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ABSTRACT: 

Gradient boosted decision trees (GBDTs) have repeatedly outperformed several machine learning and deep learning algorithms in 

competitive data science. However, the explainability of GBDT predictions especially with earth observation data is still an open issue 

requiring more focus by researchers. In this study, we investigate the explainability of Bayesian-optimised GBDT algorithms for 

modelling and prediction of the vertical error in Copernicus GLO-30 digital elevation model (DEM). Three GBDT algorithms are 

investigated (extreme gradient boosting - XGBoost, light boosting machine – LightGBM, and categorical boosting – CatBoost), and 

SHapley Additive exPlanations (SHAP) are adopted for the explainability analysis. The assessment sites are selected from 

urban/industrial and mountainous landscapes in Cape Town, South Africa. Training datasets are comprised of eleven predictor 

variables which are known influencers of elevation error: elevation, slope, aspect, surface roughness, topographic position index, 

terrain ruggedness index, terrain surface texture, vector roughness measure, forest cover, bare ground cover, and urban footprints. The 

target variable (elevation error) was calculated with respect to accurate airborne LiDAR. After model training and testing, the GBDTs 

were applied for predicting the elevation error at model implementation sites. The SHAP plots showed varying levels of emphasis on 

the parameters depending on the land cover and terrain. For example, in the urban area, the influence of vector ruggedness measure 

surpassed that of first-order derivatives such as slope and aspect. Thus, it is recommended that machine learning modelling procedures 

and workflows incorporate model explainability to ensure robust interpretation and understanding of model predictions by both 

technical and non-technical users. 

1. INTRODUCTION

1.1   Background 

For decades, global digital elevation models (DEMs) have been 

gaining wide traction in the remote sensing, geospatial and allied 

communities. Due to their wide-area coverage and analysis-ready 

formats, many practitioners and mapping organisations have 

adopted global DEMs for a wide variety of uses such as the 

production of topographic and navigation maps, terrain analysis 

in geomorphology, hydrological analysis and modelling, 

modelling earth movements, mapping natural hazards, civil 

engineering and construction, urban planning and modelling, 

forest ecology, creation of digital twins, rendering three 

dimensional (3D) visualisations, and the reduction of gravity 

measurements.  

The accuracies of global DEMs are influenced by several factors 

including land cover and terrain irregularities. This compromises 

their quality and adequacy for hydrological and environmental 

applications where precise and accurate terrain information is 

needed. Thus, researchers have adopted a variety of methods 

including machine learning (ML) for enhancing their qualities 

(e.g., Wendi et al., 2016; Kulp and Strauss, 2018; Kim et al., 

2020; Hawker et al., 2022; Hu and Ji, 2022). These studies 

recorded modest achievements in terms of error reduction in the 

output DEMs. However, there is still a limited understanding of 

the explainability of the models and their predicted outcomes. 

This includes the interdependence between terrain and land cover 

parameters used in DEM correction, including their influences on 

the predicted targets (elevation error).  

Explainability is becoming a major requirement for the 

deployment of machine learning models. Understanding why a 

model makes a certain prediction can be as crucial as the 

prediction's accuracy (Lundberg and Lee, 2017). Thus, despite 

their high-level performance, many state-of-the-art ML models 

are viewed as black boxes which are difficult to explain or 

interpret (Kim, 2021). 

1.2    Explainable Artificial Intelligence 

Explainable Artificial Intelligence (XAI) is concerned with 

methods that explain and interpret the performance of machine 

learning algorithms. Explainability is associated with the internal 

mechanics and logic that are within a machine learning system 

while interpretability deals with the intuition behind the model 

outputs (Adadi and Berrada, 2018; Linardatos et al., 2020). 

Machine learning-based feature importance techniques are used 

to explain the importance or influence of the input variables, and 

provide an understanding of the predictions made by complex 

models (Nordin et al., 2023). The explainability of machine 

learning models has received so much wide attention in recent 

years that XAI has become a domain in the AI community 

(Saleem et al., 2022; Nauta et al., 2023).  
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2. MATERIALS AND METHODS 

2.1   Study Area 

The study area for this research is Cape Town, South Africa’s 

most south-western city, with a land area of about 400 km2 

(Orimoloye et al., 2019). Cape Town is situated on the south-

western coast of the Western Cape Province. The coastline varies 

from sandy to rocky, to steep and mountainous in places. The 

town has a high landscape-level diversity and is biophysically 

diverse with rivers, wetlands, and coastal areas (Goodness and 

Anderson, 2013). Two different landscapes are considered for 

this study (Figure 1), as discussed below. 

2.1.1   Urban/industrial 

The urban and industrial areas are located within the Cape Town 

metropolis, a large urban area with a high population density, 

multiple business districts and industrial areas. The selected areas 

include the Parow and Elsies River Industrial areas, and several 

residential and commercial buildings.  

2.1.2 Mountain 

The high flat-topped Table Mountain forms part of a much larger 

mountain chain known as the Cape Fold Belt (Meadows and 

Compton, 2015). It rises steeply from the Atlantic Ocean and has 

a cliff face that lies at the northern end of the Cape Peninsula. 

 

2.2     Datasets 

2.2.1 Digital elevation models: Copernicus GLO-30 DEM 

is derived from the WorldDEM data. The WorldDEM data 

product is based on the radar satellite data which was acquired 

during the TanDEM-X Mission. Copernicus GLO-30 is 

vertically referenced to EGM2008. 

The City of Cape Town (CoCT) airborne LiDAR-derived DEM 

is used as the reference dataset. The height accuracy of the point 

cloud used for generating the CoCT DEM is 0.15 m. The LiDAR 

DEM is spatially referenced to the Hartebeesthoek94 horizontal 

co-ordinate system and vertically referenced to the South Africa 

(SA) Land Levelling Datum (SAGEOID2010). 

2.2.2 Terrain and land cover parameters: To characterise the 

influence of the terrain on the elevation error, the following 

additional input variables were selected: elevation, slope, aspect, 

surface roughness, topographic position index (TPI), terrain 

ruggedness index (TRI), terrain surface texture (TST), vector 

ruggedness measure (VRM), percentage forest canopy, 

percentage bare ground cover, and urban footprints. The forest 

and bare ground data were sourced from the global land analysis 

and discovery (GLAD) database (Hansen et al., 2013). The urban 

footprints were derived from the global urban footprints (GUF) 

dataset (Esch et al., 2010, 2013). The elevation errors or 

differences (∆𝐻) between Copernicus DEM and the reference 

LIDAR were calculated as follows: 

∆𝐻 = 𝐻𝐶𝑜𝑝𝑒𝑟𝑛𝑖𝑐𝑢𝑠 − 𝐻𝑅𝑒𝑓𝐷𝐸𝑀   

      (1) 

Where, 

𝐻𝑅𝑒𝑓𝐷𝐸𝑀 = elevation from LiDAR DEM. 

𝐻𝐶𝑜𝑝𝑒𝑟𝑛𝑖𝑐𝑢𝑠 = individual elevations from Copernicus GLO-

30 DEM. 

. 

 

2.3   Gradient Boosted Decision Trees  

Gradient Boosted Decision Trees (GBDTs) are very powerful for 

classification and regression problems and achieve state-of-the-

art results in a variety of practical tasks. Specialised algorithms 

based on gradient boosting include extreme gradient boosting 

(XGBoost), light boosting machine (LightGBM) and categorical 

boosting (CatBoost). GBDT algorithms are based on the tree 

structure used in the decision tree (DT) algorithm (Aksoy and 

Genc, 2023).   

2.3.1    XGBoost: XGBoost is a scalable end-to-end tree boosting 

system that is commonly used by data scientists and provides 

state-of-the-art results on many problems, and has excelled in 

numerous data mining and machine learning challenges (Chen 

and Guestrin, 2016).  

2.3.2   LightGBM: LightGBM addresses the efficiency and 

scalability drawbacks of previous engineering optimizations used 

in GBDTs.  

2.3.3   CatBoost: CatBoost is a relatively new member of the 

family of GBDT machine learning ensemble techniques which 

debuted in 2018, and is well-suited to machine learning problems 

involving categorical, heterogeneous data (Hancock and 

Khoshgoftaar, 2020).  

2.4   Machine Learning Explainability with SHAP  

Lundberg and Lee (2017) proposed the Shapley value for 

determining feature importance of input variables. The Shapley 

value is a fair profit allocation among the input features  

depending on their relative contributions to the outcome (Roth 

1988; Nohara et al. 2022). The Shapley value of a feature, n, in 

each dataset, D, can be computed. The feature value is replaced 

by another value that is obtained from a different instance of the 

model. Every possible outcome is considered in the comparison 

 
Figure 1: View of (a) an urban/industrial area, and (b) Table 

Mountain, within the study area in Cape Town 
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of initial and new predictions. The importance of n to the final 

prediction is represented by the average between the initial and 

new values. For example, consider the predictive model f, the jth 

feature with i feature combinations, j index, target feature x, and 

data streams D with matrix X. The Shapley value for x (ϕi
j) is 

derived as follows (Gebreyesus et al., 2023): 

∅j
i = f̂(X + j) − f̂(X − j)   (2) 

Where, 

f̂ (x+j) is the prediction for target x with a random number of 

feature values, including jth feature, and f̂ (x−j) is the coalition 

without the jth feature.  

Generally, the Shapley value of the jth feature that is target x is 

(Gebreyesus et al., 2023): 

∅j(x) =
1

n
∑ (∅j

i)n
i=1     (3) 

The importance of all the features is derived in the same manner 

and the ranking is done based on their Shapley value. SHapley 

Additive exPlanations (SHAP) adopts Shapley values for 

constructing additive explanatory models that improve and 

facilitate the interpretation of machine learning algorithms (Lu et 

al. 2023). SHAP is model-agnostic and is based on the 

cooperative game-theory (Anjum et al. 2022; Nordin et al. 2023; 

Palar et al. 2023; Lu et al. 2023). Using SHAP, feature 

interactions and underlying patterns in the data can be revealed 

(Gebreyesus et al. 2023). 
 

2.5   Data Preparation 

To harmonise the horizontal datums, the Copernicus DEM was 

transformed from the geographic to the Universal Transverse 

Mercator (UTM) projection in WGS84. Similarly, the Cape 

Town DEM was transformed from Hartebeesthoek94 to UTM 

WGS84. The vertical datum of both DEMs was harmonised to 

EGM2008. A grid of points was generated at the cell centre of 

the 30 m Copernicus DEM, and elevation values from the 2 m 

LiDAR that coincided with the points were extracted. Thus, the 

elevation error (ΔH) was calculated by subtracting the LiDAR 

elevations from the Copernicus elevations. Subsequently, the 

error values were converted to raster format at the same grid 

spacing of the global DEM. The terrain parameters (e.g., slope, 

aspect, surface roughness etc.) were derived from the global 

DEM. The elevation values, along with the values of the 

elevation error and terrain parameters were extracted from the 

rasters to csv files. This resulted in the final set of points used for 

model training, validation and testing split into 80% for training 

and validation, and 20% for testing.  

 

2.6   Data Processing 

The three GBDT models were trained using the elevation, slope, 

aspect, surface roughness, topographic position index, terrain 

ruggedness index, terrain surface texture, vector ruggedness 

measure, percentage forest canopy, percentage bare ground cover 

and urban footprints as input parameters, and the elevation error 

as the target variable (or predictand). For the hyperparameter 

tuning, Bayesian optimisation was adopted. Nine sets of 

hyperparameters were selected for each model, with 10 steps of 

random exploration and 50 steps (iterations) of Bayesian 

optimisation. After training and testing, the models were saved, 

loaded and implemented for predicting the DEM errors at 

separate implementation sites with similar terrain characteristics. 

The predicted elevation errors were applied for deriving 

corrected DEMs (i.e.., 𝐷𝐸𝑀𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  𝐷𝐸𝑀𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 −

∆𝐻𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) at the implementation sites. The accuracies of the 

corrected DEMs were assessed using the mean absolute error and 

the root mean square error (RMSE) metrics. SHAP (Shapley 

Additive Explanations) is adopted in this research as an excellent 

measure to explain individual predictions of the tuned models. 

 

 

3. RESULTS 

3.1   Results of DEM Correction 

All three GBDT algorithms showed satisfactory prediction 

performance and a good capability for predicting the DEM error. 

In the correction of Copernicus DEM at the model 

implementation sites, several accuracy improvements were 

recorded (Table 1; Figures 1 - 2). For example in the 

urban/industrial area, the MAE reduced by 53.1% from 1.087 m 

to 0.509 m (XGBoost and CatBoost) and RMSE reduced by 

47.2% from 1.479m to 0.781m (XGBoost). In the mountainous 

area, there was 15.8% MAE reduction (from 4.848 m to 4.080 m) 

and 10.1% RMSE reduction (from 10.237 m to 9.206 m). Figures 

1 and 2 show a comparison of the absolute height errors of the 

original Copernicus DEM versus corrected Copernicus DEMs for 

500 selected points in the urban/ industrial and mountain 

landscapes respectively. 

3.2   Urban/Industrial area 

The SHAP plots in Figures 3 and 4 provide the understanding of 

how the values of the feature variables are impacting the 

predictability of the model for desired outputs. It shows here for 

example that higher values of most of the predictors affect the 

model predictability in a positive direction, while lower values of 

the feature variables impact the model predictability in the 

negative direction. The six most influential features in the 

urban/industrial area are the topographic position index (TPI), 

terrain surface texture (TST), urban footprints, tree cover, vector 

ruggedness measure (VRM) and terrain ruggedness index (TRI). 

It is also obvious from the plots that TPI has a nearly equal extent 

of SHAP values in both positive and negative directions, which 

 

Landscape Original Copernicus DEM Corrected Copernicus DEM 

XGBoost LightGBM CatBoost 

MAE (m) RMSE (m) MAE (m) RMSE (m) MAE (m) RMSE (m) MAE (m) RMSE (m) 

Urban/ 

industrial 

1.087 1.479 0.509 0.781 0.517 0.785 0.509 0.788 

Mountain 4.848 10.237 4.127 9.270 4.141 9.321 4.080 9.206 

Table 1. Accuracy measures of the corrected Copernicus DEM at the model implementation site 
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connotes that its feature values could impact the model 

predictability in positive and negative directions equally and 

should be dealt with carefully. This makes it more influential to 

the model than the rest as shown in Figure 4.  

Landscapes with relatively very high/very low TPI  are 

associated with increased ruggedness, and higher positive or 

negative SHAP values. This could explain the exceeding 

influence of TPI which is shown to be the highest influencer in 

the urban area. However, Figure 4 makes it clear that values of 

 

 
Figure 1. Absolute height errors of the original Copernicus DEM versus the XGBoost-corrected Copernicus DEM for 500 

selected points in the urban/ industrial landscape 

 

 
Figure 2. Absolute height errors of the original Copernicus DEM versus the CatBoost-corrected Copernicus DEM for 500 

selected points in the mountain landscape 
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most of the other predictors have more positive impact on the 

model predictability than the negative impact. Interestingly, the 

popular first order terrain parameters of slope and aspect which 

were frequently used in previous studies are the least influential 

based on the SHAP analysis. In many cities, buildings are 

constructed on land with gentle slope or gradient (Zhou et al., 

2021), and possibly the slope variability could be moderate in 

urban areas. The likely explanation for the lower influence of 

slope and aspect could also be related to the characteristic cover 

or draping of buildings over the land surface in the urban area 

which makes the slope or aspect transition or changes less 

conspicuous when viewed from above. However, other terrain 

 
Figure 3. Mean SHAP values and feature importance for Bayesian-optimised prediction of Copernicus elevation error in the 

urban/industrial landscape, (a) XGBoost (b) LightGBM (c) CatBoost 

 
Figure 4. SHAP values and directional impact of features in Bayesian-optimised prediction of Copernicus elevation error in the 

urban/industrial area, (a) XGBoost (b) LightGBM (c) CatBoost 
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parameters could prove more influential in explaining the 

elevation error.  

 

For example, the VRM caters for the heterogeneity of both slope 

and aspect, and incorporates 3D dispersion of vectors normal 

(orthogonal) to planar facets on a landscape (Sappington et al., 

2007). Moreover, VRM can differentiate among terrain types 

 
Figure 5. Mean SHAP values and feature importance for Bayesian-optimised prediction of Copernicus elevation error in the 

mountain landscape, (a) XGBoost (b) LightGBM (c) CatBoost 

 

 
Figure 6. SHAP values and directional impact of features in Bayesian-optimised prediction of Copernicus elevation error in the 

mountain landscape, (a) XGBoost (b) LightGBM (c) CatBoost 
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(e.g., differentiating smooth, steep hillsides from irregular 

terrain) and enables the treatment of terrain components as 

separate variables when quantifying landscapes (Sappington et 

al., 2007; Welty et al., 2018).  

3.3   Mountain landscape 

In the mountainous landscape, the impact and reactions of the 

predictors and their values are slightly different from their impact 

on the model predictability in the urban/industrial area. For 

example, in XGBoost and LightGBM, tree cover has more 

influence on the model predictability than the TPI (Figures 5 and 

6). Higher values of tree cover impacted the predictability of the 

model in the positive direction while TPI maintained almost 

similar influence it had in the urban/industrial area, impacting the 

model performance in both positive and negative directions 

almost equally. It is also worth noting that in the mountainous 

landscape, the features degree influence on the model is slightly 

different in CatBoost algorithm as they were in XGBoost and 

LightGBM. Bare ground appears to have the highest impact on 

the model predictability in CatBoost. However, tree cover and 

TPI still maintain quite similar high degree of influence and 

directions of impact as they had in the other two models.  

 

Tree cover, TPI, bare ground, elevation, slope and aspect are the 

six most influential features in this mountainous landscape. Table 

Mountain has an unusually rich array of trees and shrubland 

which are interspersed with bare rocky surfaces. This spatial 

variation in the tree cover on Table Mountain is spatially 

correlated with the DEM error. A common feature of mountains 

is their characteristic steepness (slope angle to the horizontal). 

Thus, slope and aspect which were less influential in the urban 

area are more influential in the mountainous area. The 

characteristic of the mountain which extrudes out of the 

surrounding areas could also explain this pattern.  

 

 

4. CONCLUSION 

The corrections achieved significant accuracy gains in 

Copernicus DEM thus proving the potential of GBDTs for DEM 

correction. We adopted the SHAP method for interpreting the 

hyperparameter-optimised GBDT models that were configured 

for predicting the DEM error. The interpretation by SHAP 

revealed some underlying relationships among the input features. 

This knowledge on feature explainability is important to inform 

the feature selection process, and for understanding cause-and-

effect relationships between variables for prediction of DEM 

error with machine learning. Further research can compare the 

impact of hyperparameter tuning on feature importance. Also, the 

variations in feature importance between different classes of 

ML/DL models such as tree-based algorithms versus neural 

networks can be investigated. 
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