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ABSTRACT: 

Landslides are geological events in which masses of rock and soil slide down the slope of a mountain or hillside. They are 

influenced by topography, geology, weather, and human activity, and can cause extensive damage to the environment and 

infrastructure, as well as delay transportation networks. Therefore, it is imperative to detect early-warning signs of landslide 

hazards as a means of prevention. Traditional landslide surveillance consists of field mapping, but the process is costly and 

time consuming. Modern landslide mapping uses Light Detection and Ranging (LiDAR) derived Digital Elevation Models 

(DEMs) and sophisticated algorithms to analyze surface roughness and extract spatial features and patterns of landslide and 

landslide-prone areas. This study follows a previous study performed that demonstrated that it is possible to detect unstable 

terrain using algorithmic mapping techniques. The focus of this study is to show how spatial resolution can influence the 

accuracy of the classification results. The DEM data was resampled from 6 to 12, 24, 48 and 96 ft spatial resolution. The 

surface feature extractors employed (local topographic range, local topographic variability, slope, and roughness) are fused 

and analyzed simultaneously by applying k-means and Gaussian Mixture Model (GMM) clustering methods. When compared 

with the detailed, independently compiled landslide reference map, our data shows a decrease in performance as spatial 

resolution decreases. These results suggest that spatial resolution does impact the performance of landslide classification. 

1. INTRODUCTION

As the third-largest natural hazard, landslides are known 

to cause trouble throughout the world (Ahmed et al., 2018; 

Lu et al., 2011; Song et al., 2019) They are a type of mass 

wasting that encompasses numerous ground movements, 

including rock falls, severe slope failures, and shallow 

debris flows (Effat and Hegazy, 2014). They are the result 

of pre-conditional surface and/or sub-surface instability 

that follows slope changes, precipitation, or changes to the 

topography of the ground (Dalyot et al., 2008). Therefore, 

landslides typically happen on steep mountain or hillside 

slopes (McKean and Roering, 2004). In addition to natural 

considerations, landslides are influenced by human factors 

such as geography, climate, quarrying, and development. 

Since they severely harm the environment and 

infrastructure, landslides constitute a hazard to everyone 

on the planet. They are natural disasters that can destroy 

bridges, buildings, residential developments, and other 

locations where people live.  

Landslides are caused by subsurface instability and 

encompass’ a wide range of surface failures such as: 

debris flows, rockslides, and deep slope failures (Effat and 

Hegazy, 2014). Slope changes such as rainfall or 

topography fluxutions can cause the pre-condition surface 

and/or the sub-surface to become unstable resulting in a 

landslide (Dalyot et al., 2008). Steeper surfaces are more 

susceptible to slope change thus landslides are more 

prominently found on mountains or hillsides. Landslides 

can be affected by several natural processes and human 

intervention. Several examples of this are the natural 

topography of the land, weather, and terrain disturbances 

such as mining and construction.  

Infrastructure and the surrounding area sustain severe 

damage from ongoing land movement. If a landslide 

occurs, there is a higher risk to human life near structures 

like highways, buildings, residential developments, 

bridges, and other heavily inhabited areas (Mora et al., 

2015). For the purpose of recognizing and reducing the 

impacts of ground movement and protecting human life, 

accurate landslide mapping is essential. 

Landslides have been mapped using photogrammetry, 

contour mapping, and field inspection technologies 

(McKean and Roering, 2004; Glenn et al., 2006; Booth et 

al., 2009; Mora et al., 2015). These techniques do not, 

however, offer sufficient spatial resolution or detail. Some 

of these techniques are quite accurate and precise, but they 

cannot map through thick vegetation, and they can also be 

expensive, challenging to use, time-consuming, and 

subjective (Booth et al., 2009; Mora et al., 2015). 

In the development of modern mapping technology that 

makes use of remote sensing, traditional landslide 

mapping approaches are becoming less efficient. In the 

last ten years, both the spatial resolution and accessibility 

of remote sensing have significantly improved. Intricate 

data sets with spatial resolution of less than a meter is now 

possible thanks to airborne laser scanners, which capture 

remote sensing data. This information enables analysts to 

produce intricate surface models that can help in 

identifying places susceptible to landslides (Tarolli et al., 

2012). Light Detection and Radar (LiDAR) has 

contributed to an increase in surface data resolution from 

10 meters to less than 1 (Mora et al., 2015). The 

identification of small spatial characteristics is made 

possible by this improvement in resolution. Additionally, 

LiDAR can penetrate vegetation. The initial information 

obtained by laser scanners can be filtered to create bare 

earth models. Due to LiDAR and the bare earth terrain 

models, it generates thousands of square meters that could 

be mapped relatively quickly (Shan and Toth, 2008; Booth 

et al., 2009). LiDAR can be used to map minor failures in 
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regions of sluggish mass movement and to distinguish 

between terrain subject to landslides and terrain not 

subject to landslides due to its higher spatial resolution and 

capacity to create realistic ground models (Jaboyedoff, 

2012). LiDAR data may be useful for studies on ground 

surfaces and landslide vulnerability (Shan and Toth, 2008; 

Jaboyedoff et al. 2012). It has been discovered that 

LiDAR mapping is incredibly accurate, time and cost-

effective, and easily available for communities. 

 

Digital Elevation Models (DEMs) can be used to map 

landslides, which greatly improves infrastructure safety 

and lowers the probability of landslides. Other elements, 

such as sediment type, water flow, and rock type, have 

been the subject of previous studies that have addressed 

how they may affect the stability of the area (Leshchinsky 

et al., 2015, Mora et al., 2015; An et al., 2016). Terrain 

classification and analysis have become easier and more 

affordable due to technological approaches. Landslides 

can be found in DEMs and distinguished from the 

surrounding stable terrain using feature extraction filters 

(Glenn et al., 2006; Jaboyedoff et al., 2012; Mora et al., 

2015). Landslide studies have made use of elements like 

slope, hillshade, variability, roughness, aspect, and 

statistics (Tran et al., 2019). Automated methods have 

been used to test several of the listed features (Cheng et 

al., 2013; Hölbing et al., 2015). The traits required to 

identify slides have been discovered to be individualized 

for each case (Dou, et al., 2015). For instance, compared 

to sandy, dry terrain, locations with lush flora will 

necessitate a distinct set of specialized traits to detect 

landslides. Different features are used to map and 

categorize land slide and non-slide zones. The ability to 

use feature extractors in DEMs depends critically on 

knowing certain information, such as the amount of 

vegetation, the slope angle, and the kind of soil (Sarkar et 

al., 2008). 

 

This paper aims to build upon a prior study done on the 

unsupervised classification of Earth surfaces for landslide 

detection. The study has found that it is possible to identify 

land that is susceptible to landslides using unsupervised 

statistical classification of specific feature extractors. The 

extractors used were chosen based on a preliminary study 

that looked at how different feature extractors and the 

number of clusters used affected the accuracy of landslide 

identification. This paper explores how the spatial 

resolution of data influences accuracy. The original data 

provides a spatial resolution of 6 ft. This was 

downsampled to 12 ft, 24 ft, 48 ft, and 96 ft. There was a 

total of five sets of data for the same area, the only 

difference being spatial resolution. All feature extractors 

used in the prior study are combined in this analysis to 

ensure the only variable causing change is resolution. In 

addition, each data set was tested using both Gaussian 

Mixture Model (GMM) and K-means classification. Each 

statistical clustering method included several different 

numbers of clusters, resulting in 40 trials: four different 

clusters for five data sets and two clustering methods. The 

resulting data was compared to an independently 

compiled landslide inventory map. There was a definite 

pattern formed when graphing the data, as resolution 

decreased so did accuracy. These results suggest that the 

spatial resolution of DEMs directly influences the 

accuracy of landslide detection.  

 

 

2. MATERIAL AND METHODS 

2.1 Study Area 

 
Figure 1. Vicinity map of study area in Carlyon Beach, 

Washington. (Tran et al., 2019) 

The study area is the Carlyon Beach/Hunter Point 

landslide in northwestern Thurston County, Washington 

(Approx. Latitude: N 47° 10' 46", Longitude: W 122° 56' 

24"), see Figure 1. Carlyon Beach sits at an elevation of 

165 ft above mean sea level and is lightly covered in 

vegetation that consists of sub-mature, second growth 

coniferous trees, deciduous trees, blackberries, 

salmonberry, and sword fern. These plants play an 

important role in the ground movement of the area. The 

site has slopes that are between 7 and 20 degrees 

(GeoEngineers, 1999). 

 

2.2 Study Area Background 

 

Soil boring was done at the location to determine soil 

composition. Boring Logs show that the soil consisted of 

soft silt, stiff silt, and clay, all of which contribute to the 

soil’s unstable nature. The soil is severely affected by 

disturbances such as weather, construction, and the natural 

environment. The soil’s instability is the main reason for 

the landslide found on site. The landslide is located along 

the northern end of the Steamboat Island Peninsula. It also 

includes parts of the private community of Carlyon Beach, 

along with several rural residential dwellings along 

Northwest Hunter Point Road. Ground movement was 

first noticed as cracks and settlement in streets and 

driveways in 1999. The slide area extends from the 

existing shoreline to the upland of the peninsula ranging 

between 700 and 900 feet in width (GeoEngineers, 1999). 

 

Another contributing factor to the constant failures is the 

shallow ground water table. The reactivation of the ancient 

landslide is partly due to the increase in general ground 

water (GeoEngineers Phase II, 1999). As the seaside 

carries sediment away from the toe of the landslide it 

reduces the resisting forces; the additional groundwater 

adds to the driving forces of the landslide. When 

compared to 58 years of precipitation data, the Carlyon 

Beach Peninsula experienced above average rainfall in the 

last five years (1993-1999) of the study, between 3 and 65 

percent (GeoEngineers Phase II, 1999). The site is roughly 

26% deep-seated landslides (Booth et al., 2009). The rate 

of movement does not seem to be a direct threat to life but 

has caused significant damage to structures and 

infrastructure.  

 

2.3 Data Acquisition  

 

The LiDAR data was collected by the Puget Sound 

LiDAR Consortium in 2002. The DEM is the 3D data of 

the study area, which is used in the research for analysis. 
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Figure 2 shows the DEM as a raster image, and Figure 3 

is the unstable terrain map. This DEM has been filtered to 

show the bare-earth terrain and has a spatial resolution of 

6.00 ft. or 1.83 m. The unstable terrain map was compiled 

in 2008 by M. Polenz, of the Washington State 

Department of Natural Resources, using a combination of 

the DEMs along with aerial images and land-surveying 

data.  The unstable terrain map shows both deep-seated as 

well as surficial landslides (Booth et al., 2009). 

 

                                         

Figure 2. Digital Elevation Model (Tran et al., 2019)   

 

   Figure 3. UnstableTerrain Map (Tran et al., 2019) 

 

3. METHODOLOGY 

 

3.1 Workflow 

 

Prior studies have shown that landslide terrain displays 

larger surface topographic variations; Whereas low 

variations are more commonly found in stable terrain 

(McKean and Roering, 2004; Booth et al., 2009, Mora et 

al., 2015).  A sliding window was applied to the LiDAR-

derived DEM to extract surface topographic variation. 

This approach analyses geomorphological features in the 

terrain. A previous study found that several feature 

extractors tested, roughness, slope, local topographic 

range, and local topographic variability were the best for 

this study site (Tran et al., 2019). Therefore, those were 

applied in our study.  

 

After initial processing, the data was then resampled by 

increments of 2, resulting in five sets of data with varying 

spatial resolution (6ft, 12ft, 24ft, 48ft, and 96ft). Next, the 

feature extractors were applied to each DEM, followed by 

the unsupervised classifiers, k-means and GMM 

clustering to recognize topographic patterns and 

characteristics. Classifiers categorized smooth stable 

terrain as non-landslide and rough surface areas as 

landslide prone areas. For this analysis all four feature 

extractors were deployed in conjunction so that the only 

variable factor is spatial resolution. Lastly, a confusion 

matrix is used to validate the classification results by 

comparing the results to the independently complied 

landslide terrain map. An outline of the process is shown 

in Figure 4. 

 

 
 

Figure 4. Workflow of methodology 

 

3.2 K-means Clustering 

 

This classification compares each feature to each other to 

determine which group it is closest to. The output is a map 

that shows which cluster each feature likely belongs to 

(Seber, 2008). The K-means function shown below 

studies the original data and separates them into classes 

based on similarities. Data between classes have 

similarities but are also clearly distinct from each other. 

The number of clusters is specified by the researcher; this 

study was conducted by testing two through five classes. 

Map Algebra is used to solve the following equation.  

 

 

Z = 
(𝑿−𝒐𝒍𝒅𝒎𝒊𝒏) × (𝒏𝒆𝒘𝒎𝒂𝒙−𝒏𝒆𝒘𝒎𝒊𝒏)

(𝒐𝒍𝒅𝒎𝒂𝒙−𝒐𝒍𝒅𝒎𝒊𝒏)
+

𝒏𝒆𝒘𝒎𝒊𝒏                                     Eq. (1) 

 

Where: 

Z is the output raster with new data ranges. 

X is the input raster. 

Oldmin is the minimum value of the input raster.  

Oldmax is the maximum value of the input raster.  

Newmin is the desired minimum value for the output 

raster. 

Newmax is the desired maximum value of the output 

raster.  

 

3.3 Gaussian Mixture Model Clustering  

 

The second statistical model used for data classification is 

GMM. GMM cluster data identifies the statistical 

probability of a point belonging to any class. It will 

continue to reassign classes until it has maximized the 

probability that relative to the data set, the hypothesis is 

true. GMM clustering is more adaptable to different data 

sets because of its hard or soft/fuzzy computing option. 

Hard clustering is when a data point is associated with 

only one cluster. Soft/fuzzy clustering allows points to be 

assigned a score that indicates how strongly that data point 

is related to that cluster (McLachlan, 2000). Similar to K-

means clustering, GMM was tested using two through five 
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classes. Map Algebra was also employed to perform the 

following equation. 

 

𝑃(𝜃|𝑥) = ∑ 𝛷̃𝑖𝛮(𝜇𝑖 ,̃  ∑𝑖̃)
𝐾
𝑖=1        

          Eq. (2) 

 

Where: 

𝑃(𝜃|𝑥) is the posterior distribution. 

𝛷̃𝑖 is the prior probability of observation associated with 

component i. 

N is the number of observations. 

𝜇𝑖̃ is the mean of the irh vector component. 

∑𝑖̃ is the covariance matrices of the irh vector component. 

 

 

3.4 Accuracy Assessment (Confusion Matrix) 

 

The confusion matrix was utilized as an accuracy 

assessment method. Confusion matrices compare reality 

to results found through testing. There are four assessment 

methods used for comparison: true positive (TP), false 

positive (FP), true negative (TN), and false negative (FN). 

True in this instance indicates that the algorithm has 

correctly identified the area, regardless of what it is. False, 

conversely, means an area was incorrectly identified by 

the algorithm. Positive stands for unstable terrain, the area 

is susceptible to landslides. Again, negative refers to the 

opposite, the area is stable and does not exhibit any 

landslide features. In addition, accuracy (AC) and 

precision (P) were also calculated from the data. Accuracy 

measures how often the algorithm can correctly identify 

the terrain, and precision is how replicable the results are. 

 

TP and TN need to be maximized as they represent 

correctly identified landslide and non-landslide areas, 

respectively. Statistical type 1 error, FP, should be 

minimized but they do not have as severe consequences as 

type II errors. FP means that an area has been falsely 

identified as landslide susceptible terrain. This means that 

the area is safe, and unlikely to start moving, it was only 

falsely identified. Whereas FN, a type II error, means that 

an area has been falsely identified as non-slide terrain 

when it is a slide area. This becomes dangerous due to it 

overlooking the dangers of slide terrain by marking it as 

safe. Buildings built on falsely identified land are at a 

higher risk of severe damage due to unaccounted ground 

movement.  

 

The confusion matrix is used to compare the percentage of 

matching terrain between the algorithm mapped areas and 

inventory map. K-means and GMM clustering methods 

provide clustered results for the algorithm map. Since each 

feature extractor was tested by applying several classes, 

resulting classes needed to be manually assigned landslide 

or non-landslide. 

 

4. RESULTS AND DISCUSSION 

 

All geomorphological features extracted were tested 

individually in a prior study. This study tests all four 

features in conjunction with differing number of classes 

by applying K-means and GMM clustering. After 

clustering the data using a clustering method, each class 

must be manually separated into either a landslide or non-

landslide group. Figure 5 demonstrates the process, it 

begins with feature extraction (A), then clusterization with 

the specified number clusters (B), followed by separation 

of clusters into a landslide or non-landslide group (C), and 

lastly comparing the algorithm mapped landslide locations 

to the inventory mapped landslides (D). In Figure 5D the 

locations marked in the lighter grayscale are areas that 

were correctly mapped (TN and TP). Whereas the darker 

grayscale indicates areas that were incorrectly mapped 

(FP and FN). The confusion matrix for all combinations 

of spatial resolution and clusters evaluated through GMM 

clustering is detailed in Table 1 and those for the k-means 

are in Table 2. This process was repeated with each of the 

different spatial resolutions tested with two through five 

clusters using both GMM and K-means clustering 

methods. 

 

 

 

 
 

 

Figure 5. (a-d): GMM clustering by applying 5 classes 

and the local topographic range feature extractor. a) 

Represents the results from the feature extractor. b) 

GMM clustering results with 5 classes. c)Re-generated 

from (b) where red presents landslide susceptible areas 

and blue represents non-landslide susceptible terrain. 

d)Comparison map between the output (c) and the 

landslide area reference map, where white matches the 

features in the reference map, and black does not match. 

(Tran et al., 2019) 
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Table 1. Confusion Matrix for GMM 

RESOLUTION NO. 

CLUSTERS 

AC TP FP TN FN P 

6 ft  2 43.75% 100.00% 99.89% 0.11% 0.00% 43.71% 

3 85.82% 93.53% 20.16% 79.84% 6.47% 78.25% 

4 82.66% 95.80% 27.53% 72.47% 4.20% 72.97% 

5 85.86% 93.43% 20.01% 79.99% 6.57% 78.37% 

12 ft 2 43.66% 100.00% 100.00% 0.00% 0.00% 43.66% 
 

3 85.77% 93.68% 20.37% 79.63% 6.32% 78.11% 

4 85.21% 81.90% 12.22% 87.78% 18.10% 83.87% 

5 86.35% 93.43% 19.14% 80.86% 6.57% 79.11% 

24 ft 2 43.66% 100.00% 100.00% 0.00% 0.00% 43.66% 

3 82.96% 79.03% 16.39% 83.61% 17.89% 79.52% 

4 82.57% 79.03% 14.69% 85.31% 20.97% 80.65% 

5 85.42% 91.36% 19.18% 80.82% 8.64% 78.68% 

48 ft 2 43.71% 100.00% 100.00% 0.00% 0.00% 43.71% 

3 81.07% 83.77% 21.03% 78.97% 16.23% 75.56% 

4 81.62% 83.56% 19.88% 80.12% 16.44% 76.55% 

5 81.07% 93.67% 28.72% 71.28% 6.33% 71.69% 

96 ft 2 43.61% 100.00% 100.00% 0.00% 0.00% 43.61% 

3 78.15% 80.89% 23.97% 76.03% 19.11% 72.30% 

4 78.15% 79.62% 22.99% 77.01% 20.38% 72.82% 

5 79.81% 85.35% 24.47% 75.53% 14.65% 72.96% 
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Table 2. Confusion Matrix for k-means clustering 

RESOLUTION NO. 

CLUSTERS 

AC TP FP TN FN P 

6 FT  2 82.08% 93.32% 26.64% 73.36% 6.68% 73.10% 
 

3 84.90% 77.41% 9.29% 90.71% 22.59% 86.60% 
 

4 87.29% 88.56% 13.69% 86.31% 11.44% 83.38% 
 

5 85.87% 80.76% 10.16% 89.84% 19.24% 86.04% 

12 FT 2 85.30% 92.54% 20.31% 79.69% 7.46% 77.95% 
 

3 85.06% 78.81% 10.09% 89.91% 21.19% 85.84% 
 

4 87.04% 89.26% 14.68% 85.32% 10.74% 82.51% 
 

5 86.70% 92.11% 17.50% 82.50% 7.89% 80.33% 

24 FT 2 85.18% 82.73% 12.92% 87.08% 17.27% 83.24% 
 

3 77.18% 56.66% 6.91% 93.09% 43.34% 86.42% 
 

4 84.55% 78.36% 10.65% 89.35% 21.64% 85.09% 
 

5 85.04% 83.72% 13.94% 86.06% 16.28% 82.33% 

48 FT 2 85.42% 91.38% 19.21% 80.79% 8.62% 78.69% 
 

3 73.74% 53.22% 10.33% 89.67% 46.78% 80.00% 
 

4 83.83% 83.18% 15.66% 84.34% 16.82% 80.48% 
 

5 85.04% 89.36% 18.31% 81.69% 10.64% 79.12% 

96 FT 2 80.37% 82.38% 21.18% 78.82% 17.62% 75.05% 
 

3 70.83% 50.32% 13.30% 86.70% 49.68% 74.53% 
 

4 75.93% 66.88% 17.08% 82.92% 33.12% 75.18% 
 

5 77.41% 61.57% 10.34% 89.66% 38.43% 82.15% 
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Tables 1 and 2 display the confusion matrix results from 

the spatial resolution tested with their respective classes. 

Table 1 shows the results obtained by applying the GMM 

clustering method and Table 2 are the results from K-

means clustering. The two most important values to 

analyze from the confusion matrix are AC and FN. AC is 

the accuracy of analysis, how often were the algorithm 

mapped areas correctly identified. In other words, a higher 

AC value corresponds with more of the algorithm map 

matching the landslide inventory map. On the flip side, FN 

values should be minimized as it represents the percentage 

of areas that have been incorrectly identified as non-slide 

terrain. This is dangerous because the algorithm deems a 

location safe (non-slide terrain) when it is not. TP are 

opposite of FN, they represent areas that were correctly 

identified as landslides. The two values (TP and FN) are 

inversely related. If the percentage of landslides that were 

correctly mapped increases, then the percentage of 

landslides that were incorrectly identifies decreases by the 

same.  

 

When interoperating the data, it is paramount to look at all 

aspects of the data. Looking at only one part can lead to 

incorrect conclusions and skew findings. For example, 

when looking at the data found by applying a GMM 

clustering method to a DEM with 6ft resolution and with 

two clusters, TP has a reading of 100%. The algorithm 

classified all landslide areas correctly, but this is only 

because nearly all the terrain was classified as part of the 

landslide group. We know this by looking at the TN value, 

this was incredibly low, indicating that very little of the 

non-slide terrain was correctly identified. AC was also 

used to come to this conclusion. For this study, the values 

that were analyzed were AC, because the goal of this study 

is to find the effects of resolution on accuracy.  

 

GMM clustering was performed to gather the data found 

in Table 1. The highest accuracy readings from each 6ft, 

12ft, 24ft, 48ft, and 96ft, are 85.86%, 86.35%, 85.42%, 

81.62%, and 79.81% respectively. While there is not a lot 

of difference between the accuracies, it is notable that the 

overall accuracy decreases as the resolution decreases. 

There was one exception between the 6ft spatial resolution 

DEM and 12ft EDM where accuracy does increase; 

however, when looking at the corresponding number of 

clusters, this increase is acceptable. It may be since the 

resolution is still good enough at 12ft., and that the 

difference is negligible.  

 

Table 2 documents the results of the confusion matrix after 

applying the K-means clustering method to the five 

different resolution data sets with differing numbers of 

clusters. The highest accuracy for each 6ft, 12ft, 24ft, 48ft, 

and 96ft DEM respectively are 87.29%, 87.04%, 85.18%, 

85.42%, and 80.37%. Again, we see that the accuracy 

between a resolution of 6ft and 12ft is nearly identical, so 

much so that it is safe to conclude that for the purposes of 

this study, a DEM with a resolution of 6ft only provides 

redundant data when compared to a 12ft resolution. From 

the table there is a similar trend as found with GMM 

clustering: as resolution decreases, so does accuracy. In 

both clustering methods, the accuracy decreased by 

approximately 6%. 

 

Regardless of resolution or clustering method the data 

suggests that having a higher number of clusters increases 

accuracy. In every case, when data was clustered into 

either 4 or 5 clusters the accuracy was higher than those in 

2 or 3 clusters. A prior study found that the effects of 

having more than 5 clusters were marginal and thus were 

not considered in this study. Having only one cluster does 

not separate the data into groups, it all gets placed into that 

one cluster.  

 

5. CONCLUSION 

 

3D information, such as surface data, was utilized to 

categorize landslides. Following an initial investigation 

into the feasibility of algorithmically mapping features of 

landslide surfaces, the subsequent step involved assessing 

the influence of spatial resolution. The original high-detail 

dataset, which had a spatial resolution of 6 feet, was down 

sampled to 12, 24, 48, and 96 feet. Afterward, an 

unsupervised classification was carried out using all four 

surface attributes (local topographic range, local 

topographic variability, slope, and roughness). Initial 

results indicate that as the spatial resolution decreased, the 

classification accuracy also decreased. A reduction in 

accuracy of up to 15% was observed in this study. 

Consequently, it was determined that the spatial resolution 

of 3D data like Digital Elevation Models (DEMs) indeed 

affects the precision of landslide classification. 

 

Landslides occurring in the Carlyon Beach Peninsula have 

had significant impacts on human life, infrastructure, and 

the economy. To address this, advances have been made 

in landslide mapping technology over the past few 

decades to mitigate the repercussions of these geological 

events. Conventional mapping approaches like analyzing 

aerial photographs and conducting field inspections are 

still used worldwide to identify areas prone to landslides. 

However, these methods are time-intensive, expensive, 

and often unable to detect small-scale failures. In contrast, 

contemporary technologies utilize DEMs and automated 

algorithms, which can accurately identify landslide and 

non-landslide areas in a cost-effective manner. The 

techniques involve analyzing the DEM of the study region 

to differentiate stable terrain with smooth features from 

landslide-prone areas with rugged surfaces. Classification 

outcomes from k-means and Gaussian Mixture Model 

(GMM) clustering can achieve accuracy rates of up to 

87% when compared to existing landslide inventory maps. 

Consequently, modern methods can swiftly identify 

landslide terrain using DEMs in a budget-friendly and 

accessible way. Future recommendations encompass 

expanding the dataset size and combining multiple feature 

extraction methods to enhance classification outcomes. 

This approach could potentially lead to improved results 

and the applicability of these techniques in other 

geographical areas. 
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