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ABSTRACT: 

The presented research aims to define a parametric modelling methodology that allows, in short time and at a sustainable cost, the 

digital acquisition, modelling and semantic structuring of urban city blocks to facilitate 3D city modelling applied to historic centres. 

The methodology is based on field surveying and derives 3D data for the realisation of a parametric City Information Model (CIM). 

This is pursued through the adoption of parametric modelling as main method combined with AI procedures like supervised machine 

learning. In particular, the Visual Programming Language (VPL) Grasshopper is adopted as main working environment. The 

methodology proposed, called Scan-to-CIM, is developed to automate the cognitive operations of interpretation and input of surveying 

data performed in the field in order to create LoD4 city block models in a semi-automatic way. The proposed Scan-to-CIM methodology 

is applied to a city block located in the historic centre of Catania, Italy. 

1. INTRODUCTION

In recent years, 3D semantic models have been increasingly used 

in many disciplines. In particular, the field of 3D city models is 

developing increasingly innovative and automated procedures 

for the reconstruction of semantic 3D city models from point 

clouds usually obtained from airborne surveys useful for risk 

assessment procedures. Hence, many case studies in literature 

deal with this subject at the territorial and urban scale (LoD 0, 1, 

2), rarely going into architectural details (LoD 3 and 4), which 

are instead fundamental to the development of effective City 

Information Modeling (CIM) procedures, merging BIM and GIS 

procedures. These activities have produced a considerable 

amount of training datasets related to urban objects acquired in 

relation to a territorial scale, therefore not very usable for 

transition to an architectural scale. On the other hand, analysing 

the training datasets related to HBIM applications, they mainly 

concern monumental architectures, thus too specific to be used in 

an urban environment. There are currently limited training 

datasets that allow reverse modeling operation in the urban 

environment at the architectural scale. Moreover, these datasets 

contain architectural configurations that are often not found in the 

Mediterranean area. 

This work aims to define a semi-automatic 3D semantic 

modeling procedure (called Scan-to-CIM) that allows the 

creation of City Information Models to support urban cultural 

heritage risk assessment activities. Specifically, in this research 

we propose a fast reconstruction of LoD4 city models of urban 

aggregates, combining Machine Learning (ML) semantic 

segmentation of point clouds and parametric reverse modelling 

via Visual Programming Languages (VPL). 

Our research questions are: is it possible to adopt parametric 

modelling via VPL for reverse modelling from classified clouds 

using machine learning? Is it possible to conduct instance 

segmentation of openings on facades using VPL? What are the 

advantages of the Scan-to-CIM approach proposed in this work 

over the construction of 3D city models? 

2. RELATED WORKS

2.1 3D city modeling: definitions and standards 

Currently, a 3D City model can be defined as “a digital 

representation, with three-dimensional geometries, of common 

objects in an urban environment, with buildings usually being the 

most prominent objects” (Arroyo Ohori et al., 2022). This virtual 

representation is usually adopted to store, visualize and interact 

with digital urban data acquired from reality that include terrain, 

building, vegetation as well as roads and transportation systems 

models. Virtual 3D city models’ ability to visually integrate 

diverse geoinformation into a unified framework is one of its 

distinguishing features. As a result, they enable the creation and 

management of complex urban information environments 

(Döllner et al., 2007; Billen et al., 2014; Zhu et al., 2009). The 

generation of 3D city models can take place from different types 

of acquisitions, data and processing methods, such as: 

photogrammetry (terrestrial and aerial), laser scanning, 

extrusions from 2D cad, CAD/BIM model conversion, 

procedural modelling, crowdmapped opendata, etc. Generally, 

3D city models are defined with respect to a data structure and 

format according to the type of data sources available, the 

expertise of those producing them and the type of output 

expected. The applications of 3D city models cover almost all 

disciplines, so their generation and management are topics of 

considerable scientific relevance. In Biljecki (2017), 29 different 

applications of city models are identified. These include analyses 

for solar irradiance estimation, energy demand estimation, 

inhabitant estimation, visualisation of the urban environment for 

navigation systems, visibility analysis, shadow studies for urban 

climate analyses, applications for land registry, urban planning, 

facility management, emergency response, etc. 

In the context of this research, semantic 3D city models will be 

discussed. The motivation for semantic 3D city models is the fact 

that they allow information to be extracted from the city model 

(e.g. how many inhabitants are there in a city block? or what are 

the years and construction techniques of a building? etc). City 

models that do not allow queries and/or interactions cannot be 

called semantic 3D city models but 3D representations of a 
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territory (e.g., a textured 3D mesh produced from a 

photogrammetric aerial block). 

These digital replicas are data models where the relevant objects 

(and their components) are structured with respect to a hierarchy 

and have attributes linked to them. These models are a collection 

of objects belonging to different classes (building, road, bridge, 

tree, etc.). Each object possesses at least one geometric 

representation and may also possess attributes. In addition, each 

object is decomposed into other homogenous parts, each of them 

with a geometric representation and attributes. Taking an object 

belonging to the building class as a reference, it is decomposable 

into walls, floors, windows, roof, etc. For this reason, a 3D city 

model is defined spatio-semantically coherent if there is an 

univocal relationship of each decomposed element with its host 

object, both geometrically and semantically. Conceptually, these 

models are structured in much the same way as BIM models 

which rely on families and parameters (Arroyo Ohori et al., 

2022). 

Due to the great variety of 3D city model types, it became 

necessary to define an international standard that would define 

the data structure from a semantic point of view so that even if 

models were obtained from different data and processes, they 

would all be constituted in the same way. The modeling standard 

for 3D information models of cities and urban systems is the 

CityGML 2.0 from the Open Geospatial Consortium (OGC), 

which identifies five levels of detail (LOD) in the three-

dimensional representation from 0 (footprint on the ground) to 4 

(building modelled both internally and externally) and uses a set 

of classes to describe city characteristics (Figure 1). 

 

 
 

Figure 1. CityGML LODs standards (Biljecki et al., 2014). 

 

However, applications involving 3D city models have scaled 

down to the architectural scale requiring greater precision and 

more advanced management of collected geometries and 

attributes. Furthermore, the impossibility of some digital 

acquisition techniques in particular urban environments has 

highlighted certain drawbacks that the adoption of such LODs 

raises during the modelling phase (Machl, 2013; Biljecki et al., 

2016; Löwner et al., 2016). According to Biljecki et al. (2016), 

one of the main problems with these ambiguities is the lack of 

standards that relate acquisition techniques to the models 

obtained, thus generating confusion over the use of 

nomenclature. How should we classify a building that is 

represented only by a prism (LOD1) but has surfaces inside it that 

represent floors (LOD4)? To answer this type of questions, a 

review of the LOD concept was proposed to reach 16 LODs 

obtained by defining 4 versions for LODs ranging from 0 to 3. 

LOD4 is excluded, as for urban applications it is currently not 

much used due to the difficulty of acquiring data concerning the 

interior of buildings (privacy issues) (Biljecki et al., 2016). 

 

2.2 City Information Modeling approaches  

The definition of City Information Modeling (CIM) is an issue 

that has been widely debated internationally in recent years 

(Simonelli et al., 2018; Xu et al., 2021). An outlining according 

to information modeling standards is at least complex given the 

hybrid nature of the BIM and GIS environment. Therefore, it is 

necessary to identify what characteristics allow a CIM model to 

be defined as opposed to a 3D GIS or BIM extended to the urban 

scale. In agreement with Xue, F. et al. (2021), the meaning that 

the 'I' of 'Information' takes on in CIM versus GIS and BIM 

provides the correct key. According to one of its first definitions, 

it is called the Urban Information Model which “integrate the 

multidimensional urban aspects like economy, society and 

environment with 3D urban model plus temporal dimension. 

Urban information model will provide comprehensive 

information support to various urban planning application 

systems” (Hamilton et al., 2005). One of the most established and 

recognised definitions in the literature is that a City Information 

Model consists of a system of urban elements represented by 2D 

and 3D elements containing information, linked by semantic 

relationships (Stojanovski, 2013).  

Nowadays, there is a wide range of CIM applications covering 

different disciplines (Xue et al., 2021). It is possible to 

distinguish three main approaches for developing CIM models: 

bottom-up, top-down and parametric. The first one (or model 

driven) focuses more on remote sensing on site acquisition 

(close- and mid- range laser scanning and photogrammetry) with 

subsequent manual and semi-automatic modeling processes in 

BIM and CAD environments (Pelliccio et al., 2017; Zhang et al, 

2021; Avena et al., 2021; Parrinello et al., 2020). These 

procedures often merge BIM and GIS data enabling the users to 

make queries and display models on web-based platform. In these 

models Computational Design (CD) is applied, through Visual 

Programming Languages (VPL), to link, sort and merge metadata 

between models and environments but not for modeling 

purposes. The top-down (or data driven) procedures deal mainly 

with long-range remote sensing techniques (e.g., Airborne 

LiDAR data) and geodata (coming from online open-data sources 

or datasets held by local institutions) which are further developed 

inside GIS-based procedural modeling digital environment 

(Biljecki et al, 2015; Nys et al., 2020; Wang et al., 2018, Pârvu 

et al., 2018). Top-down models usually don’t need any further 

integration (unlike bottom-up models) with exception for indoor 

data that are inserted via the conversion of IFC files into 

CityGML objects (Biljecki et al, 2021). These models are closer 

to the definition of CIM since they are based on CityGML 

standard where the city is treated as a whole system composed by 

different objects with geometries and metadata (OGC CityGML 

3.0, 2012). In these models, CD is applied by using traditional 

textual programming languages for creating algorithms that, 

starting from point clouds segmentations, allow to obtain 

building geometries. The development paradigms for CIM 

presented so far are very expensive in terms of technologies and 

expertise needed. Therefore, they are not sustainable except for 

large cities, leaving small and medium centres excluded from the 

potential utility of CIM for emergency management. The third 

approach used for generating CIM model is often called 

‘parametric urbanism’ (De Jesus et al., 2018). This approach is 

characterized by CD workflows that often interoperate with 

open-data and remote sensing products. The main work 

environments are VPLs connected with CAD software. In 

particular, the VPL Grasshopper, thanks to several plugins 

dedicated to 3D city modeling, has supported the development of 

several research activities related to the CIM paradigm (De Jesus 

et al., 2018; Calvano et al., 2019; Fink & Koenig, 2019; La Russa 

& Genovese, 2021). The parametric approach relates to the 

previous ones regarding responsiveness between files of different 

nature (e.g., IFC and SHP), interaction with digital survey 

products and standards for 3D city models (CityGML). 

 

2.3 AI for 3D semantic segmentation and classification 

The adoption of digital acquisition techniques is now an 

established practice in both industry and research. Currently, 

acquisition and registration workflows are increasingly 

automated, speeding up work and reducing errors. However, the 
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use of the obtained 3D data has remained unchanged for a long 

time as the point clouds obtained are used as static references for 

generating views and sections, thus reducing the potential of the 

digital product itself. For this reason, 3D data categorization has 

recently been a very active study area as a result of the 3D 

models' steadily expanding use in a variety of applications. It has 

gotten increasingly important in a variety of applications and 

domains, including robotics (Maturana et al., 2015), autonomous 

driving (Wang et al., 2017), urban planning (Xu et al., 2014), 

heritage (Grilli and Remondino, 2019), geospatial (Özdemir et 

al., 2021), etc., to automatically group huge data into many 

homogenous regions with comparable qualities. The objective is 

to automatically classify semantically continuous portions of 

point clouds (e.g., walls, windows, columns, etc.) in order to 

optimize modeling operations on point clouds with automatic and 

semi-automatic workflows. This can be achieved through the use 

of Artificial Intelligence methods applied to geospatial data, in 

particular by adopting Machine Learning (ML) and Deep 

Learning (DL) techniques (Döllner, 2020; Matrone et al., 2020; 

Pierdicca and Paolanti, 2021). ML classifiers, such us Support 

Vector Machine (SVM) and Random Forest (RF), are trained 

using a collection of features and training data with associated 

label information (i.e., classes). The definition of the right 

features is fundamental to obtain a training phase efficient 

enough to semantically segment the full dataset based on the 

prediction of the classifier used. Extracting and/or generating the 

right features can sensibly change the obtained results 

(Georgianos et al., 2015; Guo et al., 2016; Weinmann et al., 

2014). In this work, we rely on Random Forest as described in 

Grilli and Remondino (2019) with the following steps: (i) 

neighborhood selection, (ii) features extraction, (iii) features 

selection, (iv) manual annotation, and (v) classification 

(Weinmann et al., 2016). Initially, distinct geometric 

characteristics are extracted at various scales. Then iteratively 

evaluate just the more pertinent characteristics and re-run the 

classification procedure after conducting a multi-scale 

classification with a Random Forest classifier. Last, using the 

standard confusion matrix ratings, the various findings are 

compared. 

 

3. DEVELOPED METHODOLOGY 

The concept behind Scan-to-CIM is to automate the cognitive 

operations of interpreting and retrieving survey data performed 

by the surveyor. Hence the first step is the digital survey 

campaign as the goal is to achieve and manage the CIM model at 

a LOD higher than 3 (envelope with openings). The digital 

survey conducted is predominantly terrestrial since there may be 

many limitations to the use of drones within urban centres. The 

survey is therefore conducted using active sensor technologies 

that allow a sufficient degree of geometric detail in the produced 

point cloud. Once the point cloud cleaning and registration 

operations have been completed, the Random Forest workflow 

(Grilli and Remondino, 2019) is undertaken. Facade components 

useful for the identification of planes and openings are annotated 

in the point cloud and assigned to a specific class (e.g. walls, 

windows, etc.). This is the only manual operation in the semantic 

segmentation process, together with the calibration of the 

parameters for instance segmentation of the semantic 

components. The segmented point cloud, together with the 

footprints on the ground in the cartography, become the input 

data of the parametric CIM modeling VPL code. The code 

produces a model with a level of detail equal to LOD 3.1 (exterior 

architectural level without roof geometry). The algorithm also 

provides for the export of lower-level models meaning that LOD 

1 and LOD 2.5 (without roofs but with semantic subdivision and 

interior floors) are available simultaneously. The clustering of the 

cloud is managed within Grasshopper's VPL environment thanks 

to dedicated plugins. At this stage, LOD 4 is developed. 

Currently, this research presents two solutions for this LOD. The 

first is manual and consists of the two-dimensional restitution 

within the three-dimensional models of the lines that define the 

main internal walls. These lines are interpreted by the algorithm 

that subdivides them by level and extrudes them defining the 

mean plane of the septa. This solution is particularly effective 

when documents can be found that describe the internal layout 

(at least of the ground floor), but it is also useful in the case of 

complex-shaped buildings for which it is difficult to define a 

construction rule for the internal layout. The second solution is 

automated but depends on the presence of a specific building 

type. In fact, the literature review shows that in some building 

types, patterns of internal layouts are repeated very regularly. 

This makes it possible to construct shape grammar rules capable 

of predicting the internal layout of the building under analysis 

(Figure 2). 

 

Figure 2. Conceptual scheme of the developed methodology Scan-to-CIM. 
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4. CASE STUDY 

A urban block in the historical centre of Catania (Italy) was 

considered (Figure 3). However, the code is replicable for several 

blocks by adding the corresponding point clouds. The 

architectural features of this aggregate (floor bands, stone-framed 

balcony doors, pilasters) and the construction technique 

consisting of a masonry structure designed and built only for 

vertical loads made of stone-lava material combined with brick 

elements, make this aggregate the most exemplary for the 

historical centre of Catania. The entire aggregate has a 

rectangular shape (approximately 90x40 m) and it has five main 

building units of different typologies (in-line building, open 

courtyard building) with 3 to 4 floors. These buildings have 

evolved in different years since 1840. The number of facade 

openings is around 201. 

 

 

Figure 3. Bird's eye view of the urban block under study (left) 

and top view of the city block with independent units (Source: 

Google Maps). 

 

The topographic urban map was available on the municipality’s 

website whereas the digital surveying was conducted with a 

Leica Geosystem’s RTC360 terrestrial laser scanner. The 16 

scans (6mm at 10m distance) took some 40 minutes and a final 

registered point cloud of more than 30 millions of points was 

produced (Figure 4). 

 

 
 

Figure 4. Acquisition info for the 3D surveying campaign. 

 

 

5. APPLICATION AND RESULTS 

For the semantic segmentation of the surveyed point cloud, it was 

necessary to identify the necessary classes: walls, openings and 

string courses (Figure 5). 

 

 
 

Figure 5. Semantic classes: walls (in blue), openings (in green) 

and string courses (in red). 

The next step was the manual annotation of some random 

portions of the cloud by means of CloudCompare (Figure 6). The 

extracted geometric features include: roughness (0.2 m), 

verticality (0.1 m), omnivariance (0.1 m), Z coordinate, height 

from ground, planarity (0.2 m), planarity (0.5 m), mean curvature 

(0.2 m). The training dataset contains ca 2 mil. points i.e. less 

than 10% of the entire dataset. This process was necessary as 

there are no trained models for architectures that match the 

architectural features of the historical centre of Catania.  

 

 
Figure 6. The manually annotated areas on the point cloud. 

 

Once the Random Forest classifier was trained (ca 100 sec), the 

prediction on the entire cloud (Figure 7) produced an overall 

accuracy of 0.84 and an average F1 score of 0.85.  

 

 
 

 

Figure 7. Classification results (top) and confusion matrix 

(bottom). 

 

The successive instance segmentation was carried out within 

Grasshopper thanks to the Cockroach plugin that allows the 

import and processing of point clouds within Grasshopper. Then, 

the three clouds (walls, windows and string courses), together 

with the ground footprints of the block obtained from the 
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topographic map, become the input data of the VPL algorithm for 

the generation of the CIM model (Figure 8). The VPL algorithm 

was developed considering the specific modeling requirements 

related to the case study (no survey of summit parts: LOD 3.1) 

but still setting steps to allow for modifications if the workflow 

differs from the case study. Following the general methodology, 

for this code the reference was the sequence of LODs of 

CityGML, trying whenever possible to find references in the 

proposed 16 LODs (Biljecki et al., 2016). 

 

 
 

Figure 8. Reverse (parametric) modeling from classified point 

clouds with the VPL Grasshopper (walls, floors and openings). 

 

LOD 3 is then defined: the starting point is the openings cloud, 

which is subdivided into various units by facade clustering. The 

semantic point cloud is further subdivided with respect to the 

reference floor (the creation of the slabs was essential for this 

operation). After this, the windows are grouped by horizontal 

bands of openings. Following Vestartas et al. (2020) and a 

cockroach clustering approach (Figure 9), classes can be grouped 

until the individual windows are obtained. In this way, each 

window is a separate cloud which is, however, semantically 

linked to the succession floor - facade - building - city block. 

 

 
 

Figure 9. Cockroach clustering components for instance 

segmentation of the openings cloud. The result is a collection of 

bounding boxes which define height and width of the openings. 

Each bounding box is semantically linked with the facade that 

includes it. 

The clustering’s objective is to create a bounding box parallel to 

the facade and obtain a surface useful to trim the façade and 

create the opening. This process is negatively affected by the 

noise present between openings which can create false bounding 

boxes, in terms of size and locations. Therefore, a proper data 

cleaning, performed with a SOR (Statistical Outlier Removal) 

algorithm available as a component of Cockroach, was necessary. 

Moreover, obstacles present on the ground (e.g., parked cars, 

commercial signs, vehicular traffic, etc.) did not allow many 

openings to be correctly identified during the survey campaign. 

However, given the extremely regular pattern of openings in the 

building types under study, it is possible to recreate such 

openings with an acceptable tolerance considering the urban 

scale under consideration. Once the openings have been defined, 

they receive the same semantic structure as the clouds, thus 

becoming linked to the floor and the facade to which they belong 

(as well as to the building and the entire city block). Each 

opening, as well as every other component of the CIM model, has 

an index assigned to it, which also defines its semantic hierarchy. 

In the case of openings, there are four numbers: (i) the building 

to which it belongs, (ii) the building facade, (iii) the floor level 

and (iv) the specific identifier of the specific opening (Figure 10). 

 

 
Figure 10. Visualisation of coloured openings in relation to the 

facade they belong to. Each opening has an individual index 

describing its semantics thanks to DataTree structure 

manipulation in Grasshopper. 

 

An analysis of the accuracy of the reverse modelling operations 

conducted so far was also carried out. This analysis is 

fundamental since the building footprints obtained from 2D CAD 

models were considered reliable for generating the CIM model. 

In addition, this analysis allowed to highlight the presence of 

surfaces out of the average vertical plane. This information can 

contribute significantly for understanding the behaviour of the 

city block in the presence of seismic actions. The analysis 

conducted computed the distances from the walls point cloud to 

the CIM model. The choice of the walls point cloud is based upon 

the fact that it is the one that best represents the envelope of the 

city block. In particular, a 20 cm range was considered from the 

facades generated for LOD3.1 in order to ensure the most reliable 

analysis in accordance with the point cloud selected. To evaluate 

the results, the point cloud was coloured with a colour gradient 
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representing the distances. In addition, the percentages of points 

included and their average deviation in the intervals considered 

were calculated. A visual analysis of the results (Figure 11) 

shows that the largest deviations occur in the areas where there 

are the majority of moldings. In addition, the non-linearity of the 

facades is also evident, especially near the north-east corner of 

the city block. However, the facade areas without moldings show 

acceptable levels of deviation (under 10 cm – Figure 12). The 

analysis made it possible to calculate the percentage of points 

included and the average deviation in two ranges (+/- 10 and 20 

cm). In the +/- 20 cm range, 92% of the total points are contained 

with an average deviation of 2.2 cm, while in the +/- 10 cm range, 

80% of the total points are contained with an average deviation 

of 2.1 cm. Given the urban scale of the model, these values are 

acceptable with respect to the CIM purpose of this research work.  

 

 
 

Figure 11. Cloud-to-Mesh accuracy analysis of the ‘walls point 

cloud’ with the LOD3.1 surfaces (range of +/- 20 cm). 

 

Finally, two approaches were taken to create the required LOD4 

models. For in-line buildings, the distribution of interior spaces 

is widely discussed in the literature and due to the simplicity of 

the configuration of these buildings, it is possible to automate the 

creation of interior partitions relevant for the structure. On the 

other hand, concerning buildings with open and closed 

courtyards, their internal configuration is very complex to predict 

using rule-based algorithms. In addition, the example 

configurations found in the literature appear to oversimplify in 

comparison to real conditions where urban morphologies always 

determine different configurations. For these reasons, it was 

decided to identify the internal partitions manually on the model. 

The modelling of these partitions is based on collected material 

where possible, while where there is no source, it was assumed 

based on external observation of the building configuration. At 

this point, the CIM model is geometrically and semantically 

complete. The entire pipeline produces the model shown in 

Figure 12 in some 20 seconds. The total size of the Grasshopper 

file is approximately 7 Mb. The total size of the clouds, after 

filtering and cleaning operations, is approximately 15 Mb. It 

should be noted that in addition to the LOD4 model, the pipeline 

also produces the same model at smaller details (LOD 3, 2, 1, 0), 

so it is possible to choose which model to handle according to 

project needs. 

 

6. DISCUSSION AND CONCLUSIONS 

The work aimed to explore the potentialities of fast 3D surveying 

techniques for the creation of informed and responsive 3D city 

models of historical centres. The AI-based Scan-to-CIM 

workflow offers an innovative approach of semi-automated 

modeling from segmented point clouds through VPL. The 

reconstruction of an entire urban block can take 3 to 4 hours at 

most from acquisition to generation of the CIM model. The VPL 

algorithm allows different models to be obtained depending on 

the LoD of the project. The critical points of the workflow lie in 

the clustering steps of the point cloud, especially those relating to 

apertures, which are often affected by noise and classification 

errors due to acquisition conditions (open or closed windows, 

obstacles, etc.). However, this is easily solved by manual 

cleaning of the cloud. Regarding the segmentation with Random 

Forest, the application demonstrated that the approach is also 

valid for case studies that differ in architectural style from those 

already known in the literature. Furthermore, this application is 

among the first to include a parametric VPL approach to this type 

of segmentation and data-scale, leaving several paths open for 

future experimentation. The advantage of using VPL also lies in 

the real-time display of the code developed, allowing the 

programmer to design the code more easily via a faster trial-

errors process than that of classic textual programming, typical 

of applications in the field of geomatics. Although the 

technologies used in the proposed pipeline are sophisticated, they 

make the procedure semi-automatic, thus ensuring that even non-

experts in the field can carry out the required operations without 

the need for high levels of expertise. In comparison to other 

model-driven experiences reported in the state of the art 

(Pelliccio et al., 2017; Zhang et al, 2021; Avena et al., 2021; 

Parrinello et al., 2020), this procedure removes a lot of manual 

work with little use of resources.  

 

  
Figure 13. Parametric CIM model with the original point cloud overlapped (left and centre) and LOD4 with highlighted internal 

partitions (left). 
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The use of a VPL modeling environment compared to BIM 

modeling environments allows for greater flexibility, especially 

in export possibilities. Indeed, it is possible to quickly switch 

from the VPL environment to the BIM environment (Robert 

McNeel & Associates, 2023), and the same applies to the GIS 

environment or any other analysis environment involving the use 

of three-dimensional models (Fabricius et al., 2021). 

The complexity of the investigated case study helped to point out 

criticalities and advantages for setting up expeditious protocols 

for urban survey and CIM generation. The creation of a CIM 

ensures to understand the historical-morphological values of the 

building-environmental context and the proposed methodology 

can be easily replicated to larger urban block or entire cities given 

the availability of adequate point clouds. 
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