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ABSTRACT: 

 

Deep Learning (DL) networks used in image segmentation tasks must be trained with input images and corresponding masks that 

identify target features in them. DL networks learn by iteratively adjusting the weights of interconnected layers using backpropagation, 

a process that involves calculating gradients and minimizing a loss function. This allows the network to learn patterns and relationships 

in the data, enabling it to make predictions or classifications on new, unseen data. Training any DL network requires specifying values 

of the hyperparameters such as input image size, batch size, and number of epochs among others. Failure to specify optimal values for 

the parameters will increase the training time or result in incomplete learning. The rationale of this study was to evaluate the effect of 

input image and batch sizes on the performance of DeepLabV3+ using Sentinel 2 A/B RGB images and labels obtained from Kaggle. 

We trained DeepLabV3+ network six times with two sets of input images of 128 x 128-pixel, and 256 x 256-pixel dimensions with 4, 

8 and 16 batch sizes. The model is trained for 100 epochs to ensure that the loss plot reaches saturation and the model converged to a 

stable solution. Predicted masks generated by each model were compared to their corresponding test mask images based on accuracy, 

precision, recall and F1 scores. Results from this study demonstrated that image size of 256x256 and batch size 4 achieved highest 

performance. It can also be inferred that larger input image size improved DeepLabV3+ model performance. 

 

 

1. INTRODUCTION 

Machine learning and deep learning are both subfields of artificial 

intelligence (AI) that involve training networks to learn from data 

and make predictions or decisions (Mahesh et al., 2020). While 

they share some similarities, deep learning represents a more 

advanced and specialized approach within the broader scope of 

machine learning. On the other hand, Deep learning is a specific 

subset of machine learning that focuses on using neural networks 

with multiple layers to process and analyse complex data. Deep 

learning algorithms, also known as artificial neural networks, are 

inspired by the structure and function of the human brain. 

 

The key difference between deep learning and traditional machine 

learning lies in the level of abstraction and feature engineering 

required. In traditional machine learning (ML), the task of manually 

identifying and extracting relevant features from the data falls upon 

domain experts, making it a time consuming and challenging 

process. Deep learning (DL), on the other hand, aims to automate 

this feature engineering step by directly learning hierarchical 

representations from raw data. DL algorithms leverage neural 

networks to extract and analyse features at various levels of 

abstraction, enabling them to capture complex patterns. However, it 

is important to note that in certain scenarios, DL algorithms may 

still require manual annotation or feature identification. By 

incorporating manual annotations, DL algorithms can leverage 

domain experts’ knowledge and improve the efficiency and 

accuracy of the learning process. Therefore, while DL strives to 

automate feature extraction, there are instances where manual 

annotation remains essential for achieving optimal model 
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performance. Forward and backward propagation are fundamental 

processes in deep learning that enable the training of neural 

networks by iteratively adjusting the model’s parameters to 

minimize the difference between predicted outputs and ground truth 

values. During forward propagation, input data is fed into the neural 

network, and computations are performed layer by layer, moving 

from the input layer to the output layer. Each layer consists of 

interconnected neurons that apply weighted sums and activation 

functions to produce outputs. The outputs from one layer serve as 

inputs to the next layer until the final output is generated. This 

forward pass allows the neural network to make predictions based 

on the current values of its parameters. 

Next, backward propagation, also known as backpropagation, takes 

place. Backward propagation calculates the gradients of the loss 

function with respect to the network’s parameters (Li et al., 2012). 

It starts at the output layer and iteratively works backward through 

the network, adjusting the weights and biases based on the 

computed gradients. The gradients are computed using the chain 

rule of calculus, which allows for efficient computation of gradients 

at each layer. By propagating the gradients backward, the neural 

network updates its parameters in a way that reduces the difference 

between predicted outputs and the actual targets. This iterative 

process continues until the model converges to a state where the 

prediction accuracy is optimized, and the network has learned to 

generalize well to unseen data. To successfully train a Deep 

Learning network, an analyst must specify certain constraints or 

Hyperparameters. These Hyperparameters determine the behaviour 

and performance of a DL network. Specifying appropriate 

hyperparameters values is essential for achieving optimal model 

performance. 
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1.1 Hyperparameters 

Hyperparameters are constraints that specify or limit the 

network’s ability to execute forward and backward propagation 

steps (Hertel et al., 2020). The common hyperparameters include 

learning rate, batch size, image size, number of epochs, activation 

function, optimizer, regularization, and initial weights. There are 

different hyperparameters as listed below:  

 

1.1.1 Learning rate: The learning rate is a critical 

hyperparameter that controls the step size of parameter updates 

during training. It influences the balance between convergence 

speed and accuracy. Choosing an appropriate learning rate is 

crucial to ensure efficient and effective model training. 

 

1.1.2 Image size: Image size refers to the dimensions of the 

input images fed into the neural network (Probst et al., 2018). The 

choice of image size can significantly impact the performance of 

the segmentation model. Larger image sizes may capture more 

detailed information but can also increase computational 

requirements. On the other hand, smaller image sizes may 

sacrifice some details but can lead to faster processing times. 

 

1.1.3 Batch size: Batch size, on the other hand, pertains to 

the number of training samples processed together in a single step 

of the training process where a batch of training samples is 

processed together. It influences the trade-off between 

computational efficiency and model convergence. A larger batch 

size can accelerate training by parallelizing computations, but it 

may also require more memory resources. Conversely, a smaller 

batch size can provide more accurate weight updates but can be 

computationally expensive. 

 

1.1.4 Number of epochs: Number of epochs is a significant 

hyperparameter in training models. It determines the number 

of times the dataset is iterated during training. Finding the right 

balance is important, as too few epochs may result in underfitting, 

while too many can lead to overfitting. Proper selection requires 

experimentation and monitoring to achieve optimal model 

performance. 

 

1.1.5 Activation Function: Activation functions are essential 

hyperparameters in neural networks, introducing non-linearity. 

They affect the model’s capacity to learn and approximate 

complex functions. Popular choices include sigmoid, tanh, and 

ReLU, each with unique properties that impact network 

performance. Proper selection and experimentation are crucial to 

maximize model capabilities.  

 

In this study, we evaluated the role of image and batch sizes for 

training DeepLabV3+ (Chen et al., 2018), a DL network, for 

segmenting waterbodies in satellite images (Liu et al., 2021) 

(George et al., 2023). By investigating the effects of varying 

image sizes and batch sizes on water body segmentation, this 

study aims to optimize these hyperparameters for achieving ac- 

curate and efficient segmentation results. Understanding the 

impact of these hyperparameters can provide insights into the 

trade- offs between computational resources and segmentation 

performance (Yuan et al., 2021), ultimately contributing to the 

advancement of water body segmentation techniques in remote 

sensing and environmental monitoring applications. 

 

 

2. MATERIALS AND METHODS 

2.1 Dataset Description 

The dataset used in this research was obtained from Kaggle, a 

website that provides access to a diverse collection of open datasets. 

Specifically, the dataset comprises satellite images of water 

bodies along with their corresponding masks in greyscale format 

(Figure 1). The satellite images were captured by the Sentinel-2 

(Escobar, n.d.) satellite, a remote sensing platform used for Earth 

observation.  

 

 

 

Figure 1: Example of an RGB image and the corresponding 

mask that highlights water pixels in white color. 

 

The images are in RGB (Red, Green, Blue) format, representing 

the visual spectrum. Each image is accompanied by a black and 

white mask, where pixels in white color indicate water and black 

represents areas other than water. Normalized Difference Water 

Index (NDWI) was used for identifying water pixels in the image 

(McPheters, 1996). NDWI is a commonly used index for 

detecting water in satellite imagery. However, for this study, a 

higher threshold was employed to specifically detect and 

delineate water bodies. The images were pre-processed using 

Rasterio, a Python library for handling geospatial data. The pre-

processing step ensured the compatibility and appropriate 

formatting of the satellite images for further analysis. 

 

2.2 Data Pre-Processing 

In the data pre-processing step of this work, quality control 

measures were implemented to ensure the accuracy and reliability 

of the dataset. This included identifying and removing images 

with incorrect masks, such as green vegetation or bare ground 

misclassified as water. Further, images containing turbid water or 

water with varying colors were excluded to ensure data 

uniformity. After this step only the good water quality images are 

retained. 

 

Next, a significant emphasis was placed on changing the image 

sizes and creating subsets for training, validation, and testing. 

The original dataset consisted of varying image sizes, which were 

divided into smaller patches of size 128x128 and 256x256. This 

division into patches offered computational efficiency, localized 

analysis, and the ability to capture both fine-grained and 

contextual information, thereby enhancing the effectiveness of 

subsequent analyses and model training.  

 

The resulting subsets of 128x128 and 256x256 image patches, 

along with the corresponding allocation into training, validation, 

and test sets as shown in the table 1, formed the foundation for 

conducting rigorous and unbiased water body segmentation 

experiments. 
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Image Size Training set Validation set Test set 

128x128 14252 1860 1861 

256x256 2916 364 353 

              

Table 1: Number of images of two different dimensions used 

for training, validating, and testing the trained models. 

 

 

2.3 DeepLabV3+ for Water body Segmentation 

Satellite images are widely used for water body extraction (Rithin 

Paul Reddy et al., 2018). The water body segmentation in this 

study was performed using the DeepLabv3+ architecture, a 

highly effective convolutional neural network (CNN) model for 

semantic segmentation (Chen et al., 2018). CNN based network 

is a potential approach for satellite image processing (Thanga 

Manickam et al., 2021). The training dataset consisted of image 

patches of sizes 128x128 and 256x256, allowing the model to 

capture both fine-grained details and contextual information. 

During the training process, batch sizes of 5, 8, and 16 were used, 

with the corresponding masks guiding the learning process. The 

DeepLabv3+ architecture incorporates an encoder-decoder 

structure with atrous spatial pyramid pooling (ASPP) modules, 

enabling multi-scale feature fusion and accurate predictions on 

objects of different sizes (Sunandini et al., 2023). By utilizing 

dilated convolutions at multiple rates, the model captures features 

at various scales, while skip connections preserve fine-grained 

details. This combination of architecture and dataset facilitated 

precise and reliable water body segmentation. 

 

2.4 Technical Requirements 

The study required specific hardware and software 

configurations to facilitate the computational tasks involved in 

deep learning experiments. For hardware, the High-Performance 

Computation (HPC) Server was utilized. The server comprised a 

total of 5 nodes, with each node being equipped with 28 CPUs 

and 254 GB of memory. This hardware infrastructure provided 

substantial computational power and memory capacity necessary 

for processing large-scale datasets and training complex deep 

learning models. In terms of software requirements, Python, a 

widely adopted programming language in the field of machine 

learning and deep learning, was used as the primary 

programming language. Python offers extensive libraries and 

frameworks that supports various aspects of deep learning 

implementation. Furthermore, TensorFlow, a popular open-

source deep learning framework, was employed as the core 

software tool. TensorFlow provides a comprehensive ecosystem 

for designing, training, and evaluating deep neural networks. Its 

scalability and flexibility made it well-suited for conducting the 

deep learning experiments in the research study. 

 

2.5 Hyperparameter Configurations 

To optimize the performance of the deep learning models for 

water body segmentation, (Tsai et al., 2020). specific 

hyperparameter configurations were employed in this study. Two 

key hyperparameters under consideration were the image size 

and batch size. The image size, chosen as 128x128 and 256x256, 

determined the input dimensions of the neural networks and 

played a crucial role in capturing the desired level of detail from 

the satellite images. By selecting appropriate image sizes, a 

balance was achieved between computational efficiency and the 

ability to capture fine-grained features. The batch size, on the 

other hand, determined the number of training samples processed 

in each iteration during model training. For this study, batch sizes 

of 4, 8, and 16 were tested to investigate their impact on model 

convergence and computational efficiency. Different 

combinations of image size and batch size were examined, 

resulting in separate trained models for each combination. The 

deep learning models, specifically the DeepLabv3+ architecture, 

were trained for a fixed number of epochs, with 100 epochs 

chosen as the training duration. This configuration allowed the 

models to iterate through the training data, refining their weights 

and optimizing their performance over time. As a result, trained 

models were obtained for each combination of image size and 

batch size, serving as the outputs of the training process. 

 

2.6 Evaluation Metrics 

In assessing the performance of the water body segmentation 

models, multiple evaluation metrics were considered, including 

accuracy, precision, recall, and F1 score. Accuracy quantifies the 

proportion of correctly classified samples, taking into account 

both the water and non-water classes. A higher accuracy indicates 

a higher level of agreement between the predicted labels and the 

ground truth across all classes.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
    (1) 

Precision measures the proportion of correctly classified water 

pixels out of all pixels predicted as water. It provides insights into 

the model’s ability to correctly identify true water pixels, 

minimizing false positives.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
    (2) 

Recall calculates the proportion of correctly classified water 

pixels out of all actual water pixels. It highlights the model’s 

capability to capture all relevant water pixels, reducing false 

negatives.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
     (3) 

F1 score is the harmonic mean of precision and recall, providing 

a balanced measure that considers both metrics. It combines 

precision and recall into a single value, reflecting the overall 

performance of the model in correctly identifying water pixels. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
    (4) 

 

 

 

3. RESULTS 

3.1 Accuracy Plots & Loss Plots 

In the study, it was observed that the accuracy of the water body 

segmentation models consistently improved as the number of 

training epochs increased. The accuracy plots exhibited an 

upward trend, indicating that the models became progressively 

more proficient in accurately classifying water and non-water 

regions. This improvement in accuracy can be attributed to the 

models’ ability to learn and capture the relevant features of water 

bodies over time. Additionally, it was observed that the loss plots 

showed a decreasing trend as epochs increased. The decline in 

loss values indicates that the models effectively minimized errors 
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and discrepancies between the predicted and actual labels. As the 

models converged, the loss plot gradually flattened, suggesting 

that the models reached a state of stability and achieved optimal 

segmentation performance. Accuracy and loss plots for obtained 

when DeepLabV3+ was trained with images of dimension 128 x 

128 (Figures 2 and 3), and 256 x 256 (Figures 4 and 5) show the 

importance of training the models over an adequate number of 

epochs to enhance accuracy and minimize loss, ultimately 

leading to improved water body segmentation results. Plots 

obtained for other parameter combinations are presented in 

Appendix (Figures 6 – 9). 

 

Figure 2: Accuracy plot obtained when DeepLabV3+ was 

trained with 128x128 images with a batch size 16. 

 

 

Figure 3: Loss plot obtained when DeepLabV3+ was trained 

with 128x128 images with a batch size 16. 

 

 

Figure 4: Accuracy plot obtained when DeepLabV3+ was 

trained with 256x256 images with a batch size 16. 

 

Figure 5: Loss plot obtained when DeepLabV3+ was trained 

with 256x256 images with a batch size 16. 

 

3.2 Evaluation Scores 

 

Image size 
Batch 

size 4 

Batch 

size 8 

Batch 

size 16 

128x128 95.44 95.60 95.48 

256x256 96.54 96.38 96.37 

 

Table 2: Accuracy scores obtained when DeepLabV3+ network 

was trained with 2 image sizes and 3 batch sizes. 

 

Accuracies achieved by the models are presented in the table. 

From table 2, it can be inferred that increasing the image size 

from 128x128 to 256x256 led to a slight improvement in 

accuracy across all batch sizes. This suggests that larger image 

sizes provided more detailed information, allowing the models to 

better capture and classify water bodies. Large batch sizes can 

result in increased processing time and resource requirements, 

while also potentially leading to limited generalization. 

 

On the other hand, there was no clear trend to indicate that batch 

size influenced the accuracy of the model’s ability to predict water 

pixels. The accuracies achieved with batch sizes 4, 8, and 16 were 

relatively close, with minor variations observed. This indicates 

that the choice of batch size had a minimal effect on the overall 

performance of the models in terms of accuracy. 

 

 

Image size 
Batch 

size 4 

Batch 

size 8 

Batch 

size 16 

128x128 91.46 92.46 91.23 

256x256 97.33 96.21 97.92 

 

Table 3: Precision scores obtained when DeepLabV3+ network 

was trained with 2 image sizes and 3 batch sizes. 

 

The precision values achieved by the model are presented in 

Table 3. From the results, it can be observed that the precision 

values vary for different image sizes and batch sizes. When 

considering image size, the precision values for water body 

segmentation are consistently higher for the larger image size of 

256x256 compared to the smaller image size of 128x128. This 

suggests that the larger image size provides more accurate 
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identification and classification of true water pixels, resulting in 

higher precision values. Regarding batch size, no significant 

trend is evident. The precision values for different batch sizes (4, 

8, and 16) do not exhibit a consistent pattern. This indicates that 

the choice of batch size does not have a substantial impact on the 

precision of the water body segmentation models. 

 

 

Image size 
Batch 

size 4 

Batch 

size 8 

Batch 

size 16 

128x128 70.65 71.59 70.63 

256x256 76.63 74.04 75.11 

  

Table 4: Recall scores obtained when DeepLabV3+ network 

was trained with 2 image sizes and 3 batch sizes. 

 

Recall values obtained are presented in the Table 4. From the 

results, it can be inferred that the recall values varied for different 

image sizes and batch sizes. For the 128x128 image size, the 

recall values ranged from 70.65% to 71.59% for batch sizes 4 and 

8, respectively. Batch size 16 achieved a slightly lower recall of 

70.63%. This suggests that the models had a moderate ability to 

correctly capture and identify water pixels compared to the total 

number of actual water pixels. For the 256x256 image size, the 

recall values ranged from 74.04% to 76.63% for batch sizes 8 and 

4, respectively. Batch size 16 achieved a recall of 75.11%. These 

higher recall values indicate a relatively better performance in 

correctly identifying water pixels for the larger image size 

compared to the smaller image size. 

 

 

Image size 
Batch 

size 4 

Batch 

size 8 

Batch 

size 16 

128x128 76.94 78.04 76.95 

256x256 83.39 81.08 82.05 

 

Table 5: F1-scores obtained when DeepLabV3+ network was 

trained with 2 image sizes and 3 batch sizes. 

 

The F1-scores obtained are presented in the Table 5 From the 

results, it can be inferred that the F1 scores varied for different 

image sizes and batch sizes. For the 128x128 image size, the F1 

scores ranged from 76.94% to 78.04% for batch sizes 4 and 8, 

respectively. Batch size 16 achieved a slightly lower F1 score of 

76.95%. These scores indicate a reasonably balanced 

performance in terms of precision and recall for water body 

segmentation. For the 256x256 image size, the F1 scores ranged 

from 81.08% to 83.39% for batch sizes 8 and 4, respectively. 

Batch size 16 achieved an F1 score of 82.05%. These higher F1 

scores suggest a relatively better balance between precision and 

recall for the larger image sizes. 

 

Increasing batch size does not consistently lead to improved 

metric scores. Specifically, for images sized 128 x 128 pixels, a 

batch size of 8 performs the best, while for 256 x 256-pixel 

images, a batch size of 4 yields optimal results. Notably, the 

combination of a 256 x 256 image size and a batch size of 4 

consistently outperforms other configurations in terms of 

achieved metrics. These insights contribute to the ongoing 

exploration of efficient deep learning techniques and offer 

valuable guidance for enhancing model performance in image-

related tasks. 
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APPENDIX 

 

 

Figure 6: Accuracy (left) and loss (right) plots obtained when DeepLabV3+ was trained with image size 128x128 and batch size 4. 

 

 

 

Figure 7: Accuracy (left) and loss (right) plots obtained when DeepLabV3+ was trained with image size 256x256 and batch size 4. 

 

  

 

Figure 8: Accuracy (left) and loss (right) plots obtained when DeepLabV3+ was trained with image size 128x128 and batch size 8.
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Figure 9: Accuracy (left) and loss (right) plots obtained when DeepLabV3+ was trained with image size 256x256 and batch size 8. 
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