow to register the 
segment (2D point clouds) captured by the Hokuyo head one-
by-one with the use of the IMU data. For more details about this 
strategy reader refers to di Fillipo et al.  (Di Filippo et al., 
2018). 
 
2.1.2 Terrestrial Laser Scanner: In order to evaluate the 
performance of the WMMS in terms of accuracy, a high-
precision laser scanner was used. More specifically the TLS 
Faro Focus 3D. This LiDAR sensor is based on the Amplitude 
Modulated Continuous Wave (AMCW) measure principle, 
highlighting by its data acquisition rate and accuracy. More 
specifically, this sensor is able to capture from 120,000 to 
976,000 points per second with a nominal accuracy of 2 mm.  
 
2.2 Data processing 

The 3D point clouds obtained by both sensors were processed as 
follows: i) segmentation of the region of interest; ii) reduction 
of noise on the WMMS point cloud; iii) accuracy assessment of 
the resulting point clouds by using as error metric the 
discrepancy between the WMMS point clouds and the TLS one; 
and iv) uncertainty propagation.  
All these stages were performed by using the open-source 
software CloudCompare® (https://www.danielgm.net/cc/) as 
well as several scripts programmed in Matlab® with the help of 
the uncertainty propagation library Uqlab (Marelli and Sudret, 
2014). 
The following sections will explain in detail all stages at 
exception of the first one since is considered a common step. 
 
2.2.1 Noise reduction on the WMMS point cloud: Point 
cloud acquired from scanning sensors are perturbed by noise 
that could affect negatively in the subsequent products. In the 
case of the SLAM-based solutions, such as the WMMS sensors, 
the noise could be relevant, affecting negatively to the final 
product (i.e. extraction of sections or measures) (Sánchez-
Aparicio et al., 2021). Thus, it is important not only to evaluate 
the discrepancies between the WMMS point clouds and the TLS 
one (which acts as reference data) (Di Filippo et al., 2018; 
Nocerino et al., 2017; Sánchez-Aparicio et al., 2019), but also to 
integrate additional noise-reduction strategies that allow to 

improve this aspect.  
Under this basis we introduce an additional step in the point 
cloud processing which is the noise-reduction. During this stage 
we have evaluated different strategies that could allow us to 
reduce the intrinsic noise of this system. More specifically, we 
have tested the following state-of-art strategies: 

• The Statistical Outlier Removal filter (SOR) (Rusu 
and Cousins, 2011): this method is a outlier removal 
strategy. In this context the outliers of a point cloud are all 
those points than are placed in areas on which the density 
of the data is lower than a threshold value. To this end the 
algorithm computes the mean distance between points of 
the 3D point cloud. During this step the algorithm 
computes the mean distance by using the k-nearest 
neighbours. Then, the algorithm extracts the mean and 
standard deviation of the population. Finally, the 
threshold value is computed as n*standard deviation. 
Where n is an input value defined by the user. Due to its 
nature, this strategy is evaluated in combination with the 
rest of the algorithms.  
• The anisotropic algorithm (ANI) (Xu and Foi, 2019): 
this denoising strategy is based on aggregation of multiple 
polynomial surfaces computed on directional 
neighbourhoods. These neighbourhoods are locally 
adapted in accordance with the shape of the point cloud. 
This method is able to preserve fine features as well as 
sharp edges. It is worth mentioning that this algorithm 
was tested on another study case that used the same 
WMMS sensor (Sánchez-Aparicio et al., 2021), 
improving the original data. 
• The PointCleanNet algorithm (PCN) (Rakotosaona et 
al., 2020): PCN algorithm is the pioneer of the Deep-
Learning based denoising methods (Luo and Hu, 2021). 
This strategy employs a variant of the well-known 
PointNet (Qi et al., 2017). PointNet is a neural network 
that consumes point clouds, allowing to detect object or 
even to segment scenes (Qi et al., 2017). In the context of 
the noise-reduction, Rakotosaona et al. (2020) adapts this 
Network. Firstly, the network classifies and discards 
outliers, and then estimates the correction vectors that 
allow to project the noisy points on to the original clean 
surfaces. This approach is efficient against different noise 
and outliers levels (Rakotosaona et al., 2020). 
• The Score-based denoising point cloud algorithm 
(SBD) (Luo and Hu, 2021): this algorithm is also based 
on a Deep-Learning strategy. In this case the denoise 
stage was performed by using a gradient ascent guided 
method which uses a log-density function. According with 
the authors, this method minimizes artefacts such as 
shrinkage and outliers, obtaining better results than the 
previous one.  
 

2.2.2 Evaluation of the WMMS accuracy: This stage has 
the aim of evaluating the discrepancies between the 3D point 
cloud obtained in the previous stage (with noise reduction and 
without noise reduction) and 3D point cloud of the TLS. To this 
end the following methodology was applied: i) registration of 
each WMMS point cloud in the TLS coordinate system; ii) 
estimation of the discrepancies between the TLS and the 
WMMS; and iii) computation of the statistical indexes. 
Firstly, each one of the WMMS point clouds were registered 
with the TLS point cloud with the aim of having all the data in 
the same coordinate system. To this end we used the Iterative 
Closets Points (ICP) algorithm (Besl and McKay, 1992). The 
ICP iteratively solves a minimization problem that allow to 
estimate the best transformation matrix between the moving 
point cloud (WMMS) and the fixed one (TLS). 
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Then, the discrepancies between each WMMS point cloud and 
the reference one was evaluated. These values were obtained by 
computing the cloud-to-cloud distance between point clouds. 
More specifically, we propose the use of the Multiscale Model 
to Model Cloud Comparison (M2C2) (Lague et al., 2013). This 
algorithm outperforms other cloud-to-cloud distance methods 
(Girardeau-Montaut et al., 2005), showing great robustness with 
respect to changes in point density and point cloud noise. 
Additionally, this algorithm is able to compute the signed 
distance thanks to the use of the normal vector of each point. 
The results of this algorithms are used to compute the statistical 
indexes in accordance with the normality -or not- of the 
population (Rodríguez-Gonzálvez et al., 2017). 
 
2.2.3 Uncertainty propagation: In statistics, the uncertainty 
propagation is the effect of the variable´s uncertainties (or 
measure errors) in the final output (model). This question has 
become a relevant topic nowadays in different fields of the 
applied sciences and engineering since it allows to simulate a 
model from a probabilistic point of view (Marelli and Sudret, 
2014). This approach could be extended to 3D point clouds. In 
this sense the noise could be considered as an uncertainty source 
that could affect further studies (i.e. computation of measures). 
In the context of this study, the uncertainty propagation will 
refer to the effect of the discrepancies in the calculation of the 
relative deflection of timber floors. This parameter, the relative 
deflection, could be understood as the ratio between the length 
of the beam and its deflection. 
The analysis of this effect was performed by using the Monte-
Carlo method. This method is a sampling-based approach that is 
widely used for quantification and propagation of uncertainties 
(Zhang, 2021). In the Monte Carlo approach, the model is 
simulated n times by choosing a random sample of inputs that 
takes into consideration its Probabilistic Distribution Function 
(PDFs). This function could be obtained by using a curve fit 
method over the discrepancy map. Since the candidate functions 
could be Normal, Log-Normal, Weibull or Gamma among 
other, it is highlight recommended to perform a goodness-of-fit 
test (i.e. QQ-plots or the Shapiro-Wilk test) to choose the proper 
one (Garcia-Martin et al., 2020).   
 

3. EXPERIMENTAL RESULTS 

3.1 Study case 

The case study is Nuestra Señora de Gracia Convent in Avila 
(Spain). This building was built with masonry bearing walls and 
unidirectional timber floors. The most antique parts include the 
roof timber trusses, part of the church in stone vaults, and a 
basement corridor comprising vaulted brick galleries. This inner 
space shows great complexity, lack of illumination and a large 
extension, being the WMMS the most effective solution in this 
sense.  
Under this basis it was carried out the 3D digitalization of the 
space by using the Zeb-Revo laser scanner. The resulting 3D 
point cloud was made up by 143,637,353 points, speeding a 
total of 188 mins (this value includes the data acquisition and 
data processing) (Figure 1). 
 

 
Figure 1. General view of the 3D point cloud 

The interest of the case study lies in the diverse degree of 
deterioration of the timber floors (with presence of large 
deformations). Thus, it is required to perform a study current 
geometrical status of each beam element in order to design the 
most proper restoration strategy. This question demands the use 
of the 3D point clouds as a source of metric information for 
studying different parameters of structural interest such as:  
 

• The span length: as the distance between the supports 
of the beam. 

• The maximum deflection: understood as the distance 
between the point with largest deformation and the 
point with the less deformation 

 
According to this, it was decided to make an in-depth evaluation 
of the most affected floors with the aim of evaluating the degree 
of uncertainty if we decide to use the 3D data provided by the 
WMMS point cloud. These floors were digitalized by the TLS 
Faro Focus 120 (Figure 2) in order to have a ground truth for 
comparison. For more details about the data acquisition and 
processing, reader must refer to Villanueva-Llauradó et al. 
(Villanueva Llauradó et al., 2022). 
 

 
Figure 2. Detailed view of the floors used during this study 

 
3.2 Noise reduction 

Both 3D point clouds, WMMS and TLS, were registered in the 
same coordinate system by using the ICP algorithm. Thank to 
this it was possible to clean the non-overlapped areas with great 
efficiency since these areas will introduce noise in the 
discrepancy analysis. 
Then we applied on the WMMS point cloud the filters 
highlighted in Section 2.2. In order to make as applicable as 
possible this process, we run all the algorithms with the default 
parameters, at exception of the SOR filter. In this case we 
studied different combination of parameters in order to mitigate 
the edge effects without removing points from other areas of 
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interest (Figure 3). This effect appears commonly in floors due 
to the geometrical disposition of the beams.  
More specifically we tested the following combination of 
parameters:  

• Number of points to compute the mean distance (k): 
we tested with 250,200,150,100,50,25,5. 

• Standard deviation multiplier (n): 3.  
  

a) 

 
  
b) 

 
 

Figure 3. Effects of the SOR filter over the default 3D point 
cloud: a) with a k of 250 and a n value of 3; and b) with a k of 

10 and a n value of 3 
 
The best results were obtained by considering a k value of 10. 
Lower values of k trend to remove relevant parts. Meanwhile 
higher values do not remove the outliers effectively. 
 
3.3 Discrepancies between point clouds 

The analysis of the discrepancies between each set of point 
clouds were carried out by using the M3C2 algorithm defined in 
Section 2.3. During this stage a total of two parameters were 
taken into consideration, namely: i) normal scale; and ii) 
projection scale. The first one allows us to define the diameter 
of the sphere used for computed the normal of each point. This 
value was fixed as 25 times the average surface roughness of 
the TLS point cloud as propose Lague et al. (Lague et al., 2013). 
Meanwhile, the second is used for defining the diameter of the 
cylinder used for searching the homologous point in the other 
3d point cloud, allowing to reduce the computational time. This 
value was fixed in a point on which the resulting cylinder is able 
to capture at least 20 points in the TLS/WMMS point cloud 
(Lague et al., 2013). 
 
a) 

 
 

b) 

 

Figure 4. Map of discrepancies between the WMMS and TLS 
point clouds: a) before applying a noise reduction strategy; and 
b) after applying the strategy SBD + SOR. Red areas indicate 

discrepancies of 2.00 cm, green areas indicate quasi-null 
discrepancies 

 
As a result, it was possible to obtain a full map of discrepancies 
(signed distances) between the WMMS and TLS point clouds 
(Figure 4).  
The information contained in these maps was used for 
performing a qualitative and quantitative analysis of each 
resulting 3D point cloud.  
 
3.3.1 Qualitative analysis of the 3D point cloud: The 
qualitative evaluation of the 3D point clouds was carried out by 
extracting several sections along the main axis of the timber 
floor. Then this information was visually checked, observing the 
performance of each strategy (Figure 5 and Figure 6). 
 
a) 

 
  
b) 

 
 

Figure 5. Transversal section of one beam: a) before noise 
reduction (red data); and b) after the application of the SBD + 

SOR strategy (cyan data). In green the data captured by the TLS 
 
In general terms the application of the ANI and SBD algorithms 
(with and without SOR filter) improves the visual aspect of the 
point cloud (Figure 5 and Figure 6), making less disperse. 
However, the use of the PCN algorithm does not offer the same 
visual performance. After its application it was possible to 
observe some shrinkage problems. These problems were more 
prominent after the recurrent application of the Network 
(Figure 7). 
 
a) 
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b) 

 
 

Figure 6. Longitudinal section of one beam: a) before noise 
reduction (red data); and b) after the application of the SBD + 

SOR strategy (cyan data). In green the data captured by the TLS 
 
a) 

 
  
b) 

 
Figure 7. Results obtained after the application of the PCN 
algorithm: a) at the first iteration; and b) after applying the 

algorithm 10 times. 
 
3.3.2 Quantitative analysis: accuracy assessment: 
Complementary to the qualitative analysis we decided to 
perform a quantitative evaluation. This stage allows us to have a 
deeper image about the performance of the different strategies 
by using statistical indexes as it was described in Section 2.3. 
Firstly, we perform a normality test by using the QQ-plots as 
well as the Shapiro-Wilk test. In all the cases the population 
shows a normal distribution. Thus, it was required the use of 
parametric indexes in order to study each noise-reduction 
proposal. In this context the indices used where the mean (m) 
and the standard deviation (stdev). These indexes were 
supplemented with the interpercentile range (IPR) at 50% and 
95% of confidence level.  All these results are showed in the 
following table.   
It is worth mentioning that all the combinations show a bias 
error (mean value). This error could be attributed to the SLAM 
processing since the floors evaluated are placed at different 
levels. So, we decided to study each floor separately, registering 
each one with respect to the TLS floor. After the application of 
this stage, the bias error disappeared, throwing the following 
results (Table 2 and Table 3).  
 

WMMS point cloud mean stdev IPR 
NO FILTER 0.003 0.007 0.010 0.027 
NO FILTER + SOR 0.003 0.006 0.009 0.027 
ANI 0.004 0.004 0.006 0.020 
ANI + SOR 0.003 0.003 0.005 0.019 
PCN (1 iter) 0.003 0.007 0.011 0.026 
PCN + SOR (1 iter) 0.003 0.006 0.009 0.025 
SBD 0.004 0.004 0.006 0.022 
SBD + SOR 0.003 0.003 0.005 0.020 

Table 1. Results obtained during the evaluation of the 
discrepancies between the different WMMS point clouds with 

respect to the TLS one 

 

WMMS point cloud mean stdev IPR 
NO FILTER 0.001 0.007 0.008 0.023 
NO FILTER + SOR 0.001 0.006 0.008 0.021 

ANI 0.001 0.004 0.005 0.019 
ANI + SOR 0.001 0.004 0.005 0.017 
PCN (1 iter) 0.001 0.007 0.009 0.023 
PCN + SOR (1 iter) 0.001 0.007 0.009 0.024 
SBD 0.001 0.004 0.006 0.022 
SBD + SOR 0.000 0.003 0.005 0.020 

Table 2. Results obtained for the upper floor. 

WMMS point cloud mean stdev IPR 
NO FILTER 0.001 0.007 0.008 0.022 
NO FILTER + SOR 0.001 0.007 0.008 0.022 
ANI 0.001 0.005 0.006 0.018 
ANI + SOR 0.000 0.004 0.005 0.016 
PCN (1 iter) 0.001 0.007 0.009 0.023 
PCN + SOR (1 iter) 0.000 0.007 0.008 0.023 
SBD 0.001 0.004 0.006 0.014 
SBD + SOR 0.000 0.003 0.005 0.013 

Table 3. Results obtained for the lower floor 

 
3.3.3 Discussion of the results obtained during the 
accuracy assessment: All the data generated during the 
qualitative and quantitative analysis was evaluated in-depth 
with the aim of understanding which is the performance of each 
noise-reduction strategy. The results of this stage are 
summarized as follows: 
 

• Visual inspection (qualitative analysis): the 
application of the SOR filter allow to remove a great 
part of the noise produced by the edge effect of the 
laser beam in all the combinations tested. This 
question is in line with the improvement with the 
results showed in Figure 3. Also, the application of 
the ANI and SBD improves the appearance of the 
results, offering sharper edges. In contrast to this, the 
application of the PCN algorithm (with and without 
SOR filtering) offers the worst results. This is because 
the presence of shrinkage effects. 

• Bias results: in all the combination there is a bias error 
which could be attributed to the SLAM processing 
stage. This bias disappeared when the data is 
registered floor by floor, specially when the point 
cloud data is processing with the SOR filter. 

• Dispersion results: the use of the standard deviation as 
well as the interpercentile values allow us to have an 
idea about the dispersion of the discrepancies. 
According to this, the use of the ANI or the SBD 
algorithms offer a general improvement of this aspect 
(Table 2 and Table 3). However, the use of the PCN 
algorithm does not improve the default results, 
especially due to the presence of shrinkage problems 
after several iterations.  
 

3.4 Uncertainty propagation 

The last stage of the study was to evaluate the effect of the 
discrepancies in the estimation of deflection in timber floors. To 
this end we have understand the discrepancies maps as a 
compound error (error in x,y,z). So, the measure between points 
implies the introduction of this type of error two times.  
According to this, the uncertainty propagation was performed 
by using the Monte Carlo approach with a total of 10.000 
simulations. This approach was applied several times in 
accordance with the following inputs:  
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• Beam length: we have considered the most common 
values which are: 3.00/5.00/8.00 meters (Argüelles et 
al., 2013). 

• Relative deflection: instead of using the deflection as 
input we propose the use of the relative deflection 
with the aim of clustering in different levels the 
uncertainty analysis. In this case we use four values 
for the relative deflection: L/300, L/200, L/100, L/50. 
The first value is the reference one in case of having 
partitions that could be affected by the deformation of 
the floor. The second one is a threshold commonly 
used due to the high stiffness of timber solutions 
(Argüelles et al., 2013). The rest are values which 
implies large deformations. 

The moments (mean and standard deviation) of each input 
variable were modelled in accordance with the values of Table 2 
and Table 3. For simplicity we have evaluated only the 
DEFAULT + SOR, ANI + SOR and SCB + SOR combinations. 
Both methods ANI+SOR and SBD + SOR proved to be 
efficient in the reduction of noise as it was showed in Table 1. 
The results of the MonteCarlo simulations are showed in the 
following tables (Table 4, Table 5 and Table 6).  
 

Beam length Relative deflection 
MonteCarlo  

(10.000 simulations) 
Mean Std. 

3.00 m L/300 (10 mm) - - 
3.00 m L/200 (15 mm) - - 
3.00 m L/100 (30 mm) 106 71 
3.00 m L/50 (60 mm) 51 6 
5.00 m L/300 (17 mm) - - 
5.00 m L/200 (25 mm) 218 96 
5.00 m L/100 (50 mm) 102 14 
5.00 m L/50 (100 mm) 50 3 
8.00 m L/300 (27 mm) 317 108 
8.00 m L/200 (40 mm) 206 37 
8.00 m L/100 (80 mm) 101 8 
8.00 m L/50 (160 mm) 50 2 

Table 4. Results of the MonteCarlo simulation in case of 
considering the combination of DEFAULT + SOR 

 

Beam length Relative deflection 
MonteCarlo  

(10.000 simulations) 
Mean Std. 

3.00 m L/300 (10 mm) - - 
3.00 m L/200 (15 mm) 220 159 
3.00 m L/100 (30 mm) 101 14 
3.00 m L/50 (60 mm) 50 3 
5.00 m L/300 (17 mm) 314 106 
5.00 m L/200 (25 mm) 206 36 
5.00 m L/100 (50 mm) 100 8 
5.00 m L/50 (100 mm) 50 2 
8.00 m L/300 (27 mm) 303 49 
8.00 m L/200 (40 mm) 202 21 
8.00 m L/100 (80 mm) 100 5 
8.00 m L/50 (160 mm) 50 1 

Table 5. Results of the MonteCarlo simulation in case of 
considering the combination of ANI + SOR 

 

Beam length Relative deflection 
MonteCarlo  

(10.000 simulations) 
Mean Std. 

3.00 m L/300 (10 mm) - - 
3.00 m L/200 (15 mm) 209 53 

3.00 m L/100 (30 mm) 101 10 
3.00 m L/50 (60 mm) 50 3 
5.00 m L/300 (17 mm) 304 61 
5.00 m L/200 (25 mm) 203 26 
5.00 m L/100 (50 mm) 100 6 
5.00 m L/50 (100 mm) 50 2 
8.00 m L/300 (27 mm) 300 35 
8.00 m L/200 (40 mm) 201 15 
8.00 m L/100 (80 mm) 100 4 
8.00 m L/50 (160 mm) 50 1 

Table 6. Results of the MonteCarlo simulation in case of 
considering the combination of SBD + SOR 

Additionally, we have calculated the relative deflection on 10 
random beams of the timber floors of the study case (Figure 2). 
This stage was performed by a user expert in timber structures 
but not in 3D point clouds. The following table shows the 
results obtained during this stage (Table 7). 
 

Combination Length Deflection Ratio (Length/ 
Deflection) 

DEFAULT + 
SOR (TLS) 

4.252 
(4.256) 

0.058 
(0.052) 

73 
(81) 

4.134 
(4.159) 

0.042 
(0.051) 

99 
(82) 

3.857 
(3.853) 

0.064 
(0.058) 

60 
(66) 

4.214 
(4.199) 

0.088 
(0.071) 

48 
(59) 

4.224 
(4.235) 

0.072 
(0.067) 

59 
(63) 

3.950 
(3.952) 

0.090 
(0.084) 

43 
(46) 

3.872 
(3.874) 

0.089 
(0.075) 

43 
(51) 

3.778 
(3.759) 

0.037 
(0.023) 

102 
(163) 

3.047 
(3.046) 

0.028 
 (0.022) 

109 
(139) 

4.155 
(4.175) 

0.050 
 (0.064) 

83 
(65) 

ANI +SOR 
(TLS) 

4.247 
(4.256) 

0.058 
(0.052) 

73 
(81) 

4.146 
(4.159) 

0.050 
(0.051) 

83 
(82) 

3.849 
(3.853) 

0.061 
(0.058) 

63 
(66) 

4.188 
(4.199) 

0.064 
(0.071) 

65 
(59) 

4.213 
(4.235) 

0.060 
(0.067) 

70 
(63) 

3.965 
(3.952) 

0.080 
(0.084) 

50 
(46) 

3.872 
(3.874) 

0.070 
(0.075) 

55 
(51) 

3.755 
(3.759) 

0.028 
(0.023) 

134 
(163) 

3.044 
(3.046) 

0.025 
 (0.022) 

123 
(139) 

4.179 
(4.175) 

0.054 
 (0.064) 

77 
(65) 

SBD + SOR  
(TLS) 

4.250 
(4.256) 

0.054 
(0.052) 

79 
(81) 

4.151 
(4.159) 

0.043 
 (0.051) 

96 
(82) 

3.847 0.060 64 
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(3.853) (0.058) (66) 
4.196 

(4.199) 
0.066 

(0.071) 
63 

(59) 
4.207 

(4.235) 
0.062 

(0.067) 
68 

(63) 
3.948 

(3.952) 
0.083 

(0.084) 
47 

 (46) 
3.868 

(3.874) 
0.080 

(0.075) 
48  

(51) 
3.761 

(3.759) 
0.027 

 (0.023) 
140 

 (163) 
3.041 

(3.046) 
0.020 

 (0.022) 
152 

 (139) 
4.166 

(4.175) 
0.064 

 (0.064) 
65 

 (65) 
Table 7. Results obtained during the extraction of measures 

from the different slabs 
 

It is worth mentioning that the user found some problems 
during the analysis of the timber deflection in case of using the 
DEFAULT + SOR point cloud due to the dispersion of the data 
(Figure 6), requiring the support of an expert in 3D point cloud.  
 
3.4.1 Discussion of the results obtained during the 
analysis of uncertainties: All the data generated during this 
stage was compared between them with the aim of analyzing the 
potential of the WMMS solution for diagnosis purposes. The 
results of this stage are summarized as follows: 
 

• In all the cases (Monte Carlo simulation and manual 
deflection extraction) the combination of SBD + SOR 
shows the best results, followed by the ANI + SOR. 
This combination is able to improve from a deviation 
of 6 mm to 3 mm (100% of improvement), reducing 
the uncertainty when the user calculates the relative 
deflection.  

• The WMMS point cloud, even if is processed with 
noise reduction algorithms, is not appropriated for a 
relative deflection of L/300. This question is also 
applicable for floors with a length of 3.00 m and a 
relative deflection of L/200. In all these cases the 
uncertainty is important. 

• In case of inspecting floors with 5.00 m of span, the 
WMMS point cloud offers possibilities from L/200 to 
L/50 deflections. The best results are obtained when 
we use the SBR + SOR combination.  

• For floors with 8.00 m of span the suitability of the 
system seem to be appropriated for the same range of 
relative deflections (L/200 to L/50). It is possible to 
apply the system for L/300 but with a high uncertainty 
(the standard deviation is the 10%).  

• The uncertainties obtained during the MonteCarlo 
simulations are in line with those obtained by the 
expert user (manual analysis of deflections). In this 
case we have evaluated two floors with a length of 
about 3.5 meters and a relative deflection comprised 
between 150 and 50. The best performance was 
obtained by the combination of SBR + SOR with a 
mean discrepancy of 6.7 in comparison with the 
relative deflection obtained by the laser scanner. This 
discrepancy has a value of 9 in case of using the ANI 
+ SOR filter and a value of 17 in case of using the 
DEFAULT + SOR combination.  

4. CONCLUSIONS 

This works aims at evaluating the possibility of using the 
WMMS point cloud as a source of information for performing 
deflection analysis in timber floors. According to this, we have 
tested different noise reduction strategies with the aim of 
improving the accuracy of the 3D point cloud. In this context 
several conclusions could be drawn:  
 

• The edge effects that appears during the digitalization 
of timber floors could be mitigated by using a SOR 
filter. However, it is required to tune property these 
parameters since this filter could remove areas of 
interest. 

• The Anisotropic filter proves to be an efficient filter 
for reducing part of the noise that appears in this type 
of sensors as well as improving the visual quality of 
the 3D point cloud. These effects are higher if a SOR 
filter is applied in combination with the Anisotropic 
one.   

• Within the context of the Deep-Learning we have 
tested the PointCleanNet and the Score-based 
methods. The first one, which is based in the well-
known architecture PointCleanNet, does not improve 
the quality of the WMMS point cloud. It is worth 
mentioning the presence of shrinkage. In contrast to 
this, the Score-based architecture proves to be 
efficient, improving the 3D point cloud from a 
qualitative and quantitative point of view. 

• The uncertainties of the WMMS point cloud seems to 
be not appropriated for all the type of timber floors. 
According with our studies, this point cloud could be 
used in floors with a span of 5-8 meters and a relative 
deformation higher than L/200. In this case it is 
required the application of a noise-reduction strategy 
(ANI + SOR or SBD + SOR) to reduce the amount of 
dispersion of the data. 

•  The suggestion previous showed, which is based on a 
Monte Carlo simulation, proves to be in line with the 
results obtained in a real application.  

 
Future works will be focused on applying the noise reduction 
strategy (ANI + SOR or SBD + SOR) over the entire point 
cloud. Then, we have planned to segment the 3D point cloud 
with the aim of locating the timber floors. This stage will be 
performed by using an Artificial Intelligence approach based on 
Machine/Deep Learning architectures. The application of both 
methods will allow to improve the inspection of historic timber 
floors. Additionally, we have planned to train all the Deep 
Learning architectures with data captured in other building 
(including TLS data that will act as ground truth).  
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