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ABSTRACT:

The urban road network detection and extraction have significant applications in many domains, such as intelligent transportation and
navigation, urban planning, and automatic driving. Although manual annotation methods can provide accurate road network maps,
their low efficiency with high-cost consumption are insufficient for the current tasks. Traditional methods based on spectral or
geometric information rely on shallow features and often struggle with low semantic segmentation accuracy in complex remote
sensing backgrounds. In recent years, deep convolutional neural networks (CNN) have provided robust feature representations to
distinguish complex terrain objects. However, these CNNs ignore the fusion of global-local contexts and are often confused with
other types of features, especially buildings. In addition, conventional convolution operations use a fixed template paradigm to
aggregate local feature information. The road features present complex linear-shape geometric relationships, which brings some
obstacles to feature construction. To address the above issues, we proposed a hybrid network structure that combines the advantages
of CNN and transformer models. Specifically, a multiscale deformable convolution module has been developed to capture local road
context information adaptively. The Transformer model is introduced into the encoder to enhance semantic information to build the
global context. Meanwhile, the CNN features are fused with the transformer features. Finally, the model outputs a road extraction
prediction map in high spatial resolution. Quantitative analysis and visual expression confirm that the proposed model can effectively
and automatically extract road features from complex remote sensing backgrounds, outperforming state-of-the-art methods with IOU
by 86.5% and OA by 97.4%.

1. INTRODUCTION

With the rapid development of urbanization, the construction of
smart cities has risen extensive attention. Urban infrastructure's
geographic information updating has greatly improved (Yuan et
al., 2021). In city planning, extracting road elements has
become an important component. Road features from high-
resolution remote sensing images can provide rich and accurate
spatial information to urban construction, making sufficient
preparations for updating the city information database.

The study of road extraction can provide scientific decisions for
urban planning, management, and decision-making. Roads are
the main component of urban transportation, essential elements
of urban geographic information, and cultural and economic
exchange hubs. That makes the extraction of road information
of great practical significance. In recent years, extensive
research has been conducted on road extraction from high-
resolution remote sensing images, and various methods have
been proposed for different application fields of road
information. However, there are many challenges in extracting
road information, such as complex shapes, similar spectral
features, building shadow, or tree occlusion, as shown in Figure
1.

Traditionally, the main methods using high-resolution remote
sensing images include pixel-based and object-oriented methods.

Figure 1. Some challenges in road extraction.

In the pixel-based methods, the spectral and texture features or
geometric topology of the road itself are utilized to extract the
road skeleton by template matching or knowledge-driven. The
former has good road extraction performance, but the manual
intervention is high, with much seed point selection and low
processing automation. The latter has low human involvement,
but this algorithm has high computational complexity and low
operational efficiency (Zhu et al., 2021). The object-based
method regards the road area as a whole and extracts the road
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information in the high-resolution image by image segmentation
clustering, support vector machine, conditional random field,
and other algorithms (Yuan et al., 2021). However, these
methods have complex operations and poor stability and are
affected by uneven variation in the grayscale of image pixels.
The extraction results have problems such as breakage,
incorrect extraction, missing structure, etc. The road extraction
effectiveness is poor, and the post-processing work is time-
consuming and laborious, making it difficult to apply to large-
scale remote sensing scenes. Therefore, there is an urgent need
for a fast and accurate method for extracting roads from high-
resolution remote sensing images automatically (Gao et al.
2018).

In recent years, deep learning has been widely applied in
various tasks of remote sensing images and has achieved
significant results in the field of computer vision (Yuan et al.,
2022). Many road extraction models have been proposed based
on deep learning. Mnih et al. (2010) used deep learning for road
extraction tasks, and the results showed that deep learning
methods could complete road extraction tasks and achieve better
results than traditional methods. For example, Zhong et al.
(2017) applied the fully convolutional neural network (FCN) to
the road extraction task, achieving accurate results. Chen et al.
(2016) proposed a SegNet-based network structure using
encoders and decoders to utilize contextual information and
preserve image contour details.

In road extraction from high-resolution remote sensing images,
Mendes et al. (2016) proposed a network model that can extract
complete and clear edges of roads from high-resolution images,
but it is difficult to distinguish road types accurately. Cheng et
al. (2017) proposed CasNet Network utilizing two cascaded
CNNs to achieve road detection and extraction, but the
extraction results in occluded areas are poor. Almeida et al.
(2020) combined multiple deep neural networks to construct an
ENet model for road detection. Chaurasia et al. (2017) used a
lightweight ResNet18 encoder to build a semantic segmentation
model, Link Net, which ensures road detection accuracy and
improves road detection efficiency. Zhou et al. (2018) proposed
an improved Dilation Convolution Link Net (DLinkNet) model.
Based on the DLinkNet model, the receptive field is enlarged by
using dilated convolution to obtain rich contextual semantic
information, which improves the road integrity and edge clarity,
but the extraction is poor for the small, shaded, and crossed
roads.

Although CNN-based methods have achieved excellent
performance in image segmentation, they still cannot be
competent with the requirements for segmentation accuracy in
road feature extraction. Road segmentation using remote
sensing images remains a challenging task due to the inherent
locality of convolution operations. It is difficult for CNN-based
methods to learn global semantic information with relatively
long distances in pairing pixels. Some methods attempt to solve
this problem through dilated convolutions, self-attention
mechanisms, and feature pyramids (Lin et al., 2017). However,

these methods still have limitations in establishing long-distance
dependencies.

CNN has translation invariance and local sensitivity.
Convolutional kernels can capture the fine-grained features and
local information of roads. However, CNN's receptive field is
limited, and it cannot obtain global information. And with the
improvement of computing power, the demand for data in CNN
models is becoming increasingly saturated, requiring larger
models to replace CNN. Thus, inspired by the great success of
natural language processing (NLP), Transformer gradually
began to be applied in Computer Vision (CV). For example,
The Image Transformer model (Parmar et al., 2018) applies
Transformer to computer vision. The proposal of the object
detection model DETR (Carion et al., 2020) and the image
classification model ViT (Dosovitskiy et al., 2021) has
promoted the rapid development of visual transformers.
However, due to many parameters and the high computational
cost of the Transformer model, many methods began
introducing prior knowledge from CNN into the Transformer,
including locality, hierarchy, multiscale, residual connection,
and bias design. Swin Transformer (Liu et al., 2021) has
achieved advanced results in multiple visual tasks.

To address the above issues, we proposed a hybrid network
structure DCTNet: a hybrid network model fusing with
multiscale deformable CNN and Transformer structure for road
extraction. The network model uses the GaoFen-6 satellite
remote images as the training samples that contain various road
scene types, such as urban traffic roads, internal roads of
buildings, and rural roads.

2. THE PROPOSED NETWORKMODEL

2.1 The overall architecture of the model

As illustrated in Figure 2, DCTNet combines the advantages of
CNN and transformer models. Specifically, a multiscale
deformable convolution module has been developed to capture
local road context information adaptively. In the encoders, this
module constructs pooling layers with different scales and
predicts the deformation parameters of convolution to extract
local features of complex roads. The Transformer model is
introduced into the encoder to enhance semantic information to
build the global context. Meanwhile, the CNN features from the
encoder are fused with the transformer features. Finally, the
model outputs a road extraction prediction map in high spatial
resolution.

2.2 CNN and Swin Transformer encoders

In this study, a dual branch encoder was established to extract
road features. One branch uses a residual network structure. He
Kaiming et al. (2016) proposed ResNet, which uses deep
residual learning to solve training optimization problems such
as gradient vanishing or explosion. Compared with ordinary
networks, ResNet's residual blocks mainly introduced a skip
connection between input and output, making it easier for the
network to train and learn multi-level features. As shown in
Figure 2, the structure of the ResNet residual block is shown,
where Xi and Xi+1 are the inputs of layer i and the outputs of
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Figure 2. The proposed network framework.

layer i+1, and F(Xi) is the residual function. In this paper,
ResNet34 is used as the backbone of the CNN branch, which
consists of 5 residual blocks, where block1 consists of 7×7
convolution, input batch normalization layer (BN), ReLU layer,
and 3×3 maximum pooling layers. The other blocks have a
similar structure, mainly composed of multiple convolutional
blocks, bottleneck structures, and residual connections. Finally,
the feature maps can be obtained with original input sizes of 1/2,
1/4, 1/8, 1/16, and 1/32.

The other branch encoders adopted the Swin Transformer (Liu
et al., 2021) structure. Compared to the ViT network structure,
the Swin Transformer only operates on a computation within a
7×7 window, performing self-attention computation to reduce
computational complexity. Moreover, this model uses padding
methods to ensure that the window can evenly divide the image.
Unlike traditional multi-head self-attention (MSA) modules,
Swin Transform is constructed based on a shift window, which
replaces traditional MSA with W-MSA, as presented in
equations (1)~(4). As shown in Figure 3, Swin Transformer
inputs feature maps into the encoder blocks, sequentially
passing through LayerNorm (LN) layer, W-MSA, MLP layer,
SW-MSA, and MLP layer. Compared to W-MSA, the
advantage of SW-MSA lies in the execution of shift windows,
which enable information exchange.

1 1- ( (z )) zl l lz W MSA LN    (1)

( ( )l llz MLP LN z z 
  (2)

1 - ( (z )) zl l lz S WMSA LN    (3)

1 11 ( ( )l llz MLP LN z z      (4)

where, Zl and zl+1 represent the outputs of the l layer; LN
denotes layer normalization; MLP denotes the multi-layer
perceptron.

Figure 3. Swin Transformer block structure.

2.3 Multiscale Feature fusion decoders

The road presents various complex geometric shapes, but the
convolution adopts a fixed-scale template calculation. To
adaptively capture geometric structural features, the decoder
introduces multiscale deformation convolution at the end of
each residual block, as illustrated in Figure 4. Specifically, the
feature maps are input into a multiscale pooling pyramid with a
pooling kernel size of 3×3, 8×8, 64×64, 2×4, 4×2, 2×8, 8×2.
Then, all features are upsampled using bilinear interpolation and
concatenated via the channel. Meanwhile, deformation offsets
are predicted via convolution 3×3. Finally, new features were
constructed by deformation convolution and skip connections.

In feature fusion, CNN and Transformer features are input into
the feature pyramid network. Specifically, Transformer features
are reshaped into 2D images and fused with CNN features using
addition operations and convolution 3×3. Then, from high to
low levels, the feature maps are fused and upsampled by
convolution 1×1 layer. Finally, classification prediction maps
can be output with two channels to represent the probability of
the background and road. The above process can integrate local
features and global context to enhance semantic information and
fine-grained spatial details.
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Figure 4.Multiscale deformable convolution head.

3. EXPERIMENTAL RESULTS AND DISCUSSION

This experimental configuration uses CPU i7-13700k and the
GPU with GeForce RTX 4070Ti. The deep learning framework
is Pytorch 1.7. This paper uses the Adam algorithm as the
optimizer in the gradient descent process. Momentum is set to
0.9, and weight attenuation is set to 0.00005. The initial
Learning rate of the experiment is set to 0.001. The piece-wise
constant attenuation method is used. When epoch is 15, 30, and
50, the learning rate is set to 0.0008, 0.0006, and 0.0005
respectively. In the experiment, the batch size was set to 64, and
the epoch was set to 120. In training, the image size was clipped
to 512× 512. Data augmentation uses brightness transformation
and Rotate 90°, mirror 180°. The dataset is divided into training
and testing sets in an 8:2 ratio, and all experiments were loaded
with pre-training weights on ImageNet.

3.1 Data Description

Gaofen satellite road dataset covers urban and suburbs in
Chengdu and Panzhihua, China, with a total coverage area of
over 2000 km2, as illustrated in Figure 5. The preprocessing of
Gaofen images includes radiometric calibration, atmospheric
correction, image fusion, and geometric correction. This dataset
significantly differs in the image's road texture, color,
environment, and imbalanced samples. Buildings and vegetation
obstruct the road. The Gao-fen 6 satellite images include
multispectral images (8m spatial resolution) with RGB and
near-infrared bands and panchromatic images (2m spatial
resolution). Finally, multispectral images with a spatial
resolution of 2 meters were used in the dataset.

The images are cropped to 512×512 pixels without overlap.
Datasets are randomly divided and selected as training samples
4200 and testing samples 600 and 1200 validation sets,
respectively. Figure 5(a) presents some training samples and
ground truth. Figure 5(b) presents the Gaofen images after
preprocessing. The details in different areas are enlarged in the
red rectangle.

(a)

(b)
Figure 5. The overview of the dataset.

3.2 Comparison with different methods

Some representative samples are visualized, as shown in Figure
6. Although the proposed method misclassifies some features in
the test images, it outperforms other advanced models. For
example, for suburban roads, as shown in the first row of the
image, UNet and Deeplabv3+ (Chen et al., 2017) cannot
segment complete road elements. In urban areas, these two
methods cannot accurately distinguish similar textures. Some
buildings were misclassified as roads. Segformer is very
sensitive to buildings and ground and has many
misclassifications. Moreover, it has poor discriminative ability
for road details and geometric shapes. In contrast, Swin-Unet
can extract complete road data, such as the results in the second
row. However, some objects with similar textures still have
weak predictive performance.

As reported in Table 1, quantitative results confirm that
DCTNet can effectively and automatically extract road features
from complex remote sensing backgrounds. DCTNet
outperforms DeeplabV3+ methods with IOU by 1.34% and OA
by 0.15% in the test1.

Test Datasets Test1 Test 2

Metrics OA(%) IOU(%) IOU(%) OA(%)
Swin-Unet 92.15 86.38 84.89 92.22
UNet 93.67 88.63 85.17 94.19

Segmenter 93.45 90.17 84.34 93.47
DeeplabV3+ 94.52 91.06 84.28 96.82
DCTNet 94.67 92.4 86.51 97.43

Table 1. Comparison Accuracy using different methods. The
bold values denote the best result.

As illustrated in the urban regions, the background environment
of the road changes complexly, and the shadows of buildings
and vegetation significantly obstruct the road, bringing
challenges for road extraction. Test 2 of Table 1 shows that the
Swin-Unet (Cao et al., 2022) extraction result is poor with
84.89% IOU, mainly since SwinUnet uses shallow features but
ignores refinement of information, resulting in loss of details. In
addition, due to the insufficient spatial consistency, poor
continuity of road extraction results exists with fractures and
omissions. The UNet (Siddique et al., 2021) model utilizes
high-resolution features to improve boundary segmentation, but
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Figure 6. The road extraction results using different methods

the extraction of road details is insufficient, which triggers
problems for small-scale road extraction. The DeepLabV3+
model introduces an ASPP module, which achieves multiscale
feature fusion, improves boundary accuracy, and has good
global integrity. However, the extraction is poor under shadows
and occlusion areas.

The performance between Segmenter and DeepLabV3+ models
in quantitative metric is not significant, but from the
visualization results, the UNet model has obvious spectral
texture and performs well in single road extraction. However,
due to the model's simplicity, its performance in road extraction
in complex environments is poor. The proposed model encoder
adopts the hybrid network and introduces a cascaded feature
fusion between the encoder and decoder, which outperforms the
DeepLabV3+ network in road extraction under shadow and
occlusion conditions. The visualization results of the model
extraction in this article indicate that integrating local and
global contexts can improve road accuracy.

4. CONCLUSION

This paper proposed a hybrid network model, DCTNet, that
combines the advantages of CNN and Transformer to extract
road information. To address the issues of insufficient
contextual semantics and low extraction accuracy, the DCTNet
improves the road extraction task using high spatial resolution
optical remote sensing images. This network constructs dual
branch encodes, which use the residual network and Swin-
Transformer to generate local and global context dependencies
for the overall road segmentation. The multiscale deformation
convolution module can enhance the model's adaptive
segmentation ability for complex shapes. The proposed model
can effectively and automatically extract road features from
complex remote sensing backgrounds, outperforming state-of-
the-art methods with IOU by 86.5% and OA by 97.4%.
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