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ABSTRACT: 
 
Identifying newly inundated areas following flood events is essential for planning rescue missions. These maps must be generated 
quickly as the spatial extent of the inundated areas might change during a single flood event. Several methods exist for generating 
such maps and several rely on one or more geospatial data to exclude existing waterbodies in an affected area. In this study, we 
tested a rapid flood mapping method that uses a pair of pre- and post-flood satellite images on seven sites throughout the US. We 
derived Normalized Difference Water Index (NDWI) and Modified NDWI (MNDWI) images from pre- and post-flood Landsat 
images and identified the optimal threshold values that highlighted newly inundated areas at these sites. The accuracy of the 
inundation maps was determined using manually interpreted verification data from the pairs of satellite images. Image analysts have 
identified the optimal threshold values between 25 and 40 minutes. Maps of newly inundated areas derived from differencing 
MNDWI and NDWI images had higher overall accuracy > 93%. Results obtained in this study confirms the utility of this rapid flood 
mapping technique to identify inundated areas using pre- and post-flood satellite images. 
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1. INTRODUCTION 

Satellite images collected by active and passive sensors are used 
for mapping inundated areas (Goldberg et al., 2018). 
Multispectral images collected by passive sensors can be used 
when flooded areas are covered by clouds and shadows. Also, 
during a flooding event these maps must be updated when the 
extent of inundated areas changes (Sivanpillai et al. 2017). The 
chances of acquiring multispectral data are higher since there 
are relatively more passive sensors than active ones.  
 
Several digital image processing techniques are available for 
identifying inundated areas in post-flood satellite images 
collected by optical/multispectral sensors. (Figure 1).  
 
 

Figure 1. The post-flood satellite image (left) was used for 
generating the inundation map (right). One of the disadvantages 
of such maps is that they overestimate the flooded areas by 
including pre-existing waterbodies in the affected region. 
 

 
Using statistical clustering or machine learning algorithms, 
analysts distinguish and combine pixels corresponding to water 
or inundated areas to generate flood maps (Amarnath, 2014; 
Shaw et al., 2017). Flood maps often include pre-existing water 
bodies in addition to highlighting newly inundated areas due to 
their spectral reflectance properties (Figure 2). If several 
waterbodies existed in an area prior to the flooding event they 
will be highlighted as inundated areas in these maps which will 
reduce their overall value for disaster response. 
 
  

Figure 2. Existing waterbodies (left) in the impacted area are 
included in the inundation map (right) generated with the post-
flood satellite image. Newly inundated areas are highlighted in 
light blue and pre-existing waterbodies are shown in dark blue. 
 
Geospatial modelling techniques can be used for removing or 
recoding pre-existing waterbodies in the flood affected areas. 
These techniques rely on existing land cover/use (LCLU), 
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elevation (Wang et al., 2002; Rosser et al. 2017), or other 
relevant geospatial data to model pre-existing waterbodies. For 
example, pixels in the inundation maps that were labelled as 
ponds, lakes, or rivers in the LCLU map, can be reassigned to 
non-flooded class. However, these methods are limited to areas 
where current LCLU or elevation data are available. Current 
LCLU maps are not available for all regions or countries. Using 
old LCLU maps for identifying pre-existing waterbodies can 
lead to erroneous results. Similarly, modelling water level with 
digital elevation models will require more computing resources 
and time, which can delay the generation and delivery of 
inundation maps to emergency response and management 
agencies. 
 
Sivanpillai et al. (2021) proposed a differencing technique to 
identify newly inundated areas using a pair of water indices 
(normalized difference water index – NDWI (McFeeters, 1996) 
and modified NDWI (MNDWI) (Xu, 2006). These indices were 
derived from multispectral images acquired before and after the 
flood.  
 
 ΔNDWI = NDWI post-flood – NDWI pre-flood            (1) 
 
 ΔMNDWI = MNDWI post-flood – MNDWI pre-flood  (2) 
 
The NDWI (or MNDWI) values of the newly inundated areas in 
the post-flood image will increase compared to the 
corresponding pixel values in the pre-flood images. Hence, 
ΔNDWI values will be positive. On the other hand, the NDWI 
(or MNDWI) values of existing waterbodies and land areas may 
not change much in the post-flood image. For these two 
conditions ΔNDWI (or ΔMNDWI) will change minimally.  
Finally, there could be areas in the pre-flood image that were 
covered in water but not in the post-flood image. For these 
pixels, the ΔNDWI (or ΔMNDWI) values will be negative. Of 
these 4 outcomes, only the first one corresponds to newly 
inundated areas. 
 
Identifying a threshold value for increase in NDWI (or 
MNDWI) value will identify newly inundated areas. Pixels that 
witnessed increase in NDWI (or MNDWI) above the threshold 
value will correspond to newly inundated areas. Thus, non-
flooded areas and pre-existing waterbodies in the affected areas 
can be excluded. Sivanpillai et al. (2021) tested this method in 
five sites. However, those five sites included a limited set of 
flood conditions. This study expanded to include a wider range 
of flood conditions (urban and rural areas, clear and turbid flood 
waters, etc.). The primary objective of this study was to assess 
the effectiveness of this technique for seven new sites in the US. 
 

 

2. MATERIALS AND METHOS 

2.1 Pre- and Post-flood Landsat images 

Eight Landsat Operational Land Imager (OLI) scenes were 
downloaded from the US Geological Survey’s EarthExplorer 
website (Table 1). Pixel values in these terrain corrected images 
were stored as digital numbers (DNs). Path and row numbers of 
the scenes in Worldwide Reference System (WRS2) are listed 
in Table 1. 
 
From these scenes, seven pairs of pre- and post-flood subset 
images were generated (Table 1). All subset images were free of 
clouds or shadows. When displayed in natural color infrared 
combination, water appeared in shades of blue color (Figure 3). 

 
Site # Path/Row # Pre-flood Post-flood 

1 22/34 2016/03/29 2018/03/03 
2 27/32 2018/04/23 2019/04/26 
3 22/34 2016/03/29 2018/03/03 
4 22/38 2016/02/26 2020/02/21 
5 22/38 2016/02/26 2020/02/21 
6 28/32 2017/04/11 2019/04/01 
7 28/32 2017/04/11 2019/04/01 

Table 1. Path and row numbers and acquisition dates of the pre- 
and post-flood Landsat 8 subset images used in this study. 

 
 

  
Figure 3. Pre- and post-flood subset images displayed in natural 
color infrared combination for study site #1 acquired by Landsat 

8 OLI on 2016/03/29 and 2018/03/03 respectively. 
 
 

2.2 Images of Water Indices 

NDWI and MNDWI images were derived from seven pairs of 
Landsat subset images. For Landsat OLI images, spectral bands 
3 (green) and 5 (near infrared) were used computing NDWI, 
while MNDWI values were computed using bands 3 (green) 
and 6 (shortwave infrared1). 
 

  
 

 

 

 
Figure 4. NDWI (top row) and MNDWI (bottom row) images 
derived from the pre- and post-flood Landsat 8 images for study 
site #1. The value of both water indices increased for the 
inundated areas in the post-flood image and appears in lighter 
shades of grey. 
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Since both water indices are normalized, the pixel values ranged 
between -1 and +1. In these images, pixel values below 0 
corresponded to non-water while those above 0 were associated 
with water bodies (Figure 4). 
 
 
2.3 Optimal Threshold Value 

Optimal threshold value that highlighted newly inundated areas 
was identified through an iterative process. In the first iteration, 
a 50% value was set as the threshold value for identifying pixels 
with corresponding increase in values between pre- and post-
flood NDWI images for a study site (Figure 5). The output 
image was visually compared to the pair of multispectral images 
for that site. 
 

 
Figure 5. Iterative steps used for identifying the optimal 
threshold values that highlighted the newly inundated areas in a 
pair of pre- and post-flood NDWI (and MNDWI) images. 
 
 
If the inundated areas identified in the output were less when 
compared to the post-flood multispectral image, then the 
threshold value was lowered to 25% (mid-point between 0% 
and 50%) for the second iteration. Lowering the threshold value 
would allow more pixels to meet the criteria or to be identified 
as inundated areas. On the other hand, if the inundated areas 
identified in the output were more than the actual extent 
observed in the post-flood image, the threshold value was 
increased to 75% (mid-point between 50% and 100%) for the 
next iteration. A higher threshold value would decrease the 
number of pixels that would be identified as inundated areas.  
 
Output image generated from the 25% (or 75%) threshold value 
was visually compared to the pair of multispectral images. If the 
output image from the second iteration underpredicted the 
inundated areas, the threshold value was lowered to 12.5% (or 
62.5%). On the other hand, if the output image from second 
iteration overpredicted the inundated areas, the threshold values 
were increased to 37.5% (or 87.5%). After evaluating the output 
from the 3rd iteration, threshold values were either lowered or 
increased as necessary (iteration 3). This process was repeated 
until the optimal threshold value for each NDWI image pair was 
identified. The optimal threshold value for each MNDWI image 
pair was identified using identical steps. 
 
2.4 Accuracy Assessment 

An image analyst who was not associated with identifying the 
optimal threshold values visually interpreted the pre- and post-
flood Landsat images. It is recommended to collect verification 

data either from the ground or higher spatial resolution images. 
However, collecting field data in a timely fashion during the 
flood event is not feasible. Also, the chances of simultaneously 
acquiring high and medium spatial resolution images for a given 
area during floods is very rare. Temporal differences in 
acquisition dates can also lead to different spatial extents of 
inundated areas. As more imagery collected by platforms such 
as Planet® becomes available, it would be possible to collect 
verification data from high spatial resolution images for 
assessing the accuracy of the maps generated from moderate 
spatial resolution data. 
 
This study generated reference data as randomly created points 
on the pre- and post-flood Landsat images in 7 sites. To create 
the reference points for the 7 sites, area calculations for each 
site were made separately. The reference points were created 
based on the percentage taken from the area. All the generated 
points were randomly distributed on the image and were 
separated by 500 meters from each other. In some cases, 
randomly distributed points were patched in one area; those 
points were manually moved to the more open spaces to have 
approximately equal distribution. All multispectral images pre- 
and post-flood were viewed in a different spectral resolution 
using various bands combinations. The reference data (points) 
were created through the ArcGIS Pro software. 
 
Each point can be labelled as a) Land in both pre- and post-
flood images, b) Water in both pre- and post-flood images, c) 
Land in pre- and Water in post-flood image, or d) Water in pre- 
and Land in post-flood image. Among these four combinations, 
points from the third combination (Land in pre-flood and Water 
in post-flood) were categorized as flood points. Rest of them 
were categorized as non-flood points (Table 2). 
 
 

Site 
Number 

Flood 
Points 

Non-flood 
Points 

Total 
Points 

1 69 161 230 
2 69 156 225 
3 86 128 214 
4 26 204 230 
5 48 200 248 
6 81 195 276 
7 53 190 243 

Table 2. Verification data points interpreted by an independent 
analyst using the pre- and post-flood Landsat 8 images for the 

seven study sites. 
 
 
Error or confusion matrices were generated by comparing the 
verification data for each site with the inundation maps 
generated using changes in ΔNDWI and ΔMNDWI values. 
From each confusion matrix, overall, producer, and user 
accuracy metrics were computed to assess the performance of 
this technique to identify newly inundated areas (Story and 
Congalton, 1986). 
 
 

3. RESULTS AND DISCUSSION 

The Image differencing technique with optimal threshold value 
for each pair of NDWI (and MNDWI) images was able to 
highlight newly inundated areas. Five different analysts, 
working independently, identified the optimal threshold values 
for each site and pairs of images.  
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Image analysts determined each optimal threshold value 
between 4 and 6 iterations, and it took them between 25 and 40 
minutes to generate each flood map (Table 3). 
 

Site 
Number 

ΔNDWI 
derived maps 

ΔMNDWI 
derived maps 

1 36 40 
2 30 29 
3 27 29 
4 32 45 
5 30 37 
6 28 43 
7 27 22 

Table 3. Optimal threshold values identified by analysts for 
identifying newly inundated areas based on ΔNDWI and 

ΔMNDWI values. 
 
Maps that highlight newly inundated areas in the seven sites are 
presented in Figure 6.  
 

 
3.1 Accuracy Metrics 

The overall accuracy (OA) values (Table 4) of the maps derived 
from ΔNDWI and ΔMNDWI images were > 95%, except for 
two maps derived from ΔNDWI images (sites 1 and 6). The 
producer accuracy values for flood class ranged between 81% 
and 97% for ΔNDWI derived maps while the corresponding 
values ranged between 77% and 100% for the maps derived 
using ΔMNDWI values. The user accuracy values for the flood 
class ranged between 91% and 100% for ΔNDWI derived maps 
(Table 4), while the corresponding values ranged between 91% 
and 98% for the maps derived using ΔMNDWI values. 
 
 

Site 
Number 

ΔNDWI derived 
maps 

ΔMNDWI derived 
maps 

 OA PA UA OA PA UA 
1 93.5 84 94 95.2 90 94 
2 97.3 96 96 96.9 100 92 
3 97.2 97 97 96.7 95 97 
4 97.0 81 91 96.5 77 91 
5 98.0 90 100 98.0 92 98 
6 94.6 88 93 97.5 96 98 
7 95.1 85 92 97.9 98 93 

Table 4. Overall (OA), producer (PA), and user (UA) accuracy 
values of the inundation maps derived from ΔNDWI and 
ΔMNDWI images.  The PA and UA accuracy values for flood 
class are reported. 
 
 
The difference in the OA values for the maps derived from two 
water indices were not consistent for all seven sites. For four 
sites, ΔNDWI derived maps had marginally higher OA values 
than the corresponding values associated with the ΔMNDWI 
derived maps (Table 4).  
 
Minor changes in the error matrix resulted in variations between 
OA, PA, and UA values. For example, in site #4, five flood 
points were misclassified as non-flood in ΔNDWI derived 
inundation map (PA value of 81%). In the ΔMNDWI derived 
inundation map six flood points were misclassified that lowered 
the PA value to 77%. Site #4 had the smallest increase in flood 
water (Figure 6), and therefore had fewer (n = 26) verification 
points for that class (Table 2). Hence the minor shift in the 
elements of the error matrix resulted in three to four percent 

shift in the PA values. Similarly, in site #3 one additional point 
(out of 86) was misclassified as non-flood in the ΔMNDWI 
derived map. This resulted in the PA value to drop from 96.5% 
in the ΔNDWI map to 93.4% in the ΔMNDWI map. 
 
 

Site 1 

  
Site 2 

  
Site 3 

  
Site 4 

  
Site 5 

  
Site 6 

  
Site 7 

  
Figure 6. Maps of newly inundated areas for the seven study 

sites derived by differencing pre- and post-flood ΔNDWI (left) 
and ΔMNDWI (right) Landsat 8 OLI images.  
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There were relatively more non-flood verification points for all 
sites (Table 2). Hence minor changes in misclassification i.e., 
few points, did not cause major increase or decrease in the PA 
or UA values for the non-flood class. 
 
Maps derived from ΔNDWI values identified several small 
clusters of newly inundated areas but were not present in the 
one derived from ΔMNDWI values. This created an impression 
that more areas were inundated within each site. However, 
during emergency response operations, managers might not 
focus on small, isolated clusters shown as inundated areas. 
 
Selecting pre-flood image seasonally close to the acquisition 
time of the post-flood image reduced the misclassification 
errors. In the initial study, difference in image acquisition dates 
for one of the study sites (Colorado) resulted in 
misclassification of harvested crop fields as flooded areas 
(Sivanpillai et al. 2021). In this study, the pre- and post-flood 
images were within few days, but different years, of each other. 
This minimized the chances of misclassification due to 
differences in land use classes. 
 
 

4. CONCLUSIONS 

Results show that optimal threshold values obtained from 
differencing the pre- and post-flood water indices can identify 
newly inundated areas.  
 
Maps derived from ΔMNDWI values can be used for mapping 
inundation maps. If data are obtained from sensors that do not 
acquire SWIR values, then ΔNDWI values can be used for 
mapping newly inundated areas. 
 
Lower producer accuracy values for flood class obtained for 
inundation maps derived from both indices when the extent of 
flooding was small. Further research is needed to improve the 
accuracy of the inundation maps under low flood conditions. 
 
Using temporally close pre-flood images is essential for 
minimizing the misclassification errors caused by changes in 
land use classes. 
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