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ABSTRACT 

Louisiana coastal wetlands contain about 37 percent of the estuarine herbaceous marshes in the conterminous United States. However, the 

combined effect of sea level rise and other anthropogenic factors have altered land use land cover over the last few years. This is true for 

two wetlands in coastal Louisiana, Barataria bay and Wax Lake delta. Barataria Bay, Louisiana, USA has experienced significant land loss. 

Updated information on the dynamics of change in these wetlands is limited and poorly documented. This information is necessary to 

develop strategies that will contribute to reversing and halting degradation. Thus, this study employed the Maximum Likelihood classifier 

on Landsat satellite imagery to assess land use and land cover changes in Barataria Bay and Wax Lake Delta, southeastern Louisiana, USA. 

The analysis revealed notable alterations in the land cover patterns over the study period. In Barataria Bay, there was a decrease in salt 

marsh areas with a corresponding increase in open water and Built-up area. In contrast, Wax Lake Delta demonstrated substantial 

land/wetland growth, with significant expansion of vegetation cover. The Maximum Likelihood classifier demonstrated high accuracy in 

classifying the land cover types, with an overall accuracy of 86% for Barataria Bay and 92% for Wax Lake Delta. These results highlight 

the effectiveness of the classifier in accurately identifying and mapping land cover changes in coastal environments. The findings contribute 

valuable insights for understanding the dynamics of coastal ecosystems and can inform decision-making processes for coastal management 

and conservation efforts. 

1.0 INTRODUCTION  

1.1 Coastal Wetlands and Coastal Louisiana 

Coastal wetlands include saltwater and 

freshwater wetlands located within coastal watersheds. They are 

characterized by hydricsoils, hydrophytic vegetation, and wetland 

hydrology(Andrew et al., 2012). They are one of the most 

productive, highly biological diverse ecosystems in nature.  

Coastal wetlands in Louisiana make up the seventh largest delta on 

Earth. They contain about 37 percent of the estuarine herbaceous 

marshes in the conterminous United States and support the largest 

commercial fishery in the lower 48 States (Glick et al., 2013; 

Couvillion et al., 2011). Two of the Mississippi river deltas, Wax 

Lake delta and Barataria Bay delta in Coastal Louisiana however 

have been undergoing changes to their land use and land cover. 

While Barataria bay is experiencing widespread degradation and 

submergence of its coastal wetlands and losing land because of 

complex interactions, the other, Wax Lake delta is pro-grading and 

constantly accreting sediments. It has been determined that total 

land loss in Louisiana's coastal zone is at least 4,300 ha/ year (Day 

et al.,  2021). Also, projected wetland loss over the next 20 and 50 

years within Barataria Basin (in which Barataria Bay lies) without 

actions, have been estimated to be another fifth of the basin's 

wetlands (Day et al.,  2021). The disappearance of wetlands 

throughout Barataria Basin would mean the loss of critical 

breeding, nesting, nursery, foraging, or overwintering habitat for 

economically important fish, shellfish, furbearers, migratory 

waterfowl, alligator, and several endangered species. Loss of 

wetland freshwater habitat and the accompanying trend toward 

higher salinities would lead to lower biodiversity and productivity. 

On the other hand, the Wax Lake Delta (WLD) is actively pro-

grading and actively accumulating mineral and organic sediment 

that increases soil surface elevation. These create succession and 

development of emergent wetland communities.  

1.2 Remote sensing and Geographic Information System 

In recent years, Remote sensing and Geographic information 

systems (GIS) have emerged as powerful tools for monitoring and 

analyzing changes in coastal wetlands. These technologies provide 

a cost-effective means of collecting and analyzing spatial data, 

making it possible to assess changes in land use, vegetation health, 

biomass, and carbon stocks at high spatial and temporal resolutions 

(Hussain et al., 2013; Tewkesbury et al., 2015). Remote sensing 

data can provide a wealth of information about land cover, land use, 

vegetation health, biomass, topography, and many other 

environmental parameters that can be used to track changes over 

time (Jensen et al., 2016; Jensen et al., 2021). This technology has 

revolutionized our ability to monitor and understand changes in the 

Earth's environment at local, regional, and global scales (Chughtai 

et al., 2021; Lawley et al.,  2016; LeBlanc, 2019). Previous studies 

have used remote sensing and GIS techniques to monitor changes 

in these wetlands. For example, data acquired from Lidar, Radar, 

hyperspectral images, high-resolution images, medium-resolution 

images, coarse-resolution images, and aerial photographs have 

been used to study dynamics of wetland ecosystems using different 

techniques. Kayastha (2012) used Landsat 8 data to map land use 

and land cover in the two wetlands and found that they were 

dominated by marsh vegetation, with a small percentage of open 

water, and agricultural and urban areas. Gao et al. (2014) used 

MODIS data to analyze the spatial and temporal patterns of 

vegetation greenness and found that the wetlands were 
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experiencing a decline in vegetation health over time due to a 

combination of natural and human factors. Wang et al. (2018) used 

Landsat 8 and Sentinel-2 data to estimate aboveground carbon 

stocks and found that the wetlands had high carbon stocks, with the 

highest stocks found in areas with high biomass densities. Despite 

these studies, there is still a need for continued monitoring and 

assessment of changes in these wetlands, especially in regions that 

are susceptible to climate change due to the ongoing threats they 

face. 

1.3 Remote Sensing Image classification 

Remote sensing image classification is a crucial task in various 

applications, including land cover mapping and environmental 

monitoring. Among the different classification techniques, the 

Maximum Likelihood (ML) algorithm stands out as a reliable and 

effective method, particularly in the context of classifying coastal 

wetlands. Coastal wetlands are ecologically important and 

sensitive areas that require accurate classification for their 

management and conservation. The ML algorithm, with its 

statistical approach, can effectively handle the complex spectral 

characteristics and mixed pixel problems commonly encountered 

in coastal wetland imagery. It utilizes the probability distributions 

of different classes, considering both spectral and spatial 

information, to assign pixels to their most likely classes. Studies 

have shown the success of the ML algorithm in accurately 

classifying coastal wetlands, achieving high classification 

accuracies, and supporting informed decision-making processes 

(Carle et al., 2014). Therefore, the ML algorithm proves to be a 

valuable tool for remote sensing image classification in coastal 

wetland environments. 

1.4 Objectives 

Thus, the study aims to assess the changes in land use land cover 

in Barataria Bay and Wax Lake Delta between 2010 and 2022 using 

Maximum Likelihood classification, as well as compare changes in 

land cover between two study sites from 2010 to 2022. 

It will build on previous research by providing updated information 

on the changes in land use-land cover in Barataria Bay and Wax 

Lake Delta between 2010 and 2022. The results will provide 

valuable information for researchers, policymakers, land managers, 

and conservationists working to protect and manage these 

wetlands. It will also contribute to the broader understanding of the 

application of remote sensing, GIS, and data science in monitoring 

and assessing changes in coastal wetlands. 

2.0 STUDY AREA DESCRIPTION 

2.1 Barataria Bay 

The Barataria Bay is in the lower Northeast side of the Barataria 

basin, southeastern Louisiana USA, located between Jefferson, 

Plaquemine, and Lafourche Parish (Figure 1). The coordinates are 

29.5783° N, 89.8897° W. It is an inlet of the Gulf of Mexico and 

surrounded by Salt Marshes. It is about 15 miles (24 km) long and 

12 miles (19 km) wide.  

Figure 1: Map showing location of Barataria bay in Jefferson 

Parish, Louisiana 

2.2 Wax Lake Delta 

The Wax Lake delta (WLD) is located at the mouth of the Wax 

Lake Outlet in St Mary Parish, Louisiana. The coordinates are 

29.5910° N, 91.4200° W (Majors, 2020). Wax lake delta is an 

artificial diversion of the Atchafalaya River that was built in 1941 

by the Army Corps of Engineers to protect the city of Morgan City, 

Louisiana from flooding (Carle, 2013).  Wax Lake outlet diverts 

water from the Atchafalaya River to the Gulf of Mexico. 

Figure 2: Map showing location of Wax-lake Delta in Saint Mary 

Parish, Louisiana 

The WLD is a real-world example of the potential land/wetland 

growth possible via sediment diversion project and one report 

claims that it is a field model for investigating the geomorphology, 

ecology, carbon dynamics, and carbon storage capacity in young 

prograding deltas. The Wax Lake Delta first emerged from 

Atchafalaya Bay following record flooding on the lower 

Mississippi River in 1973 and 1975. Since that time, it has 

continued to accrete both vertically and horizontally.  
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3.0 METHOD OF DATA COLLECTION  

3.1 Data Acquisition 

Landsat images covering 2010 and 2022 which are freely available 

for download at USGS earth explorer were used to compute 

analysis of Land use Land cover change in the study area to assess 

changes (Table 1).  

These satellite images were taken between April and August 

(except for March 2022) of these years because during these 

months the sky will be free from the hindrance of cloud, and it is 

the lushest season for plant growth, hence the satellite image will 

show a distinct feature among the land-use system clearly. The 

downloaded satellite images were in a tiff format.  

Satellite Date 

Laun

ched 

Data 

Acquired 

Resolution Source 

Landsat 5 2010 07-17-10 29.98 m TM https://eart

hexplorer.

usgs.gov 

Landsat 8 2013 04-19-13 29.98 m 

OLI/TIRS 

Landsat 8 2016 05-06-19 29.98 m 

OLI/TIRS 

Landsat 8 2019 05-13-13 29.98 m 

OLI/TIRS 

Landsat 9 2022 04-09-22 29.98 m 

OLI-2 

Table 1: Satellite Data  Characteristics and Source for Barataria 

and Wax Lake.  

3.2 Satellite Image Processing 

The Landsat satellite images of 2010 Thematic Mapper (TM), 

2013, 2016, 2019 Operational Land Image I (OLI-1) and 2022 

Operational Land Imager II (OLI-2) obtained, were subjected to the 

basic pre-processing enhancements. This preprocessing is 

necessary to adjust the data for use in quantitative analysis and it 

consists of geometric and radiometric corrections. Radiometric and 

geometric errors of the Landsat satellite images were removed to 

ensure data quality using ERDAS imagine software. The images 

used in this study were first converted to Top of Atmosphere 

(TOA) radiance using the equation below (Giannini et al., 2015). 

Lλ= LMAXλ-LMINQCALQCAL+LMIN  (1) 

Where: 

Lλ =Spectral radiance at the sensor's aperture [W/(m2 sr µm)] 

QCAL = Quantized calibrated pixel value [DN] 

QCALMIN = Minimum quantized calibrated pixel value 

corresponding to LMIN [DN] 

QCALMAX = Maximum quantized calibrated pixel value 

corresponding to LMAX𝝀) [DN] 

LMIN λ = Spectral at-sensor radiance that is scaled to QCALMIN 

[W/(m2 sr µm)] 

LMAX, = Spectral at-sensor radiance that is scaled to Qcalmax [W/ 

(m 2 sr µm)]. 

The above expression does not consider the atmospheric effects, 

therefore there is a need to convert images from radiance to 

reflectance measures, using the equation below (Giannini et al, 

2015).  

Ρλ = 
π ∗ (Lλ − Lp) ∗ d^2 

(ESUNλ ∗ cos(θz)
 (2) 

Where: 

ρλ represents the reflectance at a specific wavelength (λ). 

Lλ is the TOA radiance value at the same wavelength. 

Lp is the path radiance value, which represents the radiance from 

the atmosphere and surrounding environment. 

d is the Earth-Sun distance in astronomical units (AU). 

ESUNλ is the mean solar exoatmospheric irradiance for the 

specific Landsat sensor and spectral band. 

θz is the solar zenith angle, which is the angle between the zenith 

(vertical) and the direction to the sun. 

3.3 Image Classification 

Maximum Likelihood classification Algorithm and spectral values 

based on Vegetation indices and band ratios were used as integral 

part of the classification processes. The results of these operations 

make classification of the study area in pixels into different land 

cover types.  

3.4 Accuracy Assessment 

One of the most important final steps in the classification process 

is the accuracy assessment. The accuracy assessment aims to 

quantitatively determine how well the pixels were sampled in the 

appropriate land cover categories. In addition, locations that could 

be easily identified on the high-resolution. Google Earth and 

Google Map were used for selecting pixels for the accuracy 

assessment. In the classified image of the research area, a total of 

200 and 100 points were used for Barataria and Wax Lake 

respectively.  

The Overall accuracy, Producer accuracy, User accuracy and 

Kappa coefficient were obtained using the reference data from the 

established points. 

The accuracy assessment was determined using a confusion 

matrix.   

To evaluate how the classification has performed the Kappa 

Coefficient was generated using (Eq.4) from the confusion matrix.  

Also, the overall accuracy, users, and producer’s accuracy will be 

calculated using Eq.5,6, and Eq.7 respectively.     

Kappa Coefficient =
 total∗sum of correct−(sum of all (row total∗column total)

Total squared−[sum of all(row total∗column total)]
 (3) 

User accuracy =
Correctly Classified Pixels for a Class    x 100

Total Classified Pixels for that Class 
    (4) 

Producer accuracy=
Correctly Classified Pixels for a Class    x 100

Total Reference Pixels for that Class 

 (5) 

Overall accuracy =
Total Correctly Classified Pixels   x 100

Total Number of Pixels  
    (6) 
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4.0 RESULTS 

4.1 Land use Land cover change for Barataria Bay 

Figure 3: Map of Land use land cover change of Barataria Bay for 

2010  

Figure 4: Map of Land use land cover change of Barataria Bay for 

2022 

4.1.2 Land use land cover Classification Statistics for Barataria 

Bay 

Table 2. presents the classification statistics for five land cover 

categories for Barataria bay for the years 2010 and 2022. The 

numbers in the table represent the area in hectares.  

The area of built-up land increased from 12125.19 hectares in 2010 

to 12462.76 hectares in 2022. The area covered by fresh vegetation 

decreased from 72236.60 hectares in 2010 to 53388.31 hectares in 

2022. The area covered by Brackish/Saline vegetation type 

increased from 56333.50 hectares in 2010 to 59737.92 hectares in 

2022. The area covered by open water increased from 140948.51 

hectares in 2010 to 156686.46 hectares in 2022.  

The dominant category through the years was open water.   

Land cover class 2010 2022 

Built up 12125.19 12462.76 

Fresh Vegetation 72236.60 53388.31 

Swamp Vegetation 29680.60 29048.92 

Brackish/Saline 

Vegetation 

56333.50 59737.92 

Open Water 140948.51 156686.46 

Total 311324.40 311324.40 

Table 2. Tabular Illustration of Land use Land cover change 

statistics for Barataria Bay(hectare) 

4.1.3 Accuracy assessment 

Land 

cover 

Producer 

Accuracy 

(%) 

User 

Accuracy 

(%) 

Overall 

Accuracy 

(%) 

Kappa 

Coefficient 

(%) 

20

10 

202

2 

201

0 

202

2 

201

0 

202

2 

201

0 

202

2 

 B 93 97 96 94 89 92 86 89 

 FV 93 97 70 76 

 SV 83 83 94 98 

 BSV 80 83 77 86 

 OP 96 83 98 98 

Table 3. Tabular illustration of Accuracy assessment for Barataria 

Bay (2010 and 2022) 

**B,FV,SV,BSV,OP represent Built-up, Fresh marshes, Swamp 

vegetation, Brackish or saline vegetation, Open water vegetation 

respectively. 

The accuracy assessment report presents the results of land use land 

cover change (LULC) mapping in Barataria Bay for the years 2010 

and 2022. 

The overall accuracy of the LULC maps varied across the different 

years, with the highest being 92% in 2022 (Table 4) and the lowest 

being 89% in 2010 (Table 3). The user accuracy was variable 

across the different land cover classes, with the built-up area and 

open water categories showing the highest accuracy across both 

years. The producer accuracy was high for most categories, except 

for the brackish/saline vegetation and swamp vegetation categories 

in some years. 

The kappa coefficient ranged from 86% to 92%, indicating a 

substantial agreement between the maps and the actual land cover. 

This suggests that the classified maps are reliable and can be used 

for further analyses and decision-making processes related to land 

use management and conservation. 
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4.2 Land use Land cover change for Wax Lake Delta 

Figure 5: Map of Land use Land cover change for Wax Lake for 

2010 

Figure  6: Map of Land use Land cover change for Wax Lake for 

2022 

Table 5 shows the land use and land cover classification statistics 

for the Wax Lake Delta for the years 2010, and 2022. 

The data shows that the area covered by Swamp Vegetation has 

decreased over the years from 1,973.61 hectares in 2010 to 

1,660.68 hectares in 2022. The area covered by Fresh Vegetation 

increased from 2,732.4 hectares in 2010 to 3,153.24 hectares in 

2022 (Table 5, figure 5 and 6). The area covered by open water, an 

area of 10,700.3 hectares in 2010 decreased to 10,592.4 hectares in 

2022. Overall, the table suggests Wax Lake Delta has changed over 

the years, with decrease in Swamp Vegetation and open water  and 

increase in fresh vegetation land cover class (Fig. 5and 6). 

4.2.2 Land use Land cover Statistics for Wax Lake Delta 

Category 2010 2022 

Swamp Vegetation 1973.61 1660.68 

Fresh Vegetation 2732.4 3153.24 

Open Water 10700.3 10592.4 

Total 15406.3 15406.3 

Table 5: Tabular illustration of land use land cover classification 

statistics for Wax Lake Delta (2010-2022) 

4.2.3 Accuracy assessment for Wax Lake Delta 

Land 

cover 

Producer 

Accuracy 

(%) 

User 

Accuracy 

(%) 

Overall 

accuracy(

%) 

Kappa 

coefficient 

20

10 

202

2 

201

0 

202

2 

201

0 

202

2 

201

0 

202

2 

SV 87 77 90 92 93 90 89 85 

FV 90 90 90 79 

OP 10

0 

100 98 98 

Table 6: Tabular illustration of land use land cover classification 

accuracy assessment for Wax Lake Delta 2010 and 2022 

**FV,SV, OP represent Fresh vegetation, Swamp vegetation, and 

Open water land cover class respectively. 

Table 6 shows the accuracy assessment report for 2010 and 2022 

land cover classification. The land cover in 2010 shows that most 

of the land was covered by open water. The user accuracy for this 

class was 98%, indicating a high degree of confidence in the 

classification. The overall accuracy of the classification was 93%, 

with a Kappa coefficient of 0.89. 

In 2022, the user accuracy for the swamp vegetation and open water 

classes was 92% and 98%, respectively, while the user accuracy for 

the fresh vegetation class was 79% (Table 7). The overall accuracy 

of the classification was 90%, with a Kappa coefficient of 0.85, 

indicating a high degree of accuracy. 

Overall, the results suggest that the classification results were 

generally accurate, with high user accuracy and overall accuracy. 

The 2022 classification, however, had a slightly lower overall 

accuracy compared to 2010. 

5.0 DISCUSSION 

5.1 Land use Land cover Classification 

The classification statistics presented suggest that the land cover/ 

land use composition of Barataria bay ecosystem has undergone 

some changes over the years.  

The increase in the built-up area from 2010 to 2022 suggests that 

the development of infrastructure and urbanization has continued 

in the region. This trend is consistent with the overall growth in 

population and economic activities in the area, which was reported 

by the world population review.  

The increase in the open water area from 2010 to 2022 is likely due 

to a combination of natural and human factors. Sea-level rise, 

subsidence, and erosion can cause the loss of land and the 

conversion of wetlands to open water. Additionally, natural 

disasters such as hurricanes can cause significant changes in the 

landscape. Human activities such as oil and gas exploration and 

navigation can also cause the conversion of wetlands to open water 

(Barras et al., 2003). The 2010 Deepwater Horizon oil spill, 2011 

Mississippi River floods, 2012 Hurricane Isaac are some of the 

natural and manmade disasters that may have contributed to loss of 

land and increase in open water within this time. Couvillion et 

al.(2011), Mendelssohn et al.(2012) and Turner et al. (2019) all 

reported that after the deep-water spill in 2010, there were observed 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-3-2023 
ASPRS 2023 Annual Conference, 13–15 February & 12–15 June 2023, Denver, Colorado, USA & virtual

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-3-2023-57-2023 | © Author(s) 2023. CC BY 4.0 License. 61



changes in the vegetation community, structure, and land areas in 

coastal wetlands of Louisiana. 

The decrease in the freshwater vegetation area from 2010 to 2022 

is concerning as freshwater vegetation are part of critical wetlands 

that plays an important role in protecting the shoreline from 

erosion, reducing storm surge impacts, and providing habitat for 

many species. Wetlands also act as a carbon sink, helping to 

mitigate the effects of climate change. The loss of wetlands is a 

significant environmental concern, and efforts are being made to 

restore and protect wetlands in these region (Lane et al., 2021; Li 

et al.,2020; Liu et al., 2020; Keim et al., 2019) 

Overall, it is evident that Barataria Bay has increased in the open 

water and built-up areas land cover category but decreased in the 

forest and marsh categories. 

There have been several similar studies conducted in Louisiana to 

assess changes in coastal ecosystem composition over time. One 

such study conducted in the whole of Barataria Basin found that 

between 1932 and 2010, there was a net loss of approximately 

287,000 hectares of wetlands and an increase in open water areas 

due to natural and human-caused factors such as sea-level rise, 

subsidence, erosion, and oil and gas extraction (Turner et al., 

2018). Another study conducted in the Mississippi River delta 

region found that between 1984 and 2016, there was a net loss of 

approximately 490,000 hectares of wetlands and an increase in 

open water areas due to factors such as sea-level rise, subsidence, 

sediment diversion, and dredging (Melancon et al., 2020). This 

studies have similar share similar trends with our findings. The 

difference observed may be due to the size of the area under study 

and number of years of observation.   

Also, similar studies have been conducted in other coastal regions 

to assess changes in ecosystem composition over time. One such 

study conducted in the Florida Everglades found that between 1995 

and 2005, there was a net loss of approximately 33,000 hectares of 

wetlands and an increase in open water areas due to human 

activities such as agriculture, urbanization, and water management 

practices. This area of about 600,000 hectares is larger than the area 

under study but has same year of observation (10years). However, 

the loss observed is about the same ratio as the loss observed in the 

study area. 

Another study conducted in the Chesapeake Bay found that 

between 1984 and 2010, there was a net loss of approximately 

84,000 hectares of wetlands and an increase in open water areas 

due to factors such as sea-level rise, shoreline erosion, and human 

activities such as development and navigation (Chesapeake Bay 

Program, 2016). 

These studies, including the one presented in the table for Barataria 

Bay, highlight the significant changes in ecosystem composition 

that are occurring in coastal regions around the world. The loss of 

wetlands and the conversion of these areas to open water are of 

particular concern due to the important ecological functions that 

wetlands provide, including water filtration, carbon storage, and 

habitat provision for many species. Efforts are being made to 

restore and protect wetlands in Louisiana through initiatives such 

as the Coastal Wetlands Planning, Protection, and Restoration Act 

and the Louisiana Coastal Master Plan. These initiatives involve 

the collaboration of government agencies, non-governmental 

organizations, and local communities to address the complex issues 

surrounding wetland loss and ecosystem restoration in Louisiana. 

5.2 Accuracy Assessment 

Based on the results of the accuracy assessment for land use land 

cover changes in Barataria Bay from 2010 to 2022, there were 

slight changes in the classification accuracy of the different land 

cover categories over time. Overall, the accuracy of the 

classification was high, with an overall accuracy ranging from 89% 

to 93% and a Kappa coefficient ranging from 86% to 92%. 

One possible reason for the high classification accuracy is the use 

of high-resolution satellite imagery and advanced image 

classification techniques. The availability of high-resolution 

imagery allows for more detailed analysis and mapping of land 

cover changes, while advanced classification techniques such as 

maximum likelihood classification and object-based classification 

can improve the accuracy of the results by accounting for spectral, 

spatial, and contextual information (Jensen et al., 2019) 

Other studies have also reported high classification accuracy using 

similar methods. For example, in a study of land use and land cover 

changes in the Pearl River Delta region of China using Landsat 

imagery, Zhang et al. (2017) reported an overall accuracy of 90.1% 

using maximum likelihood classification. Similarly, Ahmed and 

Ouegan. (2012) reported an overall accuracy of 92% using object-

based classification. 

In addition, the high classification accuracy in Barataria Bay may 

be attributed to the use of ground truth data for accuracy 

assessment. Ground truth data collected through field surveys and 

ground-based instruments can provide accurate and reliable 

information about land cover types and conditions, which can be 

used to validate and improve the accuracy of remote sensing data. 

These findings are consistent with other studies that have reported 

high classification accuracy using similar methods. 

6.0 CONCLUSION AND RECOMMENDATION 

Coastal wetlands are a critical but highly vulnerable ecosystem. It 

is important to continue to find better ways to manage coastal 

wetlands. Managing wetlands requires constant monitoring, to 

track changes that may become detrimental to the overall health of 

wetlands. Monitoring also helps proffer solutions that can reverse 

degradation to wetlands.  

For this study, remote sensing and GIS were used to assess land use 

land cover, it was found that these two wetlands Barataria Bay and 

Wax Lake Delta have both changed tremendously in the past 

twelve years. While it is correct to say that Wax Lake delta is 

actively pro-grading, it is important to note that our studies have 

shown that it is not totally immune to Land loss as well.  To keep 

the current trends and possibly make the current situation in Wax 

Lake delta better, it is very important to continue to monitor, 

constantly.  

Maximum likelihood algorithm continues to be a highly effective 

approach for change detection in land use land cover studies for 

coastal areas. The moderately high accuracy result in these studies 

is evidence of that.  

Overall, findings from these study prove the importance of 

monitoring changes in coastal wetlands, with land cover showing 

different dynamics. The changes observed in the two wetlands can 

be attributed to a varying range of socioecological factors including 
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storm surge and hurricanes. Future changes to land cover will mean 

a further loss of biomass, biodiversity, and carbon stock vis-a 

vis social, economic loss at regional and global scale. Thus, it is 

critical to continue to monitor and track changes in these sentinel 

wetlands to better mitigate against future anthropogenic and natural 

disasters. 

Future research needs to look at important areas like assessing 

sequestration capacity and carbon content of the remaining 

wetlands in Louisiana. 
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