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ABSTRACT: 

 

Valorisation of cultural heritage is a priority of international community, and the creation of 3D models is considered almost a 

mandatory requirement to any conservation activity. Geomatics has given its contribution to this purpose offering its competences and 

experiences in surveying. Methods and tools have progressively improved offering more realistic, accurate, and reliable products; 

among the most interesting systems currently available, there is the handheld mobile mapping Leica BLK2GO technology. The 

characteristics of this system are particularly useful when traditional methods are unfeasible due to accessibility problem, narrowness 

spaces and time constraints. Nevertheless, the system, as any new technology, needs to be tested in order to verify its capability to 

describe the world in a correct and reliable way; moreover, it is interesting to understand if established data classification procedures 

are still effective for SLAM (Simultaneous Localization and Mapping) data. The paper is framed in this context and illustrates the 

survey of an ancient crypt, located in Pavia (Italy), that is object of a preservation project. The characteristics of the monument and the 

acquisition strategies are described. For data classification three different Machine Learning approaches are test: Support Vector 

Machine (SVM), Decision Tree (DT) and Random Forest (RF). Seven architectural elements are considered: pavement, columns, half 

pilasters with structural function, walls, capitals, arches, and vaults. The analysis shows as Leica BLK2GO data owns all the 

characteristics feasible to produce useful point cloud; data classification performs well (with the exceptions of SVM) with higher 

accuracy, of about 90%, reached using RF. 

 

 

1. INTRODUCTION 

Conservation and valorisation of cultural heritage have become a 

priority of international community as they promote the access to 

and enjoyment of cultural diversity, enriching the social capital 

and creating a sense of belonging; indeed, historic preservation 

provides a link to the roots of the community and its people. 

Nowadays, the creation of 3D models is considered almost a 

mandatory requirement to any conservation and valorisation 

activity and geomatics has given its contribution to this purpose 

offering its competences and experiences in surveying, data 

management and analysis. Methods and tools have progressively 

improved offering more realistic, accurate, and reliable products. 

Among the most interesting systems currently available, there is 

the handheld mobile mapping Leica BLK2GO technology that 

combines: 

1. LiDAR SLAM: the sensor identifies different surfaces and 

unique geometry in the LiDAR data, calculating its 3D 

position.  

2. Visual SLAM: three panoramic cameras identify 

similarities between consecutive images to calculate the 

scanner’s movement through 3D space. 

3. IMU: the inertial unit senses the movements to determine 

the BLK2GO’s change of position in 3D space. 

The characteristics of this system are particularly useful when 

traditional methods are unfeasible (Limongiello et al., 2020). 

Modern Terrestrial Laser Scanner (TLS) are largely used in 

cultural heritage surveying thanks to their capability to acquire 

detailed point cloud, having high precision, in relatively short 

time. However, TLS systems have historical limits connected to 

the necessity to have defined and stable setup. This implies that 

several scanning stations are necessary when complex 

geometries are involved, without the guarantee of surveying each 

single part. Moreover, these scanning positions must ensure 

steadiness, situation not granted for historical locations where the 

ground can cause instability. Instead, as any SLAM system, 

BLK2GO allows to capture the area by moving inside it and 

exploiting its small size to survey every cavities and ledges 

present. The result of the walk is a coloured point cloud that can 

be exploited to generate 3D model by fitting geometric primitives 

to it and performing texturing. 

This freedom of movement allows to survey structure almost 

impossible for a traditional TLS such as the stairs; a SLAM 

sensor, walking up and down the steps, can easily measure these 

elements. This versatility not only simplify the surveying of 

complex structures but reduce the acquisition time, bypassing the 

scan station concept. 

Time is a crucial aspect to consider in measurement operation 

and it is particularly important in cultural heritage context. The 

most trivial consideration is connected to costs: long surveying 

activities imply larger money effort. In historical places, short 

surveying time means also the reduction of closing period for 

location accessible to public visits. Besides, measurements could 

be taken in unsafe locations for operators; this condition could be 

due to structural hazards (maybe connected to the reason of 

preservation actions) or biological. An example is the surveying 

of the Cloaca Maxima, the old Roman sewer, in which some 

authors have been recently involved. The sewer is still used by 

Rome's citizens so the permanence inside this historical 

monument must be reduce as much as possible (less than one 

hour). In this case, a traditional survey is not viable, and SLAM 

seems to be the only advisable choice. 

However, it is important to underline that, as any new 

technology, SLAM data needs to be tested in order to verify their 

capability to describe the world in a correct and reliable way. 

Questions as: is BLK2GO data useful to effectively describe 

cultural heritage monuments? Are their accuracy and precision 

sufficient for restoration and preservation actions? Do point 

clouds generate by SLAM have appropriate characteristics to 
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exploit the consolidated Machine Learning approaches for 

classifications? 

The paper is framed in this context and illustrates the survey of 

an ancient crypt, located in Pavia (Italy), that is object of a 

preservation project promoted by the course of Architectural 

Restoration at the University of Pavia. The characteristics of the 

monument and the acquisition strategies are described; different 

Machine Learning approaches are then considered to classify the 

point cloud according to main considered architectural elements. 

 

1.1 The Sant’Eusebio’s crypt history 

Sant’Eusebio’s crypt of Pavia (Italy) is what remains of the city’s 

Arian Cathedral, probably built by the Lombard king Rothari 

(636-652). The crypt, although remodelled in the Romanesque 

period (Figure 1) and truncated pyramid capitals reproduce 

different designs; some of these belong to the first Arian 

construction. In 1807 the Church was deconsecrated and 

transformed into a carpentry and then completely destroyed in 

1921. In the 1960s the crypt was restored and now it represents 

an important archaeological heritage of the city of Pavia 

(Arrighetti and others, 2017). 

 

Figure 1. Interior of Sant’Eusebio’s crypt. 

 

2. METHOD 

2.1 Data acquisition 

Like many other Italian urban archaeological sites, the crypt of 

Sant'Eusebio has some characteristics that make the traditional 

survey techniques quite complex. The crypt is located below 

street level and can only be accessed through few stairs. In the 

past years, to protect it, a concrete structure was built around it, 

as shown in Figure 2. This structure limits the visibility of the 

monument, creating several perspective obstructions, and 

interferes with the planning of any topography networks. The 

distance between the construction and the crypt itself is 

extremely small; in some places it is less than 60 cm (Figure 3, 

point A). Besides, in the back part, the presence of three ancient 

tombs that interrupt the path, prevents the setup of a tripod 

(Figure 4 and Figure 3, point B). The internal area is instead a 

quite linear and minimalist environment characterized by the 

presence of many columns and several niches (Figure 1). 

A survey with a traditional TLS is possible but requires thorough 

planning with the use of numerous stations without the guarantee 

to reach each recess of the crypt. This solution considerably 

extends the time required for the surveying, consequently 

increasing the costs, and exposes the operators to possible 

dangers in a prolonged way (in this specific case the crypt is safe 

but, as explained in the introduction, some sites may need 

particular attention from this point of view). 

 

 

Figure 2. Overview of the crypt’s external. 

 

Figure 3. Crypt’s map. 

 

 

Figure 4. Position of the three tombs in the crypt’s back part. 

 

For all the above reasons, a Leica BLK2GO system was used to 

survey the whole site. The sensor, briefly described in the 

introduction, is a portable device handheld during the survey. The 

measuring phase can be described like a simple walk in the 

environment to survey. Nevertheless, it must be paid attention to 

some aspects: walk speed, transition between different spaces, 

distance from the surfaces and light conditions.  

Point density is directly connected to walk speed so it is 

necessary to adopt a constant and adequate movement during all 

the survey. The transition between two different environments 

must be done allowing cameras to orient themselves from a space 

to the other one; this must be done surveying contemporary the 

two rooms pausing few seconds under the arch of the door.  

In the Sant’Eusebio crypt, the light condition is a particularly 

challenging issue: the lighting is present only in the internal part, 

A 

B 
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even if the system is not particularly efficient, and completely 

absent outside. For this reason the BLK2GO was coupled with a 

LED light system capable to illuminate all the dark areas during 

the surveying phases. The light system is in add-in also supplied 

by Leica. 

 

 

Figure 5. The Leica BLK2GO with the LED light system. 

 

Overall, eight walks were performed, both inside and around the 

crypt. As this was the first experience with the system, the 

number of the walks is far too abundant and it could be certainly 

reduced. However, the survey of the area, 720 metres for almost 

500 million of points, took less than 1 hour (Table 1). 

 

# Walk 
Trajectory 

duration [sec] 

Trajectory 

length [m] 

Point cloud 

[millions of 

points] 

1 404 119 60.136 

2 377 116 49.920 

3 275 66 38.673 

4 235 40 31.981 

5 163 42 20.573 

6 299 96 45.326 

7 470 123 100.105 

8 540 118 106.910 

Tot 2763 720 453.624 

Table 1. Walks statistics. 

 

2.2 Data processing 

The acquired data was processed with the software package Leica 

Cyclone Register 360 (BLK Edition). Thanks to the partial 

overlapping between clouds, all the walks have been aligned with 

each other in a simply cloud-to-cloud approach. The final 

registration precision is 7 mm, as indicated in the program report. 

Leica Cyclone Register is able to use the acquired images not 

only to colour the generated point clouds (Figure 6) but also to 

produce panoramic imagery (Figure 7). 

  

 

Figure 6. A portion of the generated point cloud. 

 

Figure 7. One of the panoramic images taken inside the crypt. 

 

As the present paper is focused on the use of Machine Learning 

algorithms for point cloud classification, only this product is 

considered in the following. Furthermore, since the restoration 

project concerns mainly the inner space, only points belonging to 

it have been exported and used for the next phases. 

 

2.3 Data classification 

The proposed methodology follows a quite traditional workflow 

with the extraction and selection of remarkable features, and the 

successive training and testing Machine Learning algorithms for 

point classification. The procedure was implemented using 

CloudCompare, release 2.12.1, for eigenfeature calculation, and 

Matlab, release 2022b, for all the other steps. 

 

2.3.1 Eigenfeatures extraction and selection 

The adequate choice of a neighbourhood to determine the 

eigenfeature values of each point, depends on the characteristics 

of the cloud data especially to its point density and 3D shape. The 

choice can be based the on a-priori definition of the search area 

in terms of radius or number of points (Friedman et al., 1977; 

Arya et al., 1998), or by adapting this parameter according to the 

local geometry of the point cloud (Weinmann et al., 2015b; 

Farella et al., 2019). While the former requires an empiric 

knowledge of the scene, the latter is more versatile as it is not 

limited to a specific dataset. Since the interior of the crypt has 

traditional architectural structure, the procedure implemented in 

this paper follows the first strategy using different searching 

radius (Grilli et a., 2019). This last choice is due to historical 

remodelling of the crypt which led to a not neglectable difference 

in size and shape between architectural components. 

For each point belonging to the cloud, a list of 𝑘 neighbours, 

falling in considered search radius, can be associated. Then, for 

each 3D point 𝑋 and its 𝑘 neighbours, the derived normalized 

eigenvalues 𝑒𝑖 with 𝑖 = 1,2,3 can be extracted using the Principal 
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Component Analysis (PCA). These values, obtained from the 

covariance matrix, represent the variation of the points 

distribution along the three principal orthogonal directions.  

Eigenvalues can be combined to obtain some shape descriptors 

called eigenfeatures (Weinmann et al., 2015a; Farella et al., 

2019) which enclose: linearity 𝐿𝑒, planarity 𝑃𝑒, scattering 𝑆𝑒, 

omnivariance 𝑂𝑒, anisotropy 𝐴𝑒 , eigentropy 𝐸𝑒, sum of 

eigenvalues 𝛴𝑒 and change of curvature 𝐶𝑒; Table 1 reports theirs 

mathematical formulation. 

 

Eigenfeature Formula 

Linearity 𝐿𝑒 =
𝑒1 − 𝑒2
𝑒3

 

Planimetry 𝑃𝑒 =
𝑒2 − 𝑒3
𝑒1

 

Sphericity 𝑆𝑒 =
𝑒3
𝑒1

 

Omnivariance 𝑂𝑒 = √𝑒1 ∙ 𝑒2 ∙ 𝑒3
3  

Anisotropy 𝐴𝑒 =
𝑒1 − 𝑒3
𝑒1

 

Eigenentropy 𝐸𝑒 = −∑𝑒𝑖 ∙ 𝑙𝑛(𝑒𝑖)

3

𝑖=1

 

Sum of eigenvalues 𝛴𝑒 = 𝑒1 + 𝑒2 + 𝑒3 

Change of curvature 𝐶𝑒 =
𝑒3

𝑒1 + 𝑒2 + 𝑒3
 

Table 2. Eigenfeatures mathematical formulation 

 

In addition to feature reported in Table 2, other eight parameters 

are calculated: roughness, mean curvature, Gaussian curvature, 

PCA1, PCA2, PCA3, surface variation, and verticality. A total 

number of 16 eigenfeatures are extracted using CloudCompare. 

Finally, also the third dimension (Z component) is added to these 

parameters (Grilli et a., 2019). 

Even if all the eigenfeatures have been extracted, they may 

contain redundant information. As highlighted by some authors 

(Weimann et al., 2013; Roffo, 2016), it is often desirable to select 

a compact subset of the most relevant features which allows 

classification/clustering without significant loss of information. 

This selection has also the advantage of reducing the complexity 

of data processing. The MRMR (Minimum Redundancy 

Maximum Relevance) has been chosen for this task (Darbellay 

and Vajda, 1999; Ding and Peng, 2005). The MRMR algorithm 

finds an optimal set of features that is mutually and maximally 

dissimilar and can effectively represent the response variable 

effectively. The algorithm minimizes the redundancy of a feature 

set and maximizes the relevance of a feature set to the response 

variable. The algorithm quantifies redundancy and relevance 

using mutual information of variables. 

 

2.3.2 Machine Learning algorithms for classification 

 

Point cloud classification was then performed using three 

different Machine Learning algorithms: Support Vector Machine 

(SVM), Decision Tree (DT), and Random Forest (RF) (Kavzoglu 

et al., 2020). 

Support Vector Machine is a nonparametric classifier method 

suggested for solving classification problems in datasets where 

patterns between the variables are unknown. SVM is based on 

statistical learning theory. Although mathematical algorithms are 

designed to classify data that are linear and have two classes, it is 

generalized to classify nonlinear and data multi-class data. The 

working principle of SVM classifier is based on the method of 

defining the hyperplane that distinguishes optimally the two 

classes optimally (Vapnik, 1995). Distance between support 

vectors are maximized and optimal decision function is created 

thanks to the obtained hyperplane. 

Decision Trees method is a classification method that is widely 

applied in the literature since tree structures has simple rules used 

to create it. In this classification method, the relationship between 

the dataset and the classes are handled in stages. A simple tree 

structure consists of three basic parts namely, knots, branches and 

leaves. In the tree structure, each attribute is represented by a 

node (Friedl and Brodley, 1997). The basic principle to create a 

tree structure by using the attribute information of the training 

data can be expressed as asking questions to the data and reaching 

the results as soon as possible according to the obtained answers. 

The most significant processing step in creating DT is the criteria 

by which branching in the tree will be done. 

Random Forest is based on the principle of using decision trees 

as the basic classifier and creating a collective learning model by 

combining multiple decision trees (Breiman, 2001). RF classifier 

outperforms most classifiers due to robustness against 

overfitting, ease of parametrization and speed (Kavzoglu, 2017). 

The main purpose of the RF classifier is to create multiple 

decision trees using bootstrapped sampling method. The training 

dataset used to create tree models in the decision forest is 

randomly selected from the original training dataset. 

Approximately, 2/3 of the randomly sampled data set is used to 

create the decision tree structure and the remaining part is used 

to test the validity of the created decision tree model (this 

proportion could be different according to the characteristics of 

the used dataset). The class label of an uncertain sample is 

determined using the estimated majority voting principle of each 

tree model in the decision forest. 

Regardless of classification method, the cloud has traditionally 

been split into two datasets: one for training and one for testing 

dataset. Furthermore, each point of the cloud has been 

characterized and labelled according to the main architectural 

elements: pavement, columns, half pilasters with structural 

function, walls, capitals, arches, and vaults.  

 

3. RESULTS 

The paper aims to examine if point clouds, generated by a SLAM 

system, have the suitable characteristics to be classify using 

traditional Machine Learning algorithms. The main issues are 

related to the uneven points distribution and the lower accuracy 

in the clouds, compared to common terrestrial laser scanners. 

Indeed, unlike TLS, whose measured points are perfectly equally 

spaced, the SLAM cloud presents irregular patterns with the 

presence of linear acquisition paths.  

This phenomenon can cause not homogeneous data in both 

density and precision; for this reason it was analysed. Figure 8 

shows an example of a point cloud generated by the BLK2GO on 

a planar surface (in this case on a vertical wall). Even if all the 

should appear uniform, it is clear that some lines emerges from 

the whole. To evaluate this aspect a robust plane has been fitted 

on the cloud and perpendicular distances between each point and 

the plane are determined. Figure 9 shows the results in which this 

behaviour is emphasized; according to the scalebar, in 

centimetres, the colours represent the distances from the 

estimated plane. The maximum value is 3.3 cm while the overall 

noise is around 1 cm. To prevent this uniformity from affecting 

subsequent steps, denoising and regularization procedures were 

applied to the acquired data. 
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Figure 8. Example of BLK2GO point cloud on a planar surface. 

 

 

Figure 9. Distances between each point and the estimated 

robust plane. 

 

3.1 Eigenfeatures extraction and selection 

First step of our procedure is the extraction of the eight 

eigenfeatures for each point of the two clouds (Section 2.3.1). 

Three different searching radius, 12.5 cm, 25 cm and 50 cm are 

used, according to architectural elements. Covariance matrix and 

eigenvalues are then determined, and eigenfeatures are calculated 

using CloudCompare and the formulas showed in Table 2. 

Eigenfeatures are then normalized to the interval [0,1] and stored 

in a matrix having as many rows as the number of points, and 48 

columns (16 columns for each searching radius); an additional 

49-th column has been added containing the Z component. 

The MRMR method is then applied to select main relevant 

features. As the final choice must be suitable for the whole 

dataset, the feature rank is estimated three times, one for each 

searching radius. The so-obtained result are inserted in one final 

ranking list, as shown in Figure 10: the bars represent the score 

obtained for each feature, ordered from the lowest to the highest 

value. A threshold of 0.5 is set to define which eigenfeature to 

use for the next steps; this fixes to 17 the number of parameters, 

including the Z coordinate, inserted by default.  

 

 

Figure 10. The ranking of the considered eigenfeatures. 

 

3.2 Point cloud classification 

Three Machine Learning algorithms are tested: support vector 

machine, decision tree, and random forest. 

Preliminarily, the cloud has been manually classified subdividing 

the point cloud into the seven categories already mentioned. 

Moreover, as classification procedure requires, the cloud was 

split into two different datasets: training and testing. The former, 

corresponding approximately to the 18.6% of the whole data 

(Figure 11), is used to train the algorithms. Figure 12 shows in 

detail the training set where the architectural elements are 

displayed with different colours: Table 3 reports the 

correspondence between features, colours and the labels used 

during classification procedures. 

 

 

Figure 11. The training dataset compared to the whole data. 

 

 

Figure 12. The training dataset: each architectural element is 

displayed with a colour according to Table 3. 

 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-2-2023 
29th CIPA Symposium “Documenting, Understanding, Preserving Cultural Heritage: 

Humanities and Digital Technologies for Shaping the Future”, 25–30 June 2023, Florence, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-593-2023 | © Author(s) 2023. CC BY 4.0 License.

 
597



 

Colour Elements Label 

Blue Arches 1 

Dark green Capitals 2 

Green Half pilasters 3 

Light green Columns 4 

Yellow Walls 5 

Red Vaults 6 

Orange Pavement 7 

Table 3. Lookup table of architectural elements classified. 

 

To evaluate the classification results, the confusion matrices are 

calculated: each point of the manual classification is compared to 

the corresponding one of the automatic segmentations. 

On the confusion matrix plot (an example is showed in Figure 

13), the rows correspond to the true classes and the columns 

correspond to the predicted ones, therefore the diagonal cells 

correspond to observations that are correctly classified, and the 

off-diagonal cells to incorrectly ones. The column on the far right 

of the plot shows the percentages of all the examples belonging 

to each class that are correctly and incorrectly classified. These 

metrics are often called the recall (or true positive rate) and false 

negative rate, respectively. The row at the bottom of the plot 

shows the percentages of all the examples predicted to belong to 

each class that are correctly and incorrectly classified. These 

metrics are often called precision (or positive predictive value) 

and false discovery rate, respectively. 

 

 

Figure 13. Confusion matrix for SVM learning model. 

 

Figure 13 reports the confusion matrix obtained using SVM 

learning model. As it is evident, results are extremely 

unsatisfying: two classes, capitals and walls, are completely 

ignored by the classifier while almost the whole cloud is labelled 

as pavement. The overall accuracy is about 20%. Figure 14 

reports the result of the for the classification for the testing 

dataset, showing as SVM model performs bad. The image also 

underlines as columns are incorrectly classified almost 

completely as vaults. 

 

 

Figure 14. Labelled point cloud using SVM learning model. 

 

Using DT, classification results significantly improve. Figure 15 

reports the confusion matrix obtained with this second learning 

method. Many architectural elements, such as pavement, walls, 

and echinus, are correctly labelled; some uncertainties remain for 

arches, columns and walls. The overall accuracy is about 85%. 

Figure 16 reports the classified point cloud of the testing dataset: 

the image shows visually as RD performs well using the SLAM 

data. 

 

 

Figure 15. Confusion matrix for DT learning model. 

 

 

Figure 16. Labelled point cloud using DT learning model. 
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Finally, RF learning model is tested and confusion matrix (Figure 

17) is analysed. Results are like DT, with a general improvement 

that has mainly concerned arches and columns classification. The 

overall accuracy is almost the 90%. The overall accuracy is about 

90%. Figure 18 reports, once again, the obtained labelled point 

cloud: the image is like the previous one, but a greater cleanliness 

is evident, especially between the arches and the vaults. 

 

 

Figure 17. Confusion matrix for RF learning model. 

 

 

Figure 18. Labelled point cloud using RF learning model. 

 

3. CONCLUSION 

The paper aims to examine if point clouds, generated by a SLAM 

system, such as Leica BLK2GO, have the suitable characteristics 

to be classified using traditional machine learning algorithms. 

The main issues are connected to not uniform points distribution 

and to less accuracy in the clouds, in comparison to common 

terrestrial laser scanners. 

A dataset acquired on a historical place in Pavia, the 

Sant’Eusebio crypt, has been used for testing three well-known 

classification algorithms: Support Vector Machine, Decision 

Tree and Random Forest. A set of seven architectural elements is 

considered: pavement, columns, half pilasters, walls, capital, 

arches, and vaults. 

The test-site presents a couple of criticisms: a low light 

conditions and an irregularities of architectural structures. To 

face the first issue, the BLK2GO has been coupled with a 

lightning kit; the second problem has been overcome extracting 

eigenfeatures with different searching radius in order to adapt the 

algorithms to different geometry. 

Support Vector Machine is the learning method that has 

encountered the greatest difficulties: the algorithms seem to be 

not able to segment many elements and the overall accuracy is 

extremely poor (20%). Algorithms based on tree structures seem 

instead to reach good performance with an accuracy between 

85% (Decision Tree) and 90% (Random Forest). The obtained 

results are similar to those achieved by other authors (Grilli et a., 

2019), even if the crypt has a complex and not perfectly repetitive 

structure.  

Tha paper shows as SLAM data seems to have all the suitable 

characteristics to describe and analyse cultural heritage sites.  
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