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ABSTRACT:

This research aims to investigate the application of computer vision and machine learning for the automatic detection of wall
collapse damage in historic buildings caused by natural and man-made disasters. Given the complexities involved in inspecting
damaged buildings, particularly in post-disaster scenarios, this research aims to establish a foundation for creating an automated
assessment process. Our findings demonstrate the successful automatic detection of various shapes of wall collapse on damaged
buildings from the Beirut explosion of 2020, as well as from other damaged buildings obtained from the internet, thereby highlight-
ing the transferability of our method. This research paves the way for the development of a more robust machine learning model
capable of detecting a broader range of damages, which can significantly enhance the efficiency and accuracy of post-disaster as-
sessment of historic structures. The paper presents a novel approach for damage detection and quantification, which underscores
the potential of structural health monitoring in improving disaster response and recovery efforts.

1. INTRODUCTION

Natural and man-made disasters on historic buildings pose a
significant threat to their structural integrity and durability. To
reduce disaster risk at cultural heritage sites, international or-
ganizations, such as UNESCO, are engaged in ongoing efforts
to identify and implement multiple measures (UNESCO, 2015).
The inspection and assessment of damaged historic buildings is
a complex and time-consuming process, even in the case of a
single building. However, in the event of a disaster, the scope
of impact often extends beyond individual buildings or clusters,
and may encompass entire cities, states, or countries. Tra-
ditional assessment and surveying techniques, while efficient,
can be further challenged by the aftermath of a disaster. The
timely implementation of emergency interventions is critical to
the preservation of damaged historic buildings, and this requires
a rapid and efficient assessment process. Thus, the exploration
of alternative, more efficient techniques for the assessment of
damaged historic buildings in post-disaster scenarios is of ut-
most importance.

The use of digital technologies has been shown to significantly
enhance the speed and efficacy of disaster recovery processes.
This was demonstrated in the aftermath of the August 4th, 2020
explosion in Beirut, where the author conducted a comprehens-
ive digitization project of damaged historic buildings using pho-
togrammetry (UNESCO, 2022); (J. Kallas, M. Silver, O. Vilei-
kis, 2020). This generated detailed 3D models of the structures,
allowing for rapid implementation of emergency interventions
and restoration planning (Figure 1). The application of com-
puter vision techniques, such as image segmentation, can also
play a crucial role in disaster relief efforts. Image segmentation,
a key aspect of image processing and computer vision, has nu-
merous applications such as object detection, face recognition,
and satellite image analysis (Shervin Minaee, Yuri Boykov, et
al., 2020). Other successful applications of image segmentation
include the automated detection of cracks in roads and bridges,
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Figure 1. 3D photogrammetric model conducted by the author of 
one of the damaged historic buildings in Beirut following the 

explosion of August 4th, 2020.

crucial for infrastructure monitoring and assessment (Chen, C., 
Seo, H., Jun, C. et al., 2022).

The current study endeavors to investigate the application of 
computer vision and machine learning in automatically identi-
fying damage on historic buildings in post-disaster zones. This 
approach has significant practical implications, as it facilitates 
a rapid damage assessment process by automatically localiz-
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ing damages on impacted buildings. Moreover, integration with
photogrammetric 3D modeling allows for automated quantific-
ation of damages, potentially reducing the time and effort re-
quired from experts and inspectors on site. Studies focused on
damage detection have been widely reported in the literature
and approached from various perspectives. In the 1990s, Wu et
al. (X. Wu et al., 2003) and Masri et al. (S. F. Masri et al., 1996)
conducted experiments to classify undamaged and damaged
structures using neural networks. More recently, some studies
have utilized multi-resolution convolutional neural networks for
image classification of damaged buildings in the aftermath of
natural disasters such as earthquakes (D. Duarte et al., 2018).
Fujita et al. employed a convolutional neural network (CNN)
to detect damaged regions following a tsunami, by identifying
completely disappeared buildings using pre- and post-disaster
aerial images (A. Fujita et al., 2017). Ma et al. (H. Ma et
al., 2020) applied a Geographic Information System to extract
building damage information post-disaster and then utilized an
improved convolutional neural network to classify the degree of
damage for building groups. As previously highlighted, the ma-
jority of studies regarding post-disaster damage detection have
primarily utilized satellite imagery and focused on determining
general building damage rather than specific types of damage.
The use of satellite imagery, however, presents several limita-
tions, such as the potential for cloud cover to severely reduce
the effectiveness of real-time damage detection systems and the
vertical orientation of the images which limits damage recogni-
tion to only the roofs of buildings.

Studies examining crack detection as a specific damage type
have been widely explored in the literature as well (A. Mo-
han, S. Poobal, 2018). Alam et al. (S. Y. Alam et al., 2015)
proposed a novel approach combining digital image correlation
and acoustic emission, which allows for precise measurement
of surface displacements and determination of crack openings
and spacing. Shan et al. (B. Shan et al., 2016) developed a
stereovision-based method for crack width detection, utilizing
two cameras to recover crack edge coordinates. Fujita et al.
(Y. Fujita et al., 2011) designed an automatic crack detection
system for noisy concrete surfaces, which involves two pre-
processing steps and two detection steps, including the use of
a multi-scale line filter with the Hessian matrix to emphasize
cracks and a combination of probabilistic method and adapt-
ive threshold algorithm for detecting cracks. Pereira et al. (F.
C. Pereira et al., 2015) suggested using an Unmanned Aerial
Vehicle for autonomous inspection of building pathologies, in-
corporating various image processing algorithms for crack de-
tection. Zou et al. (Q. Zou et al., 2012) introduced Deep-
Crack, a trainable deep convolutional neural network model,
capable of detecting cracks in pavement images by leveraging
high-level features such as ridges. Loverdos et al. (D. Lover-
dos et al., 2022) employed various deep learning networks for
automated crack detection in brick masonry, and found that the
convolutional neural network outperformed traditional image-
processing functions even when applied to clean images.

This study focuses on detecting wall collapse damage, which
poses unique challenges compared to crack detection that has
already been extensively researched. Wall collapse lacks a spe-
cific or uniform shape, unlike cracks, and can occur partially or
completely, following the masonry joints or breaking through
the masonry. Detecting wall collapse damage is also complic-
ated by the fact that it creates an opening into the building’s in-
terior, potentially misleading algorithms that analyze surround-
ing surfaces. The study employs an experimental machine

learning model, trained using datasets collected after the Beirut
explosion, to evaluate the effectiveness of image segmentation
for detecting wall collapse damage. The Mask R-CNN method
and the ResNet50 architecture are used in the experiment (W.
Abdulla, 2017), with the Mask R-CNN structure involving two
steps: processing input images to generate region suggestions
and confirming and classifying the target object while creating
bounding boxes and masks.

2. RESEARCH AIM

The objective of this research is to develop a deep learning and
artificial intelligence-based approach for automating the detec-
tion of large-scale damages, such as wall collapse, on damaged
historic buildings, using the case of the Beirut blast as a case
study. The proposed approach aims to establish a foundation for
a complete automated damage assessment process that can be
deployed in post-disaster scenarios, thereby reducing the time
required for inspectors to be physically present on site and ex-
pediting the recovery of damaged structures. This research has
the potential to contribute to the broader field of disaster man-
agement and resilience, and offers practical insights for future
applications.

3. MATERIALS & METHODS

Image segmentation is the process of assigning each pixel in an
image to a specific category or class. There are several meth-
ods of image segmentation available, but two methods that have
gained prominence in the field of Deep Learning are Semantic
Segmentation and Instance Segmentation. In Semantic Seg-
mentation, all pixels of an object belonging to a specific class
are given the same label or color value. This method is widely
used for various computer vision tasks, such as autonomous
driving and medical image analysis, as it allows the model to
identify and classify different objects in an image. On the other
hand, Instance Segmentation assigns a unique label or color
value to each pixel of every object in a class, providing a more
precise identification of individual objects. This method is often
used in applications such as robotics and object detection. The
choice of image segmentation method depends on the specific
task and available resources. In this study, Semantic Segment-
ation was utilized to detect wall collapse in damaged buildings,
which provided an efficient means of identifying damaged re-
gions in the structures of existing buildings. As computer vision
technology continues to advance, image segmentation is expec-
ted to become more widely used, facilitating the accurate ana-
lysis of complex visual data for a variety of applications.

The methodology employed in this experiment utilized the
open-source implementation of the Mask R-CNN method de-
veloped by Matterport (W. Abdulla, 2017), which is based on
the Feature Pyramid Network (FPN) (T. Y. Lin et al., 2017)
and the ResNet50 backbone (K. He et al., 2017). Typically,
the backbone network of the Mask R-CNN (Regional Convo-
lutional Neural Network) adopts ResNet101, with 101 network
layers. However, for our experiment, which involves a relat-
ively small dataset for detecting wall collapse damage, a lower
number of network layers is sufficient to meet the requirements
of the study. Therefore, to further enhance the algorithm’s run-
ning speed, this paper implemented the ResNet50 backbone.
Mask R-CNN is an instance segmentation model that consists
of two steps. In the first step, the input images are processed
to generate region proposals that may contain the target object.
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In the second step, these proposals are validated, and the target
object is classified, along with the creation of bounding boxes
and masks. The model is trained end-to-end on the wall col-
lapse damage dataset to learn and detect the specific damage
patterns. The implementation of Mask R-CNN in this study
demonstrated a successful workflow in detecting wall collapse
damage in images of damaged buildings, highlighting the ef-
fectiveness of the model in the context of structural health mon-
itoring and damage identification. The dataset utilized for this
experiment comprised 100 aerial images of damaged buildings
taken following the Beirut blast of August 4th, 2020. The im-
ages were captured using a DJI Phantom 4 Pro drone (DJI,
2020), and included a range of building types exhibiting vari-
ous degrees of wall collapse damage. The dataset was split
into training data (80 images) and validation data (20 images),
with the former accounting for 80% of the dataset. To facil-
itate effective learning, we included images that depicted the
damage from various viewpoints, including close-up shots and
those taken from a distance, which showed the damage in the
context of the post-disaster urban environment.

To mitigate the small size of our dataset, we employed the
“imgaug” library (Imgaug Python, 2020) to perform data aug-
mentation during the training process. Specifically, we applied
the random flip method, which included horizontal and vertical
flipping, with a probability of 0.85. This increased the size of
the dataset by 85%. In addition, to enhance the model’s robust-
ness, we also performed random rotations on the input images,
adjusted their contrast, and added Gaussian noise and filtering
operations. This ensured that the model could detect wall col-
lapse damage accurately, even when presented with images that
were not included in the original dataset.

The creation of a thoroughly labeled and annotated image data-
set is crucial for training a supervised computer vision model.
In this experiment, the VGG Image Annotator (VIA) (A. Dutta
et al., 2018), an open-source, web-based tool developed by re-
searchers at Oxford University, was utilized to manually create
detailed and precise annotations of the wall collapse damage
present in all images of the dataset, including both the train-
ing and validation sets. This process involved outlining the
damaged areas of each image with precise polygons and as-
signing appropriate labels, resulting in a comprehensive dataset
for training and supervising the computer vision model (Fig-
ure 2). The annotations were then exported and saved in ”.json”
file format (json, 2001), enabling seamless integration with the
training process.

In order to optimize the training process of the wall collapse
damage detection model, a series of modifications were made to
the dataset and optimization algorithms. The original aerial im-
ages in our dataset were 5472 x 3648 pixels, which were downs-
ized to 512 x 512 pixels during the training for the color image
and color mask pipelines, and further down-sampled to 28 x 28
pixels for the binary mask pipeline. These modifications were
necessary to ensure efficient model training speed and minim-
ize the use of GPU memory and space. To optimize the optim-
ization algorithm, we utilized the Stochastic Gradient Descent
(SGD) (Keras, 2018a) optimization algorithm with a learning
rate of 0.001 and learning momentum of 0.9, which demon-
strated strong robustness in selecting hyper parameters. Given
the small dataset size, we trained our model for only 50 epochs
with 100 steps per epoch to prevent overfitting. The experiment
was conducted using TensorFlow 1.14 (Tensorflow, 2019) and
Keras 2.2.4 (Keras, 2018b), and trained on an Intel(R) UHD
Graphics 630 GPU (Intel, 2016) with 8 GB memory.

Figure 2. Labeling of the images using the VGG Image 
Annotator (VIA) tool.

In this experiment, we leveraged the pre-trained weights from 
MS COCO (T. Y. Lin et al., 2015), made available by Tensor-
Flow [28], as a transfer learning approach to initialize our net-
work. Developing a deep CNN from scratch can be an arduous 
task for several reasons. Primarily, optimal performance for 
deep CNN architectures demands a substantial dataset, which 
may prove challenging to obtain in some cases. Additionally, 
training a deep model can be computationally expensive, requir-
ing significant c omputational p ower a nd l eading t o extended 
convergence times. Even with an adequate dataset and com-
putational resources, pre-trained neural networks may still out-
perform neural networks trained from scratch (M. Ouqab et al., 
2014); (S. Ahmed et al., 2021). This has spurred the widespread 
adoption of transfer learning in many applications, including 
the present study.

4. RESULTS & DISCUSSIONS

As previously noted, the ResNet50 backbone was utilized in 
our experiment instead of the more recent and common Res-
Net101. This decision was not arbitrary, but rather a result of 
our concern that the ResNet101 backbone could cause overfit-
ting of our model due to the limited size of our dataset. To en-
sure the optimal choice of backbone, we trained three distinct 
Mask-R-CNN models utilizing the aforementioned pipelines 
and evaluated their performance. The first model was trained 
with the ResNet101 backbone, which exhibited overfitting prior 
to reaching the final epochs, as illustrated by the validation loss 
curve in Figure 4. For the second model, we maintained the 
same parameters and implemented the ResNet50 backbone, res-
ulting in improved performance, as indicated by the validation 
loss curve in Figure 3. However, in an effort to further enhance 
overall model performance, we utilized the ResNet50 backbone 
for the third model, while modifying parameters such as weight
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decays, validation steps, and the number of epochs. Table 1
presents the selected parameters for each of the three models.

Figure 3. Validation Loss curve

Training Parameters Models
Model 1 Model 2 Model 3

Backbone ResNet101 ResNet50 ResNest50
Learning Rate 0.001 0.001 0.001
Learning Momentum 0.9 0.9 0.9
Number of Classes 2 2 2
Number of Epochs 30 30 50
Steps per Epoch 100 100 100
Validation Steps 50 50 200
Weights Decay 0.0001 0.0001 0.0005

Table 1. Table showing the parameters we used for each of the 
three models we trained.

When evaluating the accuracy and performance of a machine 
learning model in a classification task, a confusion matrix is fre-
quently utilized (S. V. Stehman, 1997). The confusion matrix 
provides a tabular representation of the predicted versus actual 
labels for a dataset, where each column corresponds to an actual 
category to which the instance belongs. Within the confusion 
matrix, TP (True Positive) represents the number of instances 
that are correctly predicted as belonging to the given category, 
while FP (False Positive) represents the instances that belong 
to other categories but are mistakenly classified as belonging to 
the given category. Similarly, FN (False Negative) corresponds 
to instances that belong to the given category but are mistakenly 
classified as belonging to another o ne. Lastly, TN (True Neg-
ative) refers to instances that are correctly classified as belong-
ing to other categories. In our study, we generated a confu-
sion matrix for each of the three models at the conclusion of 
each training iteration, for both the training and validation sets. 
These matrices provide a detailed account of the performance 
of the models and are presented in Figure 4. Through the ana-
lysis of these matrices, we are able to evaluate the classification 
performance of our models, and more specifically, identify any 
instances where our model may have struggled to accurately 
predict the category of a given instance.

In order to compare the three models in terms of their perform-
ance, several commonly used evaluation metrics were utilized 
for both the training and validation sets. These metrics provide 
a comprehensive understanding of the models’ performance in 
terms of overall accuracy, detection, and segmentation perform-
ance. Specifically, e ach m odel w as c ompared b ased o n pre-
cision, recall, and F1 scores. Precision is defined as t he pro-
portion of relevant instances, out of the total instances that the

model retrieved. In contrast, the recall score is defined as the
proportion of correctly assigned instances, such as the percent-
age of “Wall Collapse” images that were correctly classified as
damaged. The F1 score, on the other hand, represents the har-
monic mean of Precision and Recall. To calculate these met-
rics, the generated confusion matrices were utilized. The de-
tailed results of each of the three trained models are presented
in Table 2, providing a clear and concise comparison of their
performance in terms of these important evaluation metrics.
Through this analysis, we are able to determine which model
performed the best overall and identify specific strengths and
weaknesses of each model for future improvement.

Upon analyzing the results presented in Table 2, it can be in-
ferred that the ResNet50-based Model 2 outperforms Model 1,
which utilizes ResNet101 as its backbone. However, Model 3,
which also employs ResNet50 as its backbone, exhibits super-
ior performance compared to both the aforementioned models.
The noteworthy enhancement in Model 3’s performance can be
attributed to the fine-tuning of training parameters, namely, an
increase in decay weights, validation steps, and training epochs,
as illustrated in Table 1.

The predictions made using the results of model 3 are presen-
ted in this section. The wall collapse damage detection accur-
acy achieved by the model was 72.38% for the training set and
71.81% for the validation set, indicating that the model was able
to correctly identify the majority of wall collapse damages in
the dataset (Figure 5). The precision of wall collapse detection
was found to be 83.17% for the training set and 86.81% for the
validation set. Similarly, the recall of wall collapse damage de-
tection reached 84.80% and 80.61% for the training set and the
validation set, respectively. The F1 score of model 3 was found
to be 83.96% for the training set and 83.59% for the valida-
tion set, indicating that the model had a balanced performance
in terms of precision and recall. However, misdetections were
observed in some cases due to the presence of trees that were
partially covering the wall collapse damage or the presence of
wooden and metallic scaffolding inside the space where a wall
damage occurred. In some cases, wrong detections were also
made due to the similarity of demolished windows with actual
wall collapse damage. These issues can be addressed in the
future by increasing the size of the training dataset and improv-
ing the model’s ability to learn the relevant features. Visual ex-
amples of the misdetections and wrong detections are presented
in Figure 6 and Figure 7, respectively.

To verify the efficacy of our proposed method, we conducted
experiments on a diverse set of wall collapse images, which
were randomly downloaded from the internet. Our evaluation
demonstrated that the method yields satisfactory results in de-
tecting wall collapses, indicating its effectiveness in a real-
world setting (Figure 8). Moreover, the good detection results
we achieved in the experiments validates the transferability of
the proposed approach to different datasets, highlighting its po-
tential for a wide range of applications. In summary, our find-
ings suggest that the proposed method holds promise for the
efficient detection of wall collapses, paving the way for its ap-
plication in various domains such as structural health monitor-
ing, and disaster response.

Despite not achieving an overall accuracy level over 80% or
90%, our experiment can be deemed successful in validating the
main concept of our study, which aims to demonstrate the feas-
ibility of auto-detecting large-scale and complex damage types
using image segmentation. To date, image segmentation has
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Evaluation Metrics Model 1 Model 2 Model 3
Training Validation Training Validation Training Validation

Accuracy score 66.73% 62.72% 73.84% 69.00% 72.38% 71.91%
Precision score 79.75% 82.14% 84.44% 83.51% 83.17% 86.81%
Recall score 80.03% 72.63% 85.47% 79.16% 84.80% 80.61%
F1 score 79.88% 77.09% 84.95% 81.36% 83.96% 83.59%

Table 2. Table showing the results of the different evaluation metrics we used to evaluate the performance of the three models we 
trained.

Figure 4. Confusion Matrices of both the Training and Validation sets for the three different models we trained. Row 1: Model 1; Row 
2: Model 2; Row 3: Model 3.
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Figure 5. Photos showing the wall collapse damage detection results on random photos taken after the Beirut explosion of August 4th, 
2020.

Figure 6. Photos showing the misdetection of some of the wall collapse damage in areas partially covered by trees or by wooden and 
metallic scaffolding on the inside.
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Figure 7. Photos showing the wrong detection of the wall collapse damage due to the similarity of demolished windows with actual 
wall collapse damage.

Figure 8. Photos showing the wall collapse damage detection results on random photos of damaged buildings taken from the internet.

been limited to detecting cracks or overall damaged buildings,
as demonstrated in the first part of this paper, rather than de-
tecting specific complex structural damage. We anticipate that
future works with larger datasets will yield better results.

5. CONCLUSION

In conclusion, while neural networks have been widely used for
detecting damaged buildings in the aftermath of disasters, most

studies have focused on classifying buildings into general dam-
age categories, with limited attention given to sub-classifying
specific types of damage. In this research, we employed Mask-
R-CNN and ResNet50 backbone to detect wall collapse dam-
age in images collected from Beirut following the devastating
explosion of August 4th, 2020. We trained multiple models
with varying parameters and evaluated their performance us-
ing various metrics, including accuracy, precision, recall, and
F1 scores. The best performing model was then used for im-
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age segmentation, resulting in good detection of wall collapse
damage in different scenarios. Our future work will focus on
expanding the dataset to include larger samples of wall col-
lapse and other typical damages that historic buildings exper-
ience during unexpected disasters. This will enable the devel-
opment of a more robust model capable of detecting multi-scale
damages. Additionally, we plan to explore novel techniques for
transferring segmentation onto 3D point clouds, which will fa-
cilitate a complete automated damage assessment process for
deployment in post-disaster scenarios. By minimizing the time
and need for physical inspections on site, our approach has the
potential to expedite the recovery of damaged structures, thus
aiding disaster response and recovery efforts.
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