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ABSTRACT: 
 
Neural Radiance Fields (NeRF or NeRFs) are to date emerging as a novel method for synthesizing novel views of complex 3D scenes, 
leveraging an artificial neural network to optimize a volumetric scene function using a set of input views. We conduct a preliminary 
critical review of the scientific and technical literature on NeRFs, and we highlight possible applications of the latter in the Cultural 
Heritage domain, for the image-based reconstruction of 3D models of real, multi-scale objects, even in combination with the more 
well-established photogrammetric techniques. A comparison is made between NeRFs and photogrammetry in terms of operating 
procedures and outputs (volumetric renderings vs. point clouds or meshes). It is demonstrated that NeRFs could be conveniently used 
for rendering objects (sculptures, archaeological remains, sites, paintings etc.) that are challenging for photogrammetry, typically: i) 
metallic, translucent, and/or transparent surfaces; ii) objects that present homogeneous textures; iii) occlusions, vegetation, and 
elements of very fine detail. 
 
 

1. INTRODUCTION 

Neural Radiance Fields (NeRF or NeRFs) are a type of deep 
learning model that synthesizes novel views of an object from 
given multi-view images of a scene (Figure 1).  
The model was first presented by Mildenhall et al. (2020) 
(matthewtancik.com/nerf).  
NeRF uses an artificial neural network to output volume density 
and view-dependent emitted radiance (i.e., the amount of light 
emitted or reflected by a surface). The neural network takes as 
input a single continuous 5D coordinate (spatial location 𝑥𝑥,𝑦𝑦, 𝑧𝑧 
and viewing direction 𝜗𝜗,𝜑𝜑) and outputs the volume density and 
view-dependent emitted radiance at that spatial location. 
A key feature of NeRF is the ability to render high-quality, photo-
realistic novel views with fine details and smooth transitions 
between different regions (Zhang et al., 2021). 

 
* Corresponding author 

 
A multi-scale architecture allows the model to learn and generate 
features at multiple scales simultaneously. NeRF also can handle 
occlusion and transparent objects, which makes them well-suited 
for tasks such as view synthesis and image-based rendering. 
Between 2022 and 2023, since the large-scale implementation by 
Müller et al. (2022), NeRFs gained much attention in the 
Computer Vision field: the original article by Mildenhall et al. 
received more than 2500 citations and NeRFs have found 
interesting applications in various fields, including robotics 
(Adamkiewicz et al., 2022), industrial design (Mergy et al., 
2021), autonomous navigation, medicine (Corona-Figueroa et 
al., 2022), 3D facial recognition (Guo et al., 2021) and human 
pose estimation (Su et al., 2021; Wang et al., 2022). Despite the 
ever-growing interest on the topic, the applications of NeRFs in 
Cultural Heritage are to date underdeveloped and understudied.  

 

Figure 1. NeRF model and novel view synthesis for the Tersicore statue, Nerfstudio web viewer. 
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Moreover, the benefit of using NeRFs compared to more 
established image-based reconstruction techniques as 
photogrammetry are not yet adequately known or recognized.  
In tackling this issue, this paper reviews existing publications 
related to NeRF with the specific purpose of analysing 
implications of such techniques in state-of-the-art methods for 
multi-scale 3D modelling and graphics, in the digital heritage 
domain. 
 

2. VIEW SYNTHESIS AND NEURAL RENDERING 

The first advent of NeRFs is ascribed to the work by Mildenhall 
et al. (2020): starting from a set of images with known camera 
poses, views are synthesized by querying 5D coordinates along 
camera rays and classic volume rendering techniques are later 
used to project the output colours and densities into an image. In 
the basic form, a NeRF model represents a 3D static scene as a 
continuous 5D function, expressed as: 
 

𝐹𝐹Θ: (𝐱𝐱,𝐝𝐝) → (𝒄𝒄,𝜎𝜎) , (1) 
 
Where 𝐱𝐱 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) are the in-scene coordinates, direction is 
expressed as the 3D Cartesian unit vector 𝐝𝐝, 𝒄𝒄 = (𝑟𝑟,𝑔𝑔, 𝑏𝑏) 
represents color values and 𝜎𝜎 stands for the volume density. 
(𝜗𝜗,𝜑𝜑) represent the azimuthal and polar viewing angles (viewing 
direction). 
𝐹𝐹Θ is a Multi-Layer Perceptron (MLP), a feedforward artificial 
neural network, that outputs the colour information 𝒄𝒄 and the 
volume density 𝜎𝜎 (Figure 2). Although 𝜎𝜎 results to be 
independent of the viewing direction, the colour 𝒄𝒄 depends on 
both the viewing direction and the in-scene coordinate. 
The models are trained per-scene, and the COLMAP pipeline 
(Schönberger et al., 2016; Schönberger and Frahm, 2016) is used 
to extract camera parameters and camera poses from the input 
image set. For each pixel in the image being synthetised, camera 
rays are marched through the scene and a set of sampling points 
is generated along each ray. For each sampling point, the known 
viewing direction and sampling locations are used to extract local 
colour and density through the MLP. 3D reconstruction and novel 
view synthesis are hence executed via volumetric rendering (Gao 
et al., 2022). In detail, given volume density and colour functions, 
volume rendering requires estimating the expected colour 𝐶𝐶(𝑟𝑟) 
of any camera ray 𝐫𝐫(𝑡𝑡)  =  𝐨𝐨 +  𝑡𝑡𝐝𝐝, with camera position 𝐨𝐨 and 
viewing direction 𝐝𝐝. Looking at 𝑇𝑇(𝑡𝑡) as the probability that the 
ray travels from 𝑡𝑡1 to 𝑡𝑡 without hitting any other particle, 𝐶𝐶(𝑟𝑟)  is 
expressed by equation: 
 

𝐶𝐶(𝑟𝑟)  =  � 𝑇𝑇(𝑡𝑡) ⋅ 𝜎𝜎�r(𝑡𝑡)� ⋅ 𝑐𝑐(r(𝑡𝑡),𝑑𝑑) ⋅ 𝑑𝑑𝑡𝑡

𝑡𝑡2

𝑡𝑡1

 , (2) 

 
 

 
 

Figure 2. NeRF scene representation (adapted from Mildenhall 
et al., 2020). 

Considering a non-deterministic stratified sampling approach, 
where the ray is divided into N equally spaced bins, a sample is 
uniformly drawn from each bin, so that equation (2) can be 
approximated as: 
 

�̂�𝐶(𝑟𝑟) ≈�𝛼𝛼𝑖𝑖𝑇𝑇𝑖𝑖𝑐𝑐𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 , (3) 

 
2.1 NeRFs optimization 

NeRF models employ: i) positional encoding to improve fine 
detail reconstruction and represent high-frequency functions, and 
ii) a hierarchical volume sampling strategy to allocate the MLP’s 
performance towards areas of the scene with visible content 
(Mildenhall et al., 2020).  
Significant implementations of the work by Mildenhall et al. 
(2020) include the view synthesis of dynamic scenes with objects 
in rigid or non-rigid motion (Chen and Tsukada, 2022; Attal et 
al., 2021; Pumarola et al., 2021), the anti-aliasing in rendering 
(Barron et al., 2021), the depth estimation (Li et al., 2021) and 
the reconstruction of dynamic fluids from sparse multi-view 
videos or images (Chu et al., 2022). The work by Barron et al. 
(2021) studied the incorporation of depth maps within the colour 
image set and proposed the so-called Mip-NeRF approach to 
model depth uncertainty through local sampling.  
In the earliest version, NeRFs required extremely high computing 
power and long training times. The introduction of multi-
resolution hash encoding in neural graphics by Müller et al., 
(2022), together with the advanced ray-tracing features delivered 
by GeForce RTX graphic cards, significantly reduced the 
processing time and capacity required for NeRF training (so that 
training neural graphics in seconds is to date possible).  
 
2.2 Core implications of the theoretical formulation 

Based on equation (3), colour can be expressed as the weighted 
combination of all alpha values 𝛼𝛼𝑖𝑖 (transparency / opacity from 
alpha compositing at sample point 𝑖𝑖) and colour values 𝑐𝑐𝑖𝑖  (colour 
evaluated at the sample point 𝑖𝑖) of points in a ray (Gao et al., 
2022). In comparison with common ray tracing, NeRF leverage 
a probabilistic function to determine the expected value of colour 
along the ray (Figure 3). This has three main implications: 
 
- The 3D reconstruction is provided in the form of a 

volumetric rendering. The NeRF model is neither a point 
cloud, nor a mesh, but it consists of continuous voxels made 
of shiny, transparent cubes; 

- The scene representation is view-dependent, i.e., the colour 
of the object may change depending on the point of view, 
meaning that, for the case of non-diffusely reflecting 
surfaces (non-Lambertian materials), a different reflection 
might be shown depending on the point of view.  

- NeRFs allow representation of real-world detailed scenes 
with complex occlusions, fine details and transient objects. 

 

 
 

Figure 3. Common ray tracing (a) vs volume rendering (b). 
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2.3 Existing platforms and tools 

The Instant NGP application, developed by Müller et al. (2022) 
for NVIDIA, accepts both photos and videos as input; the 
codebase is built on CUDA and Python 3.9, while the camera 
pose estimation is run through COLMAP. The graphical user 
interface can be launched via the Anaconda prompt. 
Nerfstudio by Tancik et al. (2023) is a more recent Python 
framework allowing for end-to-end creation, training and testing 
of NeRFs. It integrates a real-time web viewer and supports 
multiple export modalities, including point clouds and meshes 
(Figures 4, 5). By default, Nerfstudio expects to apply a scaling 
factor to the input camera image resolution (downscale).  
Luma AI by Luma (lumalabs.ai/) is a mobile NeRF capture 
platform for iOS, currently in beta, built up to integrate more 
user-friendly tools for neural rendering. 
The first native volume rendering files compatible with the 
Unreal Engine video game and software development tool are to 
date emerging both in Nerfstudio, in the form of the plug-in 
Volinga (volinga.ai/), than in LumaAI.  
 

 
 

Figure 4. Rendering of the Tersicore statue visualized over 
Nerfstudio web viewer. 

 

 
 
Figure 5. Bounding box for isolating portions of interest (to the 

right) from the neural rendering (to the left). 
 

3.  NERF APPLICATIONS IN DIGITAL HERITAGE 

In the specific domain of Cultural Heritage, only few publications 
have, so far, explicitly identified NeRFs as a possible tool for 
virtual reconstruction, digital preservation and conservation of 
heritage objects and sites. 
Condorelli et al. (2021) compared, focusing on the UNESCO site 
of Tour Saint-Jacques in Paris and using the same set of input 
images, the results of NeRFs with the photogrammetric 

reconstruction via Structure-from-Motion (SfM) and Multi-
View-Stereo (MVS). Their research, conducted with the early 
github implementation of the work by Mildenhall et al. (2020) 
(github.com/bmild/nerf), showed a significantly better result for 
MVS photogrammetry than for neural rendering, both in terms of 
reconstructed tower parts than in terms of computation time. 
Later on, following the release of NVIDIA Instant NGP, Palestini 
et al. (2022) built NeRF models for few multi-scale cases of 
cultural interest: the façade of Santi Severino in Naples, the altar 
of the Church of S. Giustina in Padua, a bronze statue by artist A. 
Gonzales. 
Despite these two attempts, the implications of the use of neural 
radiance fields in the Cultural Heritage domain still remain 
unclear and not exhaustively defined, especially compared to the 
widely used photogrammetry from SfM and MVS.  
Other significant experiments, not specifically designed in the 
heritage field but potentially interesting for studies in this area, 
are listed in the following subparagraphs. 
 
3.1 Neural 3D reconstruction in-the-wild  

NeRFs have hitherto been shown to act in controlled, static 
environments from images acquired over a short period of time, 
whereby lighting effects are assumed nearly constant. Nerf in the 
Wild, or NeRF-W, introduced by Martin-Brualla et al. (2021), 
applies neural rendering to unconstrained image sets of a same 
artefact. The algorithm captures appearance variations of in-the-
wild data, and the scene is decomposed so to evaluate transient 
elements and separate them from the static part of the scene. 
Large-scale image collections of tourist landmarks (taken in-the-
wild, even available online), as the Brandenburg Gate in Berlin 
and the Trevi Fountain in Rome, were considered to test  
NeRF-W.  
In a successive development of NeRF-W by Sun et al. (2022),  
appearance variations were modelled using appearance 
embedding, but the output was sought in meshes rather than in 
radiance fields. The modular approach by Kuang et al. (2022) 
first inferred the geometry of a real scene by neural rendering and 
then identified material properties and defined per-image lighting 
conditions to better relight and composite the captured scene. 
Analogously, NeRFactor (Zhang et al., 2021) enabled free-
viewpoint relighting to support shadow and material editing 
under arbitrary environment light changes. 
At the territorial scale, Mari et al. (2022) developed Sat-NeRF for 
the reconstruction of in-the-wild satellite images. Another NeRF 
variant adapted to multi-date collections of satellite images is 
found in reference (Derksen and Izzo, 2021). 
Taking into account photographs taken at different times, with 
different lighting and weather conditions, different temporal 
states and transient occluding objects such as pedestrians and 
cars, in-the-wild reconstruction allow the production of 
photorealistic and temporally consistent renderings from novel 
viewpoints.  
However, main limitations of in-the-wild reconstructions are still 
identified in: i) the need to reconstruct initial camera poses for 
each training image (Kuang et al., 2022); ii) sensitivity to camera 
calibration errors, which can lead to blurry effects; iii) 
degradation of rendering quality in parts of the scene that are 
rarely visible in the training images (Martin-Brualla et al., 2021). 
 
3.2 Semantic NERFs 

Recent developments in Cultural Heritage digitalization include 
the segmentation and classification of 3D models as point clouds 
(Croce et al., 2023) and meshes (Grilli and Remondino, 2019). 
Class labeling can be attached to a geometric model to encode 
semantics, i.e., human-defined concepts, such as information on 
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architectural components, materials and degradation patterns 
within the digital representation (Croce et al., 2020). 
The enrichment of NeRFs with semantic information has not 
been developed yet for cultural heritage: Zhi et al. (2021) 
extended NeRFs scene-specific representation to include 
semantic representations that were efficiently learned from 
partial sparse or noisy annotations of indoor scenes. Similarly, 
Pavlakos et al. (2022) relied on NeRF models for an accurate 
estimation of human pose and location. The recovered, 
semantically enriched 3D scene context was used to render novel 
views of the human localization within certain environments. 
 
3.3. NERF rendering for Virtual and Extended reality  

Most recent developments of NeRF include the navigation of 
neural renderings in Virtual Reality (VR) or Extended Reality 
(XR) applications (Deng et al., 2022; Park et al., 2022).  
NeRFs created with Instant NGP can be run in VR or AR modes, 
through compatible headsets or glasses (Li et al., 2022). 
However, limitations of these methods are the absence of direct 
interactions with individual objects of the 3D scene, the lack of 
real-time collision detection, the high latency and computational 
cost of renderings in medium- or large-sized scenes. 
As novel view synthesis is a prerequisite to many VR and XR 
applications, Chiang et al. (2022) propose a method to control the 
style of a rendered 3D scene by enabling seamless switching 
between real-world scenes and virtual artistic styes, prior to VR 
and augmented reality (AR) applications. 
 

4. CASE STUDIES AND EARLY RESULTS 

The comparison between NeRFs and more established photo-
modelling techniques is essential to understand the extent to 
which neural rendering and novel view synthesis can enhance, or 
complement, existing techniques for cultural heritage 
digitization. Ongoing work is aimed at testing the advantages and 
disadvantages of NeRFs for the digital documentation of cultural 
heritage objects and sites, in comparison and combination with 
other existing, consolidated techniques such as photogrammetry. 
To this end, for the same set of images, taken with sufficient 
overlap, we evaluate photogrammetric reconstruction -with 
dense cloud and texture mesh extraction- on the one hand, and 
NeRF training on the other hand. The results of the two different 
methods are thereby aligned and compared (Figure 6).  
A key initial assumption is that the camera poses are known on 
the input image set. The reconstruction of the camera orientation 
parameters via COLMAP is in fact common to both workflows. 
NeRFs are then trained to produce direct models (volumetric 
rendering) and some derived data, i.e., a point cloud and a 
textured mesh.  
To export point clouds and meshes from NeRFs, we use the latest 
ns-export function of Nerfstudio: the marching cubes algorithm 
(Lorensen and Cline, 1987) and the Poisson surface 
reconstruction (Kazhdan et al., 2006) are leveraged for mesh 
generation. Texture coordinates are later derived for the triangle 
meshes via the xatlas library (github.com/mworchel/xatlas-
python). By deriving these outputs for the same synthetic datasets 
of different target objects, characterized by non-Lambertian 
materials or very fine details, we intend to compare 
photogrammetry and NeRFs, e.g., in terms of shape description 
and representation type (point cloud to point cloud or volumetric 
rendering to mesh). 
For this reason, the multi-scale datasets considered are all chosen 
amongst cases of Cultural Heritage interest that are typically 
difficult to process with traditional photogrammetry: the 
Tersicore statue by the sculptor Antonio Canova, an eagle-shaped 
lectern of the 14th century and the Caprona Tower, near Pisa. 

 
 

Figure 6. Proposed workflow for photogrammetry-to-NeRF 
output comparison. 

 
The Tersicore statue. The Tersicore statue has a homogeneous 
colour, and the texture of its translucent material is difficult to 
render. The NeRF model (Figure 7) is generated using Nerfstudio 
and exported as a point cloud and a mesh from an input set of 233 
images. The alignment between the NeRF-generated point cloud 
and the photogrammetric point cloud, realized via 
CloudCompare, allows an analysis of the cloud-to-cloud 
deviation (Figure 8) between the two outputs, on a scale from 
minimum (blue) to maximum values (red). 
The results show that NeRF succeeds in describing, in a more 
complete manner, certain portions of the statue -as the head, the 
upper part of the pedestal, and the base- which were framed in a 
reduced number of images over the input dataset. The point cloud 
from NeRF is characterized by higher noise, which, however, 
disappears when looking at the starting volumetric rendering. 
 

 
 

Figure 7. Neural renderings of the Tersicore dataset. 
 
The bronze eagle-shaped lectern. By processing an input 
dataset of 254 images, NeRFs return color changes and 
reflections of the lectern’s bronze material. The shiny, metallic 
effect, which is view-dependent (Figure 9), is much more 
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consistent and realistic than the photogrammetric result. In 
contrast, the photogrammetric model is extremely flat and matte 
in terms of texture, making it difficult to tell whether the material 
is bronze or, e.g., wood (Figure 10). 
 
Caprona Tower and its natural landscape. The challenge of 
the Caprona Tower dataset (Billi et al., 2023) is to integrate the 
natural environment around the tower, consisting of scattered 
vegetation and low shrubs, into the resulting model. We compare 

the volumetric rendering with the photogrammetric mesh after 
processing a dataset of 124 drone images (Figures 11, 12).  
In this case, there is a clear difference between the two types of 
rendering when it comes to the vegetation surrounding the tower: 
note the low bushes here and there, the presence of a few holes 
or excessively sharp sections in the mesh model that are fully 
returned in the volumetric rendering.  
The difference can be seen in the tree to the left of the tower and 
in some of the low bushes.  

 

Figure 8. Cloud-to-cloud comparison for the Tersicore dataset. 
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Figure 9. View-dependent appearance of the NeRF model: the 

reflection of the eagle changes depending on the viewpoint. 
 

 
 

Figure 10. Comparison between NeRF and photogrammetric 
textured mesh for the eagle-shaped lectern dataset. 

 
This suggests the potential use of NeRFs in large-scale spatial 
mapping applications, even in emergency situations (Croce et al., 
2021), to survey difficult to access landscapes or urban contexts 
characterized by dense vegetation. 
 

 
 

Figure 11. Neural rendering of the Caprona Tower, on 
Nerfstudio web viewer. 

 

5. DISCUSSION 

Both photogrammetry and NERF models allow the prediction of 
appearance and geometry from observed images.  
At present, both techniques work on image sets with known 
camera poses. The camera parameters reconstruction phase is 
common to both methods, so that a set of images that cannot be 
correctly aligned by photogrammetry cannot be processed by 
neural rendering, at least for the time being. However, there have 
been several attempts at NeRF reconstruction with unknown and 
even randomly initialised camera poses (Meng et al., 2021). 
Given the same resolution and size of the input images, NeRFs 
produce more complete models (with less loss of information) in 
the form of volumetric renderings. When compared to the result 
of point clouds or meshes obtained by photogrammetry, neural 
renderings could be meaningful for the survey of: i) objects with 
fine, volumetric details; ii) reflective or transparent surfaces; iii) 
occluding elements. 
In photogrammetry, the appearance of real materials and surfaces 
does not depend on the point of view, while in NeRF models, the 
viewing direction is combined with location features so to predict 
the color from specific point of views and handle transparency 
and reflectivity. 
As for photogrammetry, the 3D models produced by NeRFs are 
not to scale, unless they are appropriately combined with 
topographic surveys, e.g. from total stations or laser scanners. 
In terms of outputs, NeRFs were specifically designed for novel 
view synthesis and volumetric rendering, and the shift from 
volumetric renderings to more conventional forms of 
representation as point clouds and meshes has not yet been 
extensively developed and studied; this prevents interoperability 
between the different model types. Conversion from NeRF to 
mesh (and vice versa, from mesh to NeRF) is indeed an active 
area of research. 
 

6. CONCLUSIONS 

This paper presented an overview of NeRFs, with a focus on 
possible applications and extensions of neural rendering in the 
domain of Cultural Heritage. 
NeRF is a promising alternative to photogrammetry for image-
based modelling, but combining the two techniques, also in terms 
of output, could be a game changer in overcoming some of the 
common problems of photogrammetry, including the difficulty 
of rendering homogeneous textures, transparent or translucent 
materials, and objects with extremely fine details.  
Developments of this work could concern the conversion to other 
forms of digital representation, the comparison between NeRFs 
and photogrammetry in terms of processing time, resolution, 
interoperability. The model scalability in relation to information 
provided by metric surveys should even be assessed. 
Finally, another interesting question is how NeRFs respond to the 
loss of information due to the reduced number or to the lower 
resolution of input images, compared to photogrammetry.  
These aspects are currently under investigation. 
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