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ABSTRACT: 

 

Training Deep Learning (DL) algorithms for segmenting features require hundreds to thousands of input data and corresponding 

labels. Generating thousands of input images and labels requires considerable resources and time. Hence, it is common practice to 

use opensource imagery data and labels available online. Most of these open-source data have little or no metadata describing their 

quality or suitability making it problematic for training or evaluating DL models. This study evaluated the effect of data quality on 

training DeepLabV3+, using Sentinel 2 A/B RGB images and labels obtained from Kaggle. We generated subsets of 256 x 256 

pixels, and 10% of these images (802) were set aside for testing. First, we trained and validated the DeepLabV3+ model with the 

remaining images. Second, we removed images with incorrect labels and trained another DeepLabV3+ network. Finally, we trained 

the third DeepLabV3+ network after removing images with turbid water or with floating vegetation. All three trained models were 

evaluated with test images and then we calculated accuracy metrics. As the quality of the input images improved, accuracy of the 

predicted masks generated from the first model increased from 92.8% to 94.3% in the second model. The third model’s accuracy was 

96.4%, demonstrating the network’s ability to better learn and predict water bodies when the input data had fewer class variations. 

Based on the results we recommend assessing the quality of open-source data for incorrect labels and variations in the target class 

prior to training DeepLabV3+ or any other DL network. 
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1. INTRODUCTION 

Image segmentation, particularly semantic image segmentation, 

is a crucial task in computer vision. This process involves 

labelling each pixel in an image with a class, thereby providing 

a detailed understanding of the image at a granular level. 

Semantic image segmentation has broad applications ranging 

from autonomous driving to remote sensing (Subramanian et 

al., 2022) (Ramiya et al., 2016), medical image analysis, and 

robotics (Badrinarayanan et al., 2017) (Long et al., 2015) (Zhao 

et al., 2017). 

 

One of the state-of-the-art architectures that have significantly 

impacted the field of semantic image segmentation is 

DeepLabV3+ (Chen et al., 2018) (Sunandini et al., 2023). This 

architecture combines the strengths of atrous convolutions, 

spatial pyramid pooling modules, and an encoder-decoder 

structure, thereby enhancing boundary detection and dealing 

with objects of different scales effectively (Yang et al., 2018) 

(George et al., 2023).  

 

However, the performance of DeepLabV3+ like any other deep 

learning model depends on the quality of the training data. The 

more accurate and diverse the training data, the better the 

model’s performance in segmenting images (George et al., 

2023). This relationship is particularly noticeable in tasks such 

as segmenting water bodies from satellite images, which form 

the focus of this study (Harika et al., 2022).  

 

Our objective is to delve deeper into this dependency on data 

quality. We investigate the influence of the quality of data while 

training the DeepLabV3+ algorithm for segmenting water    

bodies from satellite images. We scrutinize scenarios where 

there is a mismatch in the mask of the training data or when the 

training data consists of mixed water quality, such as clear and 

turbid water or water with floating vegetation. It is essential to 

understand whether excluding such cases would improve or 

degrade the model’s performance (Jean et al., 2019) (Harika et 

al., 2022). 

 

There is a general belief that cleaner and more consistent 

training data leads to better performance in machine learning 

models. However, when dealing with real-world scenarios, such 

as satellite image segmentation, data inconsistencies are often 

the norm rather than the exception. Hence, it is important to 

understand the behaviour of models like DeepLabV3+ under 

these circumstances, as they reflect realistic conditions that 

these models would encounter in actual deployments (Volpi and 

Tuia, 2016). 

 

In the following sections, we present our findings, shedding 

light on the influence of data quality on the performance of 

DeepLabV3+ in the task of segmenting water bodies from 

satellite images. 
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2. MATERIALS AND METHODS 

2.1 Dataset 

This study utilizes an open-source Kaggle dataset that contains 

satellite images and masks captured by the Sentinel-2A and 

Sentinel2B satellite. The images and the mask in the dataset 

have three bands of image: red (R), green (G), and blue (B), 

allowing to capture both the spectral and spatial information 

essential for analysis. Figure 1 represents the RGB image and 

the corresponding water class and no water class mask. 

 

 

  
 

Figure 1. Sample RGB (left) image and the corresponding mask 

with water class shown in white pixels (right). 

 

2.2 Data Processing 

Dataset consists of images and masks of varying sizes, to 

maintain uniformity and avoid bias in training the model, 

various sizes were resized to 256x256 pixels. This resizing 

ensures consistency in the data, allowing for efficient 

processing and analysis. The masks are recoded, where 

background pixels were labelled as 0, representing areas 

without water, while water pixels were labelled as 1, indicating 

the presence of water.  

 

The dataset is split into three sets after being resized and 

recoded as training, testing, and validation, in a ratio of 

80:10:10. The training set, includes 80% of the data, which is 

used to train the model. The testing set, includes 10% of the 

data, is used to evaluate how well the model performs on new, 

unseen images.  

 

The validation set, also includes 10% of the data, is used to 

measure model’s performance after each iteration and is helpful 

in adjusting the hyperparameters based on the feedback from 

the validation set. Splitting the dataset into separate sets allows 

for thorough model development and ensures that the model is 

tested on unbiased data to assess its ability to classify water 

effectively. 

 

2.3 Data Refining 

In the process of data refining, the objective was to enhance the 

performance of the model. To achieve this, three separate 

experiments are conducted, where each experiment involves 

training a new instance of DeeplabV3+.  

 

These experiments aim to refine the data by incorporating 

various techniques such as removing images with mismatched 

masks and floating vegetation images. Table 1 contains 

information about the number of images used in the 

experiments. 

 

 

 Training Testing Validation 

Experiment - 1 6422 802 802 

Experiment - 2 4841 593 611 

Experiment - 3 2916 364 353 

 

Table 1.  Image count for each experiment after refining 

 

2.3.1 Experiment 1: This dataset included all images with 

correct and incorrect masks and those with mixed water quality. 

Only the pre-processing described earlier as resizing to 256x256 

was performed in this experiment and no refinement of data was 

made. 

 

2.3.2 Experiment 2: From the original dataset, images with 

incorrect masks were removed to ensure that network learns 

from correct masks. After removing incorrect masks, the model 

with accurate training data will be helpful for giving better 

segmentation results. In Figure 2, it can be inferred that there is 

land in image, but NDWI (Normalized Difference Water Index) 

predicted land as water in mask. 

 

 
 

Figure 2. Sample RGB (left) image and the incorrect mask 

(right) where land was identified as water. 

 

2.3.3 Experiment 3: For the final experiment, images 

containing mixed water quality such as turbid water images and 

floating vegetation images were removed. This also resulted in 

addressing class imbalance. The dataset originally contained 

fewer samples for turbid and floating vegetation compared to 

images depicting good quality water. By removing these fewer 

samples, the dataset was refined to enhance the model’s 

performance. Figure 3 and Figure 4 turbid water image and 

floating vegetation image with respective masks. 

 

 
 

Figure 3. Sample RGB (left) image and corresponding mask 

(right) of a turbid water body. 
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Figure 4. Sample RGB (left) image and corresponding mask 

(right) of water body with floating vegetation. 

 

2.4 Selection of DeepLabV3+ Architecture for Water Body 

Segmentation 

DeepLabv3+ has distinguished itself as a potent tool for 

semantic image segmentation, a technique that assigns every 

pixel of an image to a specific class label, facilitating intricate 

analysis of images. The model’s application ranges from 

augmenting the perception capability of autonomous vehicles to 

improving the precision of medical diagnoses. The choice of 

DeepLabv3+ for this study lies in its exceptional architecture 

that accommodates various scales and contexts within images 

and its proficiency in capturing details regardless of scale, a 

characteristic that aligns with the properties of our dataset. 

  

The architecture of DeepLabv3+ incorporates an advanced 

Atrous Spatial Pyramid Pooling (ASPP) module and an 

encoder-decoder structure. This combination aids in 

maximizing the contextual information derived from the images 

while ensuring that fine details are not lost. The foundation of 

this architecture is the Exception model, a high-performing 

convolutional neural network used to extract preliminary 

features from input images.  

 

The ASPP module, the core of the DeepLabv3+ architecture, 

utilizes filters at diverse scales concurrently. This technique 

enables the model to capture contextual information from 

different sized areas in the image, an indispensable feature for 

our dataset, given the varying sizes of water bodies. Once this 

multi-scale feature extraction is complete, these features 

become inputs for the decoder. 

 

The decoder’s role in the DeepLabv3+ architecture is to refine 

the segmentation results using the extracted features. It up 

samples these feature maps to a higher resolution and combines 

them with earlier-stage feature maps from the network. This 

blend of high-level contextual information and detailed spatial 

information allows the decoder to generate precise and granular 

segmentation maps.  

 

The output from DeepLabv3+ is a categorically labelled image, 

noted for its crisp object boundaries and comprehensive 

contextual understanding. The incorporation of state-of-the-art 

techniques such as depth-wise separable convolutions enhances 

its computational efficiency. As a result of this, and by 

leveraging the capabilities of the ASPP module and the 

encoder-decoder structure, DeepLabv3+ serves as an ideal 

choice for our study, providing a perfect blend of efficiency and 

accuracy for the task of water body segmentation. 

 

2.5 Accuracy and Loss plots 

Accuracy and loss plots provide valuable insights into the 

learning process of a model during training. As training 

progresses, the model adjusts its parameters to improve 

accuracy and reduce loss. With more epochs, accuracy improves 

as the model learns the data's patterns. Ideally, validation 

accuracy converges with training accuracy, indicating effective 

generalization. Loss decreases as the model's predictions align 

better with true values. Eventually, the reduction in loss flattens 

as the model captures most relevant patterns and further 

adjustments have diminishing returns. 

 

2.6 Metrics 

Relying solely on accuracy as the sole evaluation metric may 

lead to an incomplete assessment of model performance, 

particularly in scenarios involving imbalanced datasets. While 

accuracy considers both classes, precision, recall, and F1 score 

focus specifically on the target class.  

 

TP+TN
Accuracy=

TP+TN+FP+FN
                                               (1) 

 

Precision quantifies the proportion of correctly predicted 

positive instances relative to the total predicted positives, 

whereas recall measures the proportion of true positive (TP) 

instances identified by the model.  

 

TP
Precision=

TP+FP
                                                            (2) 

 

TP
Recall=

TP+FN
                                                                (3) 

 

F1 score harmonizes precision and recall into a single metric, 

providing a balanced assessment that accounts for both false 

positives (FP) and false negatives (FN).  

 

 

2*Precision*Recall
F1-Score=

Precision+Recall
                                     (4) 

 

By incorporating precision, recall, and F1 score alongside 

accuracy, a more comprehensive and nuanced understanding of 

the model’s performance within the target class can be attained, 

enabling more informed decision-making. 

 

 

3. RESULTS 

3.1 Experiment 1: 

The accuracy plot obtained when DeepLabV3+ was trained 

with all images (n = 6422), shows a gradual increase in the 

accuracy around 90% (Figure 5). However, the loss values 

shown in Figure 6 remain relatively high, indicating that the 

model faced some challenges in reducing its errors. The metrics 

obtained for this experiment are summarized in Table 2. 
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Figure 5. Accuracy plot when DeepLabV3+ network was 

trained with all RGB images (n = 6422). 

 

 
 

Figure 6. Loss plot when DeepLabV3+ network was trained 

with all RGB images (n = 6422). 

 

 

3.2 Experiment 2: 

The accuracy plot obtained when DeepLabV3+ was trained 

after removing RGB images with incorrect masks (n = 1581), 

shows an improvement in the model accuracy (Figure 7). The 

accuracy value steadily improved and reached approximately 

95%. 

 

 
 

Figure 7. Accuracy plot when DeepLabV3+ network was 

trained with RGB images with correct masks (n = 4841). 

 

 

 
 

Figure 8. Loss plot when DeepLabV3+ network was trained 

with RGB images with correct masks (n = 4841). 

 

However, the loss values remain relatively higher (Figure 8), 

indicating that the model continues to encounter challenges in 

minimizing its errors. In terms of evaluation metrics, a marginal 

change is observed in the results. 

 

3.3 Experiment 3: 

When DeepLabV3+ was trained with images of clear water 

bodies and correct masks, the accuracy and loss plots 

demonstrate remarkable improvement. Despite using fewer 

images, the overall accuracy surpassed 95% (Figure 9). This 

demonstrated that the model’s ability to generalize improved 

when there was less variation in the training data.  

 

 

 

Figure 9. Accuracy plot when DeepLabV3+ was trained with 

RGB images of clear water bodies (n = 2916). 

 

Moreover, the convergence of accuracy and loss closely 

matches the training accuracy, showcasing the model’s 

robustness. This indicates enhanced learning capabilities 

compared to the previous experiments, evident in the gradual 

decrease in loss over time (Figure 10).  
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Figure 10. Loss plot when DeepLabV3+ was trained with RGB 

images of clear water bodies (n = 2916). 

 

Precision score increased to 0.9792 from 0.4827 when RGB 

images of turbid water and floating vegetation were removed 

(Table 2). Recall and F1 scores also increased in the 3rd 

experiment. Metrics obtained for all three experiments are 

summarized in Table 2. 

 

 

 Precision Recall F1-Score Accuracy 

Experiment - 1 0.4692 0.3362 0.361 0.928 

Experiment - 2 0.4827 0.3555 0.3900 0.943 

Experiment - 3 0.9792 0.7511 0.8205 0.963 

 

Table 2. Evaluation results for experiments 

 

The enhanced performance of the model underscores the 

importance of dataset cleaning and its influence on training 

deep learning models for image segmentation tasks.  

 

 

4. CONCLUSION 

In this study, we investigated the influence of data refinement 

on model predictions. Our findings underscore the importance 

of data quality in improving model performance. Prior to 

refining the data, the model achieved a precision of 0.4692. 

However, after implementing data refinement techniques, 

including the removal of mismatched masks and mixed water 

quality images, notable improvements in precision were 

observed. The precision increased to 0.4827 after removing 

mismatched masks and further improved to an impressive 

0.9792 after excluding mixed water quality images. These 

results highlight the significance of addressing data quality 

issues to enhance model accuracy and reliability. By prioritizing 

data refinement, researchers and practitioners can optimize 

model performance and minimize potential errors. Overall, this 

study underscores the crucial relationship between data quality 

and model predictions, emphasizing the need for meticulous 

data refinement to achieve more accurate and reliable results. 
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