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ABSTRACT:  

  

The Jirau and Santo Antônio hydroelectric plants in Rondônia implemented a methodology using high-range cameras and artificial 

intelligence technology to address the challenge of managing logs transported by the river during floods. By applying machine 

learning techniques and neural networks, the system automatically monitors log transport and accumulation. Python 3, along with 

libraries like OpenCV, PIL, Numpy, and Pytorch, was utilized for efficient implementation. The methodology includes frame 

selection, log and debris segmentation, perspective correction, and log counting. Training was conducted using annotated images, 

and the detection process involved color segmentation, noise removal, and morphological operations. The calculated log and debris 

occupancy results were stored in a SQL database and presented on Power BI dashboards. The system aims to improve log 

management, ensuring power generation and ecological order are safeguarded. 

 

 

1. INTRODUCTION 

In general, the Amazonian rivers are recognized for the large 

number of logs and floating and submerged debris they 

transport, especially during the flood season. The ecological 

role that this material plays in the aquatic environment is 

associated with the colonization and reproduction dynamics of 

various aquatic organisms, as well as carbon export. One of 

them is the Madeira River, which is one of the main tributaries 

of the Amazon River and stands out due to its ecological, 

hydrological, and socioeconomic importance in the Amazon 

rainforest region of South America. With a length of 

approximately 3,250 kilometers (2,020 miles) and a vast 

drainage basin spanning parts of Brazil, Bolivia, and Peru, it is 

recognized as one of the largest and most consequential rivers in 

the Amazon Basin. 

In this context, the Jirau and Santo Antônio hydroelectric plants, 

located on the Madeira River, face many challenges in the 

operation and management of the large quantity of logs 

transported by the river during flood periods. The difficulties 

faced are generally associated with the efficiency of Log Boom 

systems available on the market, which are used to direct the 

logs along the reservoir to the spillway structures designed for 

their downstream discharge from the dam. These challenges 

require the search for more efficient and appropriate solutions 

for quantification of logs in these hydroelectric plants, to ensure 

safe and effective operation of the structures, minimize 

environmental impacts, and optimize the utilization of water 

resources in the region. 

The initial attempt to quantify fluvial logs using sensors took 

place in France in 2009, in the Ain River (Macvicar et al., 

2009). However, due to the limitations of the technological 

resources available at that time (low-mobility cameras and 

drones), the monitoring data was obtained at insufficient 

temporal scales to support a predictive model of log transport 

and a monitoring program. Since 2017, technological 

advancements have allowed for an increased temporal 

resolution in monitoring the dynamics of fluvial logs, as 

evidenced by studies conducted in the Rhône River, France 

(Benacchio et al., 2017). However, the establishment of 

continuous monitoring plans for fluvial logs still faced 

challenges, including factors such as climate, lighting 

conditions, image coverage area, camera positioning, and high 

variability in woody material density within reservoirs. More 

recently, other techniques have been employed to improve the 

data obtained from cameras. (Spreitzer, Tunicliffe, and 

Friedrich, 2019) utilized SFM photogrammetry method to 

assess the volume of surface log accumulations in the 

Whakatiwai River, New Zealand, including the volumetrics of 

other materials retained among the log components. 

In Brazil, the use of photogrammetry techniques for the physical 

characterization of woody materials has been limited to wood 

storage yards. (Figueiredo et al,2016) employed RGB cameras 

mounted on Remotely Piloted Aircraft (RPAs) to obtain high-

density point clouds and estimate the volume of wood stored in 

storage yards. 

Currently, the use of advanced Artificial Intelligence (AI) 

techniques, such as deep learning, to monitor rivers through 

cameras continues to be a promising area of research. AI, 

combined with image processing and data analysis, enables the 

development of automated systems capable of detecting, 

identifying, and tracking specific objects and phenomena in the 

captured images. 

In the context of the Madeira River and the Jirau Dam, these 

techniques have been applied to monitor and identify floating 

logs, debris, water flow patterns, and other relevant features. 

Deep learning algorithms have been trained on large datasets, 

allowing the system to learn to recognize specific patterns and 

perform real-time automated analysis. Additionally, this system 

has assisted in the early identification of unwanted events, such 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-3-2023 
ASPRS 2023 Annual Conference, 13–15 February & 12–15 June 2023, Denver, Colorado, USA & virtual

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-3-2023-177-2023 | © Author(s) 2023. CC BY 4.0 License.

 
177



 

as excessive accumulation of logs in the structures, enabling 

faster and more efficient cleaning measures to be taken. 

However, it is important to emphasize that the successful 

implementation of these techniques was made possible due to 

adequate infrastructure, including the strategic positioning of 

cameras, efficient processing of large volumes of data, and the 

ability to integrate monitoring results into decision-making 

dashboards. 

Therefore, this project aims to introduce a methodology that 

utilizes cameras and Remotely Piloted Aircraft (RPA) for 

monitoring and quantifying logs at the Jirau Hydroelectric 

Power Plant. 

 

2. METHODOLOGY 

The development of methodologies utilizing RPA e cameras 

sensors, artificial intelligence techniques, process automation 

algorithms, relational databases, and dashboards has been 

undertaken to monitor features in Jirau Hydroelectric Power 

Plant structures, including logs and debris. These methodologies 

encompass three primary activities: sensor-based monitoring, 

artificial intelligence analysis, and result presentation. 

Using RPA equipped with image sensors, flights are conducted 

to capture images of the power plant structures. These images 

are processed using artificial intelligence algorithms to identify 

relevant features such as logs and debris. In addition to RPA 

imaging, video cameras were installed at strategic points for 

continuous monitoring of the power plant structures. These 

cameras capture real-time footage, enabling the detection of 

events and identification of potential issues or anomalies. The 

data collected through RPA imaging and video cameras are 

stored in a relational database. Through process automation 

algorithms, this data is processed and transformed into relevant 

information. The information is then presented through 

dashboards and intuitive interfaces, allowing users to visualize 

and analyze the results clearly and efficiently. 

 

2.1 RPA  

2.1.1 Data Collection: The monitoring campaigns consisted 

of on-site surveys using photogrammetric sensors onboard RPA 

to monitor the accumulation of logs on the structures of the 

Jirau Hydroelectric Power Plant as presented in Figure 01. 

 

 

Figure 1. Structures of the Jirau Hydroelectric Power Plant 

surveyed with RPA. 

 

The four areas mentioned above represent the main structures in 

relation to log retention, which is the focus of the R&D study. 

The table 1 summarizes the surveyed areas and the adopted 

nomenclature pattern. This table provides an overview of the 

specific areas that were surveyed and monitored during the 

project. Each area is identified by a unique name or code 

according to the adopted nomenclature pattern. These pieces of 

information facilitate the organization and reference of the 

monitored areas throughout the study. 

 

Id Monitored Structure Nomenclature Area (ha) 

1 Right bank log boom 

and Main Spillway 

LBMD|VT 32 

2 Left bank log boom LBME 63 

3 Powerhouse 1 CF1 17 

4 Powerhouse 2 CF2 14 

Table 1 - Description of monitored structures 

 

Regarding the aerial surveys, two types of flights were 

conducted: manual and autonomous. Manual flights were 

performed without any support software, solely relying on the 

pilot's expertise. The purpose was to conduct a panoramic 

inspection of the structures through visual verification of debris 

retention and occurrences in log occupancy structures, as 

presented in Figure 2. 

  

 

Figure 2 Panoramic image 

 

 

Figure 3 Nadir image by autonomous flights 

 

On the other hand, according to the example presented in Figure 

3, autonomous flights were conducted with the support of 

software responsible for communication with the RPA, 

standardizing parameters such as image overlap, flight altitude, 

speed, and route to be followed. Daily, two campaigns were 

conducted, one in the morning and another in the afternoon. The 

first campaign started around 7:30 AM. This timing was chosen 

to anticipate the interference caused by the operation of ferries 

in clearing accumulated logs during the night. Autonomous 

imaging of the structures was conducted to obtain orthophotos 

and calculate the concentration area of the logs. 
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The same procedure is repeated in the afternoon campaign, 

around 4 PM. It is worth noting that, at this time, priority was 

given to areas where no ferry was operating to avoid 

interference during the flyover and discrepancies in logs and 

debris occupation between what was recorded and what was 

retained. The flights were conducted at an altitude of 120 meters 

with a lateral and longitudinal overlap of 80%. 

 

2.1.2 Orthophoto generation: In the context of water 

surface monitoring, there may be situations where images 

capture only the water without objects that allow for correlation 

between the images. This can make it challenging to generate 

products such as orthophotos. However, the presence of logs or 

other elements, such as riverbeds, plays a crucial role in the 

generation of these products. Logs and other elements present in 

the monitored area serve as visual references that enable the 

establishment of homologous points between the images, 

thereby facilitating the necessary correlation for rectification 

and orthophoto generation. 

These elements provide reliable reference points that help create 

a consistent foundation for the photogrammetric intersection 

process. Therefore, the presence of logs and other elements in 

the monitoring area is crucial to ensuring the quality and 

accuracy of orthophotos. These elements allow for the 

establishment of image correlation, enabling rectification and 

the creation of a faithful representation of the imaged region. 

Figure 4 illustrates the produced orthophotos, which served as 

the starting point for the vectorization process to extract the 

area. 

 

 

Figure 4. Orthophoto of spillway structure. 

 

2.1.3 Orthophoto vectorization: To calculate the area of the 

logs in the orthophotos, a process of vectorization of log 

features was performed. This involved digitizing the areas 

corresponding to the logs in the orthophotos, transforming them 

into vector structures. Initially, geoprocessing was conducted 

manually using QGIS, an open-source, cross-platform 

geographic information system (GIS) software that allows for 

the visualization, editing, and analysis of georeferenced data.  

In order to enhance the orthophoto vectorization process, 

specific artificial intelligence techniques using computer vision 

were employed. Computer vision encompasses a wide range of 

image processing applications, including facial recognition, 

object detection, image classification, image segmentation, 

motion tracking, among others. 

To accomplish this, machine learning and deep learning models 

were tested. The primary models employed were Random 

Forest, which generates random decision trees to establish 

decision rules, and Convolutional Neural Networks (CNN), a 

model specifically designed for pattern recognition in images. 

The entire process was implemented using the Python 

programming language, utilizing various modeling and 

geoprocessing libraries, including Shapely, GDAL, Scikit 

Learn: and PyTorch. 

Initially, for training prediction models within both frameworks, 

appropriate data sampling was required to ensure that the data 

representation accurately reflected the target population. This 

was crucial to avoid biases and distortions in subsequent 

analysis and predictions. The sampling process involved high-

resolution orthophotos with a substantial number of logs, the 

objects of recognition, following a manual feature identification 

process through manual vectorization in the QGIS software. 

The subsequent stages encompassed the creation of training, 

validation, and test datasets, model training, prediction 

algorithms, and georeferencing of the results. The Figure 5 

shows the result of the automatic vectorization method. 

 

 

Figure 5. Result of the automatic vectorization method 

 

These monitoring campaigns were conducted from December 

2020 until the completion of the project in April 2023. During 

this period, over 2749 orthophotos were obtained for area 

counting, along with more than 500 panoramic photos and 

several video shots. These records enabled the monitoring and 

assistance in managing the floods of the Madeira River 

throughout this period, providing valuable information to the 

responsible team. 

When comparing the three campaigns, a significant difference 

in log accumulation is evident for CF1 over the periods. This 

difference can be attributed to the rupture of the log boom on 

the right bank, which occurred at the end of January 2021. This 

event resulted in significant changes to the remaining log boom 

structure, directly affecting the flow of logs and debris. As a 

result, a higher log accumulation was observed during the 

second campaign. 

Furthermore, there are periods with a significant reduction in 

log accumulation, which is a result of the cleaning operations 

performed on the power plant structure. During the second 

campaign, there were few spillway openings, contributing to the 

decrease in log accumulation. 
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In the third campaign, it was observed that the installation of the 

new log boom, as Figure 6, had significant benefits in terms of 

log containment and spillway operation. During spillway 

openings, there was no need to use barges to assist in the 

removal of materials, as was the case with the previous log 

boom. This demonstrates the efficiency of the newly installed 

structure. 

 

 

Figure 6 New log boom right bank 

 

1.1 Camera monitoring 

To identify the length, area, and count of logs and debris, 

computer vision techniques were employed using frames from 

real-time monitoring camera videos. 

Initially, the structures of the hydroelectric power plant were 

categorized into two groups: 

• Structures with log accumulation (Log boom right bank 

LBMD, Spillway (VT), Powerhouse 1 (CF1), Log boom left 

bank LBME) 

• Structures with log passage - continuous flow of logs (Abunã 

Bridge (PA), Jirau Waterfall (CJ)) 

The flowchart in Figure 7 outlines the methodology's 

development process, including the installation of cameras, real-

time video acquisition, generation and testing of prediction 

models, and continuous processing to obtain values for area, 

length, and log count. 

 

 

Figure 7 System flow of approach 

 

The programming language used was Python, version 3, which 

provides compatibility with the latest versions of libraries and 

frameworks for developing advanced deep learning models 

using neural networks, as well as routines for task automation. 

The main open-source libraries used were as follows, with the 

complete list available in the project's development repository 

on GitHub: 

OpenCV: This library was employed in computer vision, 

facilitating the techniques applied in image and video 

processing, detection, tracking, and analysis. 

PIL (Python Imaging Library): This library provides support for 

various image operations and was used for image manipulation. 

Numpy: This library offers a wide range of routines for 

arithmetic and logical operations on arrays, among other 

functionalities. 

Pytorch: This is one of the primary tools for developing deep 

learning models. 

CUDA and cuDNN: These Nvidia libraries are notable for 

accelerating processing on Graphics Processing Units (GPUs) 

and optimizing the performance of deep neural networks. 

 

2.1.4 Camera installation: An overview of the application 

of video cameras for monitoring is presented in Figure 8, which 

shows the image capture element (camera on the left) and the 

boundary ranges, in space, for the classes of Identification, 

Recognition, Observation, Detection, and Monitoring. 

 

 

Figure 8 Image processing ranges for object tracking 

 

Six strategic points were defined for the installation of cameras, 

with a total of 11 cameras, aiming to observe regions of the 

Madeira River and the structures of the UHE. Figure 9 presents 

the defined points for 4 locations, while the other 2 are located 

at the Abuna Bridge and Jirau Waterfall.. 

 

 

Figure 9 The installation points for the camera towers 

 

The installed cameras are connected to a Network Video 

Recorder (NVR), which is responsible for storing the video 

footage from the monitoring system. The cameras are connected 

using network cables, fiber optic cables, and Wi-Fi transmitters. 

This setup ensures efficient data transfer and reliable 

connectivity between the cameras and the NVR for seamless 

video recording and storage. 

2.1.5 Training dataset development: To enable the training 

of the tested segmentation models, two datasets were created: 

one focused on object detection and the other on segmentation. 

The object detection dataset was developed using the LabelImg 

tool. It consists of 93 annotated images. All annotations were 

manually performed, classifying objects into two categories: 
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"log" and "debris". Rectangular bounding boxes were used to 

delineate the logs and debris in the images. An example of an 

annotated image using this tool is shown in Figure 10.  

 

 

Figure 10 Example of an annotated image using LabelImg 

 

While there are several strategies for object detection, they have 

a limitation when it comes to accurately calculating the area and 

volume of logs and debris. Object detection allows for 

identifying the location of logs and piles of debris in the images; 

however, it is based on the use of rectangular bounding boxes. 

This approach includes the surrounding water area along with 

the objects of interest, which reduces the precision of the area 

calculation. 

The segmentation approach offers an alternative that overcomes 

the limitations of object detection strategies. Segmentation 

methods enable the identification of areas corresponding to 

selected classes, regardless of their shape. This characteristic 

allows for more accurate calculation of log and debris areas. 

To train the segmentation models, it was necessary to annotate 

all objects of interest with polygons. The annotation process 

was carried out using the labelme tool. An example of an 

annotated image using this tool is shown in Figure 11. 

 

 
Figure 10 Example of an annotated image using Labelme 

 

The following categories were used for annotation: debris, 

dense debris, log, partial log, log boom, boat, and bank. The 

division of the debris category into two subcategories was done 

to enable a more precise volume calculation, allowing for 

separate weighting in situations with scattered debris and large 

debris piles. The log category was also divided for the same 

purpose. In various situations, logs may be occluded, and this 

category allows for compensation of this occlusion, reducing 

the error in the final volume calculation. 

One of the limitations encountered during the annotation 

process is the time required to annotate an image accurately. To 

optimize this process through semi-automated annotation, after 

training the neural network with an initial version of the dataset, 

new images were passed to the algorithm to be segmented, as 

shown in Figure 12. 

 

 

Figure 12 Segmented image 

After segmentation, the generated mask was transformed into a 

JSON file that contains the boundaries of the segmentation 

polygons. These files were opened in Labelme and adjusted as 

needed, reducing the time required for annotation. 

 

2.1.6 Continuous processing of monitoring videos: To 

process the real-time monitoring videos obtained from camera 

infrastructures, a continuous computational processing flow was 

created, as shown in Figure 12. 

 

 

Figure 12 Processing flow (frame selection, perspective 

correction, application of the segmentation model, and area 

count, length and count of logs and debris). 

 

For frame selection, the Lucas Kanade algorithm was chosen, as 

it provided the best performance in terms of frames per 

processing time, achieving a processing rate of 120 FPS. The 

Lucas Kanade algorithm is focused on the task of optical flow, 

enabling the identification of motion in various points of the 

images. Tracking is performed on pre-defined points, and 

Figure 13 shows the application of this method within the 

Region of Interest (RoI) of a test image obtained on-site. 

 

 

Figure 13 - Example application of the Lucas Kanade algorithm 

 

2.1.7 Perspective Correction: To obtain accurate 

measurements of debris and log areas, it is necessary to perform 

geometric transformations on the images to correct for 

perspective effects in the photographs.  

This involves transforming an oblique image into an orthogonal. 

In an oblique image, the pixel size on the ground, known as 

Ground Size Dimension (GSD), varies as objects move away 
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from the camera, while in an orthogonal image, the GSD 

remains constant. To minimize computational cost, tests were 

conducted using perspective transformation algorithms from 

different libraries: OpenCV, Pillow, and Scikit-image.  

The OpenCV algorithm was considered the most suitable for 

this application. For the perspective transformation tests, 

arbitrary control points were used since the goal was to compare 

the performance of different algorithms. After the cameras were 

installed, specific points of interest were identified for each 

camera to determine the precise parameters for perspective 

transformation. 

2.1.8 Area calculation and logs quantity: After the 

perspective correction step, an image is obtained where all 

pixels correspond to the actual size on the ground and represent 

the previously defined classes obtained through the application 

of the segmentation model.  

The output of the FCN-8s model is a mask where each color 

represents a class in the problem. As a result, no additional 

corrections are needed for calculating the area occupied by logs 

and debris. The area calculation can be performed by counting 

the pixels corresponding to each class. To convert the size in 

pixels to the size in meters, it is necessary to define the ground 

size represented by each pixel and perform a multiplication. 

From the segmented images, a contour detection method is 

applied, which allows counting the existing logs in each of the 

new images. The visible size of the log is identified by 

calculating the Euclidean distance between the endpoints of the 

log, obtained through its contour. In addition to the log size, we 

capture information related to its diameter. 

2.1.9 Database: The data generated by the system was stored 

in a relational database using the SQL Server management 

system. By connecting the codes to the database, it became 

possible to save and access the results in real-time. 

Subsequently, Power BI was chosen as the tool to present the 

counting and accumulated area results of the logs. The 

dashboards were created with the objective of ensuring an 

efficient and personalized presentation of the data, as shown in 

Figure 14. 

 

 

Figure 14 – PowerBI dashboard 

 

 

SUMMARY 

The monitoring methodologies adopted at Jirau HPP, through 

drone flights and camera installations, have proven to be 

effective in data collection and generating relevant information 

for management and decision-making. With consistent results, 

these approaches have contributed to the monitoring of Jirau 

HPP activities, providing accurate data, enabling detailed 

analysis, and facilitating preventive and corrective actions. The 

use of advanced technologies such as neural networks and 

automated processing systems has optimized processes, 

increased productivity, and provided continuous and real-time 

monitoring. Therefore, monitoring and data analysis become 

essential for the safe and efficient operation, ensuring 

environmental preservation and the supply of quality energy 
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