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ABSTRACT: 

 

The performance of the deep learning-based image segmentation is highly dependent on two major factors as follows: 1) The 

organization and structure of the architecture used to train the model and 2) The quality of input data used to train the model. The 

input image quality and the variety of training samples are highly influencing the features derived by the deep learning filters for 

segmentation. This study focus on the effect of image quality of a natural dataset of epiphytes captured using Unmanned Aerial 

Vehicles (UAV), while segmenting the epiphytes from other background vegetation. The dataset used in this work is highly 

challenging in terms of pixel overlap between target and background to be segmented, the occupancy of target in the image and 

shadows from nearby vegetation. The proposed study used four different contrast enhancement techniques to improve the image 

quality of low contrast images from the epiphyte dataset. The enhanced dataset with four different methods were used to train five 

different segmentation models. The segmentation performances of four different models are reported using structural similarity index 

(SSIM) and intersection over union (IoU) score. The study shows that the epiphyte segmentation performance is highly influenced 

by the input image quality and recommendations are given based on four different techniques for experts to work with segmentation 

with natural datasets like epiphytes. The study also reported that the occupancy of the target epiphyte and vegetation highly influence 

the performance of the segmentation model. 

 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Computer vision systems developed for object identification 

task require large number of training images. CIFAR-10 is a 

large dataset with 60,000 colour images distributed over 10 

unique classes and many studies have utilized this dataset for 

object detection and recognition tasks. Imagenet dataset 

consisting of thousands of images are used for testing the 

performance of various Deep Learning (DL) algorithms for 

image classification and object identifications. A medical 

application developed by Abedella et al. (2021) used a chest X-

ray dataset consisting of 15,250 images for segmenting 

pneumothorax using U-Net with EfficientNet and ResNet 

architectures. Kitty vision dataset (180 GB) is used for object 

detection and navigation applications (Geiger et al., 2013). 

Hammoudi et al. (2020) used “CheckYourMask” dataset (60k 

images) for validating correct wearing of mask to avoid spread 

of Covid 19. 

 

DL networks capture relevant from the training dataset at 

multiple scales. Hence training images must contain information 

about the target object in different perspectives such as look 

angle, varying light conditions, scale variants and all possible 

varieties. The less diverse, training images may be spatio-

temporally correlated information about the target. The visual 

similarity among the image samples in dataset is the major 

drawback of such datasets and will prevent DL algorithms to 

derive unique and distinctive features. This scenario will also 

reduce the number of distinctive samples in test dataset. 

Shahinfar et al. (2020) analysed the effect of sample size and 

varieties of images for training a DL algorithm training for 

wildlife monitoring application. Including rich information 

about the target(s) during the training stage will lead to better 

learning (or training) of the DL network and their successful 

identification in the test images. 

 

Hu et al. (2021) reported that in addition to the number of the 

images used for training, their quality influences the learning of 

a DL network. Training the FasterRCNN and MaskRCNN 

network to identify and segment the weeds from drone images, 

was influenced by factors like pixel resolution, over exposure, 

Gaussian blur, motion blur and noise. Nazare et al., (2018) and 

Zhou et al., (2017) have reported the importance of the quality 

of images used for training DL networks. Hence the efficiency 

and reliability of the DL model is dependent on the number, 

diverse information content, and the quality of the input or 

training images. In general, higher the number (e.g., in few 

thousands), rich or diverse information content, and good 

quality will result in better learning. 

 

However, collecting thousands of good quality images 

containing rich information of the target(s) is not feasible in 

some applications. Acquiring images of rare plants/animals, 

objects, or phenomena possess several challenges due to a host 

of reasons. For example, certain rare plants grow in select 

geographic locations that might be also difficult to access. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-3-2023 
ASPRS 2023 Annual Conference, 13–15 February & 12–15 June 2023, Denver, Colorado, USA & virtual

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-3-2023-219-2023 | © Author(s) 2023. CC BY 4.0 License.

 
219



 

Similarly, acquiring digital images of some rare and endangered 

animals such as black Rhino, Giant panda and Indian Tiger is 

challenging. Acquiring thousands of images of high quality is 

not feasible for all applications. 

 

Training DL network(s) to identify epiphytes is challenging due 

to the limited number of data available for training. These plants 

grow on other trees and in locations that are difficult to access. 

Botanists build temporary structures next to the target, use 

cranes and many uses manual climbing to the trees which is of 

more risk. Due to these reasons acquiring large number of good 

quality images are risky, time consuming, and economically not 

feasible. The epiphyte dataset is usually small in sample size 

(ranging from 100 to 200 images) per family due to limitations 

in image acquisition. In such scenarios, not including poor 

quality images from a small sample size is not feasible and it 

may affect the DL algorithm training. 

 

Under these circumstances DL algorithms must be trained with 

fewer images with uneven quality. Alternatively low-quality 

images can be pre-processed to enhance their quality. The pre-

processing steps are designed to suppress the undesired 

information and bring up relevant features for further 

processing and analysis. The pre-processing steps sometimes 

may add additional information rather than improving the 

quality of the images. Numerous image enhancement methods 

exist that mainly classified in two categories based on the level 

of enhancement they are a) global and b) local enhancement 

methods. The global techniques are fast and simple and are 

suitable for overall enhancement of the images. In local 

enhancement, a small window slides through every pixel of the 

input image sequentially and only those pixels are enhanced 

which comes under the window. The local enhancement is more 

effective in terms of image quality, but it is time consuming. 

 

The objective of this study was to assess the performance of 

conditional generative adversarial networks (CGAN) trained 

with images pre-processed by four different image contrast 

enhancement methods. These methods included one global 

enhancement techniques named Histogram Equalization (HE) 

and three local enhancement methods named Adaptive 

Histogram Equalization (AHE), Dynamic Histogram 

Equalization (DHE) and Exposure Fusion Framework (EFM). 

 

 

2. BACKGROUND 

2.1 Effect of Image Enhancement on CNN 

The convolutional neural networks (CNN) are widely used in 

various computer vision applications like image classification, 

segmentation, and recognition tasks. The CNN networks derive 

the best features from a good quality dataset. The image pre-

processing techniques are widely applied to improve the image 

quality prior to CNN training. Rodríguez-Rodríguez et al. 

(2021) and Chen (2019) reported that enhancement methods 

can improve CNN learning while few methods may reduce the 

same. The enhancement method intended to improve the 

suppressed information present could sometimes introduce 

distortions to images. Li et al., (2021) investigated the effect of 

image contrast enhancement while training a VGG16 and 

FastRCNN CNN network for pistol detection. Aravind et al., 

(2020) optimized the CNN network for a road lane detection 

application. Apart from this study Rahman et al., (2021) 

analysed the effect of image enhancement while training a chest 

x-ray segmentation model using Unet. Setiawan and Agung 

(2020), Dimililer et al., (2016) and Xu et al., (2020) reported 

the effect of image enhancement while training the CNN based 

networks. 

 

2.2 Conditional GAN 

In the proposed study, the contrast enhanced epiphyte images 

are trained using a variant of generative adversarial networks 

(GAN) called Conditional GAN. GAN’s are generative models 

comprised of two neural networks called Generator and 

Discriminator (Goodfellow et al., 2020). The generator network 

captures the data distribution, and the discriminator network 

estimates the probability of data from training set rather than 

generator. In an unconditional GAN there is no control on the 

modes of the data generated. A normal GAN conditioned with 

input data like class labels and there by direct the data 

generation process (Mirza et al., 2014). Conditional GAN is 

widely used for many image generation applications. Shashank 

et al., (2020) used CGAN for identifying epiphytes from drone 

photos where the CGAN will generate the output label for input 

image. Jiao et al., (2019) evaluated the potential of the CGAN 

for plant leaf recognition. The capability of CGAN to generate 

new data from existing data paves the way for data 

augmentation in many image processing applications for 

training deep learning algorithms. Zhu et al., (2018), Douzas 

and Bacao (2018), Bird et al., (2022) and Sanjay et al., (2021) 

have described data augmentation technique applied on various 

data. 

 

Apart from the data generation capability of the conditional 

GANs, they can generate good data with limited number of 

training samples. A conditional GAN based image to image 

translation model named pix2pix shows the potential of the 

method to work with less training data and iterations Isola et al., 

(2017). This study addressed the image data generation case 

studies in synthesizing photos from label maps, reconstructing 

objects from edge maps, and colorizing images. The potential of 

such an image-to-image translation model for epiphyte 

segmentation with less training samples are studied by our 

research team (Shashank et al., 2020, Aswin et al., 2021, 

Sajithvariyar et al., 2021). The proposed study focused on the 

impact of quality of training data in terms of image contrast 

while training a CGAN network is addressed. 

 

 

3. MATERIALS AND METHODS 

3.1 The Epiphyte Dataset 

The Epiphyte dataset used in this study were acquired from 

Braulio Carrillo National Park in Costa Rica (Sivanpillai et al., 

2019). DJI Phantom and DJI Spark drones were used for 

collecting RGB images. The collected images were grouped into 

different categories based on the species present in the images. 

For this study, our research group selected Werauhia 

Kupperiana for segmentation task. The team has developed a 

conditional generative adversarial network (CGAN) trained 

model for segmenting the selected species from other 

background vegetation. The sample input image and 

corresponding annotation is shown in Figure 1. All images used 

for training the Conditional GAN based architecture were pixel 

wise annotated to segregate the target epiphyte and other 

background vegetation. The annotation for the input images 

were completed by experts using open-source annotation tool 

called LabelMe (Torralba et al., 2010). 
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3.2 Selecting Low Contrast Images 

The original dataset used for training contained 119 images of 

target epiphyte. The model was trained with mix of low contrast 

and high contrast images. The number of low contrast images 

were less compared to the optimal contrast images. The initial 

steps involved in this study was to identify the low contrast 

images from the dataset and enhance the contrast. After 

enhancing the low contrast images, a new segmentation model 

was trained for analysing the effect of enhancement techniques. 

 

 

 

Figure 1. The epiphyte input image (a) and the corresponding 

annotation image (b) used for training CGAN network. 

 

Low contrast images were selected using two steps: 1) manual 

visual inspection, and 2) analyse the histogram signatures of the 

manually selected images to understand the distribution of 

pixels. The manual visual inspection step involved categorizing 

the images where the target feature was shaded from nearby 

vegetation, occupancy of target and background, target 

occluded with nearby vegetation’s and light intensity variation. 

Images were considered as low-quality if the pixels skewed 

more towards low values. The histogram signatures for the low 

contrast and optimal contrast image from the dataset is depicted 

in Figure 2. 

 

 

Figure 2. A sample low contrast image (a) and its optimal 

contrast image (c) and corresponding histogram signature for 

the low contrast (b) and optimal contrast (d) image. 

 

Selecting low contrast images must be aided with manual 

inspection. Figure 2(a) is a low contrast image where the target 

plant and the background is dark. In Figure 2(b) the histogram 

values are skewed towards the low contrast region. The optimal 

contrast image presented in Figure 2 (c) has optimal contrast 

and with few dark background region pixels. This is evident in 

the corresponding histogram signature Figure 2(d) where the 

high contrast pixels are distributed between 100 and 250 

(target) whereas the value between 0 and 100 are due to 

background low contrast regions. The manual visual inspection 

of images along with histogram signatures helps to identify the 

low contrast regions are due to target plant or other background 

vegetation. This process was used for selecting 23 low contrast 

images from the epiphyte dataset (n = 119) while the remaining 

96 were identified as optimal contrast images.Using these 

parameters, a synthetic image is generated which is well-

exposed in the regions where the original image is under-

exposed. Finally, the synthetic image and the original input 

image are fused to obtain the enhanced output (Ying et al., 

2017). 

 

3.3 Image Quality Enhancement  

Histogram based contrast enhancements are widely used in 

many computer vision application for contrast enhancement 

(Harichandana et al., 2020). The histogram-based methods used 

in this study act at global and local regions of the image while 

enhancing the low contrast images (Hussain et al., 2018, Patel 

et al., 2013). The exposure fusion framework is more robust in 

terms of enhancing the contrast at global level by considering 

the camera parameters while processing. More details of the 

enhancement algorithms are discussed in following subsection. 

 

3.3.1 Histogram Equalization (HE):  

 

The histogram of an image shows the distribution of its pixel 

intensity values. The histogram of a low contrast images has 

more intensity value towards the low values. HE method applies 

global enhancement and equally distributes the intensity values 

in an image. The low contrast epiphyte images have both the 

target epiphyte and background vegetation contributing towards 

low intensity values or in some cases the target plant regions are 

dark, and background is bright. Since HE is a global contrast 

operation on the image both the subjects in our epiphyte images 

are enhanced (Patel et al., 2013, Hussain et al., 2018). 

 

3.3.2 Adaptive Histogram Equalization (AHE):  

 

The adaptive histogram equalization is an enhanced version of 

HE. This method divides the whole region to individual regions 

based on intensity variations and compute histograms. The AHE 

focuses on the individual local regions of the input image to 

enhance contrast, and results in improved edge definitions and 

isolation of varying contrast regions (Pizer et al., 1987). 

 

3.3.3 Dynamic Histogram Equalization (DHE):  

 

The Dynamic Histogram Equalization method reduces the 

information loss during enhancement compared to HE. DHE 

method computes the local minima for isolating the variations 

in histogram regions and assigns a grey level range for each 

division before enhancing the pixel values. The DHE has less 

anomalies on the processed images such as washed-out 

appearance, chequerboard effects and adverse artefacts 

(Abdullah-Al-Wadud et al., 2017). 

 

3.3.4 Exposure Fusion Framework Method (EFM): 

 

Enhancement methods discussed in previous subsections work 

directly with the pixels values to correct the anomaly. The 

anomaly can also happen due to external factors like lighting 

conditions and influence of nearby objects etc. These external 
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factors change the values of the pixel from its natural intensity 

values. To precisely correct the pixels, we also need a model 

which considers the inputs from our image acquisition 

hardware. Though images were acquired using various devices 

which differ in specifications, we have common enhancement 

techniques for all these images. The exposure fusion framework 

utilizes the illumination estimation techniques and camera 

response model during synthesis of images. 

 

3.4 Training CGAN with Enhanced Images  

The conditional generative adversarial network architecture 

implemented in earlier study (Shashank et al., 2020) is used to 

train the new models with images enhanced by four different 

methods and a model without any enhancement. The input to 

the architecture is a pair of images with input image and 

corresponding annotated image. The objective of the generator 

network is to learn generating the label images named as fake 

samples and the discriminator network is responsible for 

discriminating the samples from generator as real or fake as 

depicted in Figure 3. 

  

 

 

Figure 3. Training a conditional GAN to map epiphyte input 

image to segmented label. The discriminator, D, trained to 

classify fake and real samples. The generator is trained to 

generate the labels (fake samples). 

 

After enhancing the selected 23 low contrast images they were 

combined with remaining 96 images to make the good quality 

set. Finally, out of 119 images 96 images were used for training, 

13 images for testing and 10 images for validation during 

training. To evaluate the effect of enhancement 4 images were 

included in test, 18 in train, and 1 in validation. The epiphyte 

segmentation architecture network is designed in such a way 

that it forces the network to generate label /segmented images  

 

 

 

 

from input images. Both the network have the conditional 

parameter as the real input image depicted as ’y’ in Figure 3 and 

the corresponding label. The training and details of the CGAN 

network used for segmentation is given in (Shashank et al., 

2020). 

 

3.5 Evaluation Metrics 

3.5.1 Structural Similarity Index Measure (SSIM): 

 

The structural information evaluation of predicted epiphyte 

segmented labels is crucial to understand whether the learned 

model preserved such information in prediction values in 

images carry important. SSIM is widely used for image 

comparisons. The high dependencies of intensity structural 

information which we see in the visual scenes.  

 

The SSIM measurement is achieved with 3 major component 

comparisons: luminance, contrast, and structure. The SSIM 

values ranges between -1 to 1 and a value close to 1 indicate 

images are similar (Wang et al., 2004).  

 

3.5.2 Intersection over Union (IoU): 

 

 Intersection over union is another measure used for comparing 

the ground truth mask and the predicted mask. In this study, the 

images contain two classes target epiphyte and background. In 

binary or multi class segmentation tasks the IoU is computed for 

each class followed by an average of classes. We computed the 

IoU score only for the target epiphyte class. 

 

3.6 Enhanced Image Evaluation Method 

To analyse the effect of each contrast enhancement method in 

the low contrast input images a similarity index measurement is 

done with input image and enhanced image. This technique 

finds out the major differences between the original image and 

the enhanced image. Later the modified regions are identified in 

enhanced images and marked with a bounding box. This 

methodology also generates a binary image of the input image 

with white pixels indicate the modified pixels and the black 

corresponds to untouched regions during enhancement. This 

helps to visualize the effect of enhancement in the low contrast 

images. The image difference evaluation is implemented with 

Opencv and Python. The inputs to the algorithm are original 

low contrast image and the corresponding enhanced image, later  

 

 

 

 

Figure 4.Contrast enhanced low contrast epiphyte images with 4 techniques and its 

corresponding histogram signatures. 
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the difference and SSIM scores are computed for these images. 

From the difference and SSIM score, contours are identified for 

the regions which underwent changes, and a bounding box is 

drawn around to localize the region. This mode of evaluation 

was performed on all the test images enhanced with 4 different 

contrast enhanced methods to understand how pixel 

modifications during contrast enhancement affected the model 

learning. 

 

4. RESULTS 

4.1 Contrast Enhanced Images and Histogram 

The four contrast enhancement techniques were applied to the 

23 low contrast images identified from the epiphyte dataset. 

Figure 4 shows the enhanced images for a sample low contrast 

image and its corresponding histogram signatures after 

enhancement with four different techniques. The original input 

image without enhancement shown in Figure 4 in column 1 had 

left skewed histogram signature represents the dark pixels and 

few pixels are in right side indicate the background brighter 

pixels.  

The histogram equalization method stretched the pixels in all 

ranges and the pixels are modified globally throughout the 

image. The AHE algorithm acted in local level where the dark 

pixels in original image scaled up by small value and the 

brighter pixels in original image become much brighter. AHE 

altered the original histogram by shifting more pixels towards 

higher intensity values. The AHE was influenced by high 

intensity pixels in original image which forced the algorithm to 

shift the epiphyte dark region to higher values. DHE was able to 

bring a clear separation between the dark and brighter pixels in 

the image. EFM enhancement was global, and its signature was 

squeezed towards the centre. EFM applied failed to separate the 

target from the background. 

  

4.2 CGAN Epiphyte Segmentation Model Performance 

Five CGAN models trained with low contrast and 4 different 

enhanced images were evaluated with the test images. Average 

SSIM and IoU scores for all test set images tested with 5 

models were computed (Table 1). 

 

 

Score/ 

Model 

Trained 

with 

 

No 

Enhanc

ement 

 

HE 

 

AHE 

 

DHE 

 

EFM 

SSIM 0.52 0.51 0.50 0.55 0.52 

IoU 0.42 0.43 0.44 0.45 0.44 

 

 

Table 1. Average SSIM and IOU score for various CGAN 

segmentation models. 

 

Results indicate that the CGAN model trained with images 

enhanced by DHE method had relatively higher score than the 

ones obtained for other methods (Table 1). Model trained with 

images enhanced with histogram and AHE had lower SSIM and 

IOU score compared to the model trained with original images. 

This could be due to the information loss during enhancement. 

EFM method had less SSIM and IoU values compared to DHE 

method. SSIM values for without enhancement was higher or 

near to HE, AHE and EFM. These results indicate that only 

DHE was effective in comparison to the other 4 methods.  

 

 

Image 

No 

Enhancement 

 

HE 

 

AHE 

 

DHE 

 

EFM 

EPI-1 0.37 0.31 0.30 0.35 0.31 

EPI-2 0.51 0.50 0.52 0.49 0.51 

EPI-3 0.52 0.45 0.49 0.57 0.56 

EPI-4 0.63 0.59 0.62 0.64 0.58 

 

Table 2. SSIM scores for the 4 test images selected from the 

low contrast category. 

 

Analyses of the individual SSIM scores (Table 2) for the 4 test 

images indicate that images enhanced with DHE had higher 

scores than those enhanced with other methods. Images EPI-3 

and EPI-4 (Table 2) had highest scores for DHE in comparison 

to the other images. Similar trend was observed for the IoU 

scores for the same 4 test images (Table 3). 

 

 
 

Figure 5. Similarity analysis for the two test images with 

focused target occupancy and less background occupancy. Each 

row of the figure represents 4 different enhancement methods. 
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Image 

No 

Enhancement 

 

HE 

 

AHE 

 

DHE 

 

EFM 

EPI-1 0.26 0.25 0.25 0.26 0.25 

EPI-2 0.57 0.53 0.57 0.54 0.49 

EPI-3 0.47 0.47 0.48 0.53 0.51 

EPI-4 0.56 0.54 0.57 0.58 0.52 

 

Table 3. IoU scores for the 4 test images selected from the low 

contrast category. 

 

 
 

 

Figure 6. Similarity analysis for the test images with target and 

background vegetation equally occupied. Each row of the table 

belongs to 4 different enhancement methods. 

 

 

5. DISCUSSION 

To understand the overall performance and the importance of 

such image enhancement methods while working with natural 

datasets like epiphytes, the following section gives details of the 

findings observed during this study. 

 

5.1 Findings from Enhanced Image Evaluation 

As per the SSIM and IOU scores (Table 1) the average scores 

were higher for DHE method, and this method performed well 

for image numbers EPI-3 and EPI-4 (Table 2). 

Figures 5 and 6 show the similarity measure representations and 

masks which highlights the region undergone for changes for 

different enhancement techniques. Enhancement image 

evaluation was performed on 4 low contrast images which are 

listed under test set. The enhanced image evaluation categorized 

the 4 low contrast images to 2 categories, 1) Images where both 

the target epiphytes and other vegetation’s are equally 

occupying the frame and 2) Images with epiphytes mostly 

occupied in frame and background vegetation is faraway. The 

images EPI-1 and EPI-2 falls under category 1 and images EPI-

3 and EPI-4 falls under category 2. 

 

5.2 Effect of contrast enhancement 

The contrast enhancement algorithms make modifications to the 

pixels. The enhancement algorithms make changes to images at 

either to one or more local regions in each image or globally 

throughout the image. The input images for enhancement may 

have varying pixel intensities at different regions. The 

enhancement algorithm act at local level to ensure that the 

enhanced pixels remain to its original distribution. On the other 

hand, enhancement algorithms act at global level enhances the 

pixels uniformly throughout the image.  

 

5.3 Insights from enhanced image evaluation 

DHE performed well for two images where the masks show 

minimum modifications to pixels (Figure 5). Moreover, pixel 

modification occurred on target epiphyte regions resulting in its 

clear separation from the background. Few regions undergone 

changes in images while DHE method is applied compared to 

other methods. Two test input images were selected such that 

the target epiphyte was more focused while the background was 

out of focus. From the input image we can notice that there is a 

clear separation between the target and background and the 

same was preserved after enhancement by DHE. Similarly, as 

we can observe that the other methods are having similar 

performance for the other two test images under category 2 

depicted in Figure 6. 

 

Figure 6 shows images with target and the background 

vegetation equally focused and not clearly separated from each 

other unlike input images in Figure 5. From the binary mask 

generated for the changes undergone after contrast enhancement 

for these images shows that the pixel modification has happened 

for both target and background vegetation. There was a high 

overlap between the modified pixels of target plant and 

background vegetation in the enhanced images. This analysis 

also reveals that the trained model for target epiphyte 

segmentation can result in less IOU and SSIM scores if the 

contrast enhancement algorithms fail to separate the target and 

background vegetation for low contrast images. Also, if the 

input images are under low contrast and both the target epiphyte 

and background vegetation equally occupy the frame then any 

enhancement method which brings high overlap between these 

classes after pixel modification will result in low SSIM and 

IOU scores. 

 

Further improvements are possible with enhancement 

techniques which brings the clear separation between the target 

and background to be segmented. Enhancement algorithms 
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which can localize regions with low contrast and later assisted 

with guided methodology could bring much improvement. 

Further, DL based image enhancement techniques can be 

identified to bring improvements. To increase the image 

samples for train, test and validation set deep generative 

adversarial augmentation techniques can be employed in future. 

 

 

6. CONCLUSIONS 

Quality of input images used for training affects how CGAN 

learns to identify the epiphytes. Presence of low contrast images 

in small datasets can impair the network’s learning process. 

Contrast enhancement techniques can be used for improving the 

quality of such images. Images enhanced with DHE scored 

comparatively higher IOU and SSIM score while segmenting 

epiphytes. Apart from image contrast, occupancy of target 

(epiphytes) and background vegetation in an RGB image plays 

an important role. From the four enhancement algorithms 

evaluated in this study, DHE performed well for low contrast 

images with good target occupancy. On the other hand, HE, 

AHE and EFM failed to increase the IoU and SSIM scores 

when the target (epiphytes) and background equally occupied 

an image. Contrast enhancement algorithms applied on epiphyte 

data should be able to bring a clear separation between the 

target and background vegetation. The datasets acquired like 

epiphytes may have uneven distribution of low contrast pixels 

in target and background classes. The uneven distribution of 

contrast in such images are challenging for the enhancement 

algorithm and there by fails to separate the background and 

foreground information. 
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