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ABSTRACT: 

Most computer vision and photogrammetry applications rely on accurately estimating the camera pose, such as visual navigation, 

motion tracking, stereo photogrammetry, and structure from motion. The Essential matrix is a well-known model in computer 

vision that provides information about the relative orientation between two images, including the rotation and translation, for 

calibrated cameras with a known camera matrix. To estimate the Essential matrix, the camera calibration matrices, which include 

focal length and principal point location must be known, and the estimation process typically requires at least five matching points 

and the use of robust algorithms, such as RANSAC to fit a model to the data as a robust estimator. From the usually large number 

of matched points, choosing five points, the Essential matrix can be determined based on a simple solution, which could be good 

or bad. Obtaining a globally optimal and accurate camera pose estimation, however, requires additional steps, such as using 

evolutionary algorithms (EA) or swarm algorithms (SA), to prevent getting trapped in local optima by searching for solutions 

within a potentially huge solution space. 

This paper aims to introduce an improved method for estimating the Essential matrix using swarm particle algorithms that are 

known to efficiently solve complex problems. Various optimization techniques, including EAs and SAs, such as Particle Swarm 

Optimization (PSO), Gray Wolf Optimization (GWO), Improved Gray Wolf Optimization (IGWO), Genetic Algorithm (GA), Salp 

Swarm Algorithm (SSA) and Whale Optimization Algorithm (WOA), are explored to obtain the global minimum of the reprojection 

error for the five-point Essential matrix estimation based on using symmetric geometric error cost function. The experimental 

results on a dataset with known camera orientation demonstrate that the IGWO method has achieved the best score compared to 

other techniques and significantly speeds up the camera pose estimation for larger number of point pairs in contrast to traditional 

methods that use the collinearity equations in an iterative adjustment. 

 

 

1. INTRODUCTION 

The determination of camera relative orientation is an 

important aspect in the fields of photogrammetry and 

computer vision, particularly in applications such as SfM, 

surface extraction, SLAM, and vision-based localization and 

navigation. In order to accomplish this, it is crucial to 

accurately estimate the relative orientation between images 

obtained from either a single camera (Kalantari et al., 2011) 

or multiple cameras (Zhao et al., 2017). This can be 

accomplished using the classical bundle adjustment or by 

employing the fundamental/essential matrix camera model 

based pose estimation. The essential matrix, which describes 

the geometric relationship between a pair of images, can be 

estimated using a variety of methods such as direct 

(Kalantari et al., 2011, Stewenius et al., 2006) or iterative 

methods (Helmke et al., 2004); both need a good initial 

values. The essential matrix-based estimation has become 

more important recently as it can be easily implemented in 

real-time applications. The RANSAC algorithm is often 

used to remove outliers and find the optimal model. The 3 x 

3 essential matrix provides information about the rotation 

and translation between two cameras (Longuet-Higgins, 

1981). Various methods have been developed for solving the 

problem of estimating the essential and fundamental 

matrices based on the number of corresponding points. In the 

case of calibrated cameras, the essential matrix can be 

directly computed since the camera matrix is known. 

However, for uncalibrated cameras where the camera matrix 

or interior parameters, focal length and principal point are 

unknown, the fundamental matrix estimation is used 

(Botterill et al., 2011). Note that image deformation due to 

lens distortion is always assumed to be removed prior. To 

determine the essential matrix, at least five-point 

correspondence is required and typically RANSAC is used 

to fit the model (Kruppa, 1913); note that seven-point and 

eight-point algorithms are also popular. The Levenberg-

Marquardt optimization algorithm is utilized by some 

methods, such as (Botterill et al., 2011), which is repeatedly 

applied with random points to obtain the essential matrix. 

The first five-point algorithm for estimating the essential 

matrix was introduced by (Kruppa, 1913), which had eleven 

solutions and was later improved by (Faugeras and 
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Maybank, 1990) to have ten solutions. Additionally, (Nister, 

2004) was the first algorithm that was well-suited for 

numerical implementation, using the roots of the tenth-

degree polynomial. Accumulative errors are a major concern 

with the relative orientation of cameras in many 

applications, i.e., the errors increase with images/time; 

especially when a longer strip or block is formed for 

navigation purposes. The bundle adjustment is commonly 

used as a least squares solution for simultaneously orienting 

multiple images as well as estimating measured point 

coordinates in a mapping frame. However, without an 

accurate initial guess and ground control, it may lead to 

potential bending of the image strip/navigation path or even 

divergence. In pose estimation, identifying a good cost 

function and finding a minimum (global) of that cost 

function is a difficult task, and one must avoid the situation 

where the direct or iterative methods get stuck at a local 

minimum. The objective of this current study is to minimize 

the reprojection error (Butt et al., 2018) and obtain the global 

optimal solution. A cost function is shown in Equation 1 for 

the five-point essential matrix estimation 

 

                            ∑  𝑖 𝑑(𝑥𝑖 , 𝑥𝑖)
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. Figure 1. Symmetric geometric error 

 

where xi and 𝑥𝑖  are two corresponding points in the two 

images, and 𝑥𝑖
′ and 𝑥𝑖

′
 are assumed to be correct 

corresponding points under the constraint (E is the 

Essential matrix): 

                                   x′
i
TExi = 0                                    (2) 

The cost function chosen for this study is the Symmetric 

geometric error cost function, see Equation 3 (Butt et al., 

2018): 
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In this study, two types of global optimization techniques, 

namely evolutionary algorithms (EA) and swarm 

algorithms (SA), are examined for their effectiveness in 

solving optimization problems (Nakane et al., 2020). EAs 

and SAs are classified as metaheuristic optimization 

algorithms, which use an initial candidate solution and 

create random solutions to search for a solution in the 

solution space. They evaluate the solutions using cost 

functions to avoid being trapped in local minima (Saremi 

et al., 2017). Population-based metaheuristics 

optimization has advantages such as simplicity, 

flexibility, and the ability to avoid local optima, making 

it an important optimization and search technique (Saremi 

et al., 2017). EAs are based on the principle of survival of 

the fittest, while SAs are inspired by natural phenomena, 

such as animal behaviours. Examples of SAs include 

Gray Wolf Optimization (GWO) and Whale Optimization 

Algorithm (WOA). These techniques do not require 

gradient or derivative search spaces to obtain optimal 

solutions, thus avoiding expensive or derivative 

computations. To efficiently estimate the camera pose, 

genetic and swarm particle algorithms are used to 

improve the estimation of E, i.e., to reduce the error in the 

camera pose as well as being computationally 

inexpensive. Our experimental results demonstrate that 

the Improved Gray Wolf optimization (IGWO) technique 

outperforms the other techniques. 

2. EVOLUTIONARY ALGORITHMS 

As depicted in Figure 2, Evolution algorithms are part of the 

population-based Metaheuristics algorithm family, 

alongside Swarm particle algorithms that emulate animal 

behaviors. Population based Metaheuristics algorithms 

utilize multiple candidate solutions to locate the optimal 

solution while preventing local optima. Metaheuristic 

algorithms are mostly inspired by the biological evolution 

process (Michalewicz and Schoenauer, 1996). 

 

Figure 2. Classification of Metaheuristics algorithms 

2.1 Genetic algorithm 

The genetic algorithm (GA) is a specific type of 

evolutionary algorithm that simulates the process of 

biological evolution in the numerical domain. It is 

commonly utilized for solving optimization problems and 

is strongly influenced by the Darwinian theory. 

Introduced by (Michalewicz and Schoenauer, 1996), the 

GA can be used to solve a variety of problems. All 

evolutionary algorithms commence with initialization, 

which involves generating random solutions for 

optimization problems. In the case of the GA, an initial 

population of randomly generated solutions to the 

optimization problem is created. For instance, the initial 

guess of the Essential matrix is used to initialize a 

population of random solutions. Subsequently, the initial 

population is passed to the evolution loop, which is 

illustrated in Figure 3; note that the algorithm iterates 

through the loop until certain criteria are met. 

 

In the first step of the loop, the selection is performed 

based on the cost function, where members of the initial 
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population with the best cost function are chosen using 

various selection criteria such as Roulette Wheel selection 

(Jebari and Madiafi, 2013). The better members of the 

population influence the selection criteria, with superior 

individuals having a higher chance of being selected. The 

algorithm then undergoes a reproduction process where 

offspring are generated by combining parent solutions, 

much like in nature. The offspring may cooperate to create 

new solutions that are potentially better than that of their 

parents and inherit their advantages. The processes of 

mating and crossing over are simulated to produce 

offspring, which can be performed in various ways, such 

as single-point crossover, double-point crossover, and 

uniform crossover (Soon et al., 2013). The mutation 

process randomly alters certain genes to enable the 

algorithm to explore and create innovative solutions to the 

problem. Another selection process is conducted using the 

population of offspring and the initial population of 

parents, thus completing the evolution loop. The 

algorithm terminates execution based on the termination 

criteria. The flowchart of the GA algorithm is presented 

in Figure 4. 

 

Figure 3. Evolution algorithm loop 

 

 

Figure 4. Flowchart of GA algorithm 

3. PARTICLE SWARM ALGORITHMS 

3.1 Particle swarm optimization (PSO) 

Particle swarm algorithms (PSO) belong to the category of 

population based Metaheuristics optimization algorithms, 

which are inspired by the social behavior of intelligent 

swarms, such as packs of wolves, fish schools and bird 

flocks were first introduced by (Eberhart and Kennedy, 

1995, Kennedy and Eberhart, 1995). The PSO algorithm 

aims to search the solution space based on the cost or 

objective function and needs an initial guess of the solution. 

The swarm members positions and velocities are updated 

based on the environment’s changing conditions and 

response (Wang et al., 2018). The swarm continues to search 

for the optimal solution with unrestricted movement in the 

search space, while maintaining stable movement. However, 

if there is a significant change in the search process, the 

swarm can adjust its movement. In PSO, each member of the 

swarm is a particle representing a potential solution in the 

search space and is initiated randomly from the initial guess. 

The movement of the particles (position and velocity) is 

determined based on the cost function values (Blackwell et 

al., 2007). Additionally, each particle can remember its 

optimal position, pbest, and update its new position and 

velocity based on the swarm’s global optimal position, gbest, 

as shown in the following steps: 

 

vx = vx−2×rand×( pbestx −x)+2×rand×( gbestx −x) (4) 

                                 x = x + vx                                     (5) 

 

The flowchart in Figure 5 explains the PSO steps to get the 

global optimal solution. 

 

Figure 5. Flowchart of PSO algorithm 
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3.2 Gray Wolf Optimization (GWO) 

The Gray Wolf Optimization (GWO) algorithm, as 

described in (Mirjalili et al., 2014), is a type of 

Metaheuristic optimization algorithm inspired by the 

hunting behaviour of grey wolves (Canis lupus). The 

algorithm emulates the leadership hierarchy in a pack 

of wolves, which is divided into four types of wolves: 

alpha α, beta β, delta δ, and omega ω. Alpha is the 

leader and responsible for decision-making and 

managing the pack and is considered the fittest 

solution. Beta is the second-best solution and serves 

as an advisor to the leader. Delta plays a crucial role 

in the pack by functioning as hunters, scouts, and 

sentinels, and is considered the third-best solution. 

Omega is the rest of the candidate solutions and serves 

to protect the pack. The GWO algorithm begins with 

a random initial solution, or population, that contains 

candidate solutions with information about the 

solution space. The algorithm then evolves over time 

through iterations based on information sharing to 

avoid getting stuck in a local optimum solution. The 

algorithm follows the phases of hunting, which 

include tracking, chasing, pursuing, and encircling the 

prey, until finally attacking the prey, as shown in 

Figure 6. 

 

Figure 6: Grey wolves hunting behaviour and their possible 

next locations in 2D and 3D positions. 

 

These three best solutions (α,β, and δ) help the other 

candidates to update their positions (solutions). The 

following equations are utilized to get the optimal solution. 

 

 

�⃗⃗� 𝛼 = |𝐶 1 ⋅ 𝑋 𝛼 − 𝑋 |, �⃗⃗� 𝛽 = |𝐶 2 ⋅ 𝑋 𝛽 − 𝑋 |, �⃗⃗� 𝛿 = |𝐶 3 ⋅ 𝑋 𝛿 − 𝑋 |

𝑋 1 = 𝑋 𝛼 − 𝐴 1 ⋅ (�⃗⃗� 𝛼), 𝑋 2 = 𝑋 𝛽 − 𝐴 2 ⋅ (�⃗⃗� 𝛽), 𝑋 3 = 𝑋 𝛿 − 𝐴 3 ⋅ (�⃗⃗� 𝛿)

𝑋 (𝑡 + 1) =
𝑋 1 + 𝑋 2 + 𝑋 3

3

 

 

where A and C are coefficient vectors, Xp is the prey (cost 

function) position vector, and Xn is the grey wolf position. 𝐴  

= 2𝑎  ·𝑟1⃗⃗⃗    −𝑎 , 

𝐶  = 2 ·𝑟2⃗⃗  ⃗       and Xα,Xβ,Xδ are the best three solutions. 

where components of  a are linearly decreased from 2 

to 0 over the iterations, and r1, and r2 are random 

vectors in [0, 1]. 𝐴 ⃗⃗  ⃗is a random value in the interval [-

2a, 2a] which approaching the prey can be controlled 

by decreasing the value of a, which affects the value 

of A, therefore updating the position. |A| < 1 means 

the wolves approach the prey. Also, in the searching 

process for the prey, we try to adjust |A| > 0 to force 

the wolf to diverge from the prey trying to find the best 

prey or best candidates, the flowchart of the algorithm 

is shown in Figure 7, which shows the algorithm steps 

for the whole population (N). For more details on 

GWO, see (Mirjalili et al., 2014). 

 

Figure 7. Flowchart of the GWO algorithm 

 

3.3 Improved Gray Wolf optimization (IGWO) 

 

GWO is a search technique that is considered powerful 

because it uses the three best solutions in each iteration for 

guidance. However, GWO suffers from an imbalance 

between exploration and exploitation, as noted in previous 

studies (Fister Jr et al., 2013, Tu et al., 2019). To address this 

limitation, Dimension Learning based Hunting (DLH) 

(Nadimi-Shahraki et al., 2021) proposes a new movement 

search strategy that differs from the GWO algorithm, which 

is based on the hunting behaviour of individual wolves. DLH 

suggests several approaches to create a neighbourhood for 

each wolf, enabling the sharing of information between the 

wolves, which allows the candidate solution to learn from its 

neighbours. This strategy aims to enhance global search in 

comparison to local search. Along with the Xi−GWO(t) 

candidate solution from GWO, DLH proposes a new 

candidate solution Xi−DLH(t) based on the Euclidean distance 
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(radius) R between the current position Xi(t) and the best 

candidate position Xi−GWO(t). The specific equation for this 

candidate solution is shown in Equation 6. 

 

 Ri(t) = ||Xi(t) − Xi−GWO(t +1)|| (6) 

Then the neighbour’s Ni(t) based on the distances 

between the wolves as shown in Equation 7 is 

constructed, and then the new solution is calculated 

where Xn,d(t) is selected randomly from the neighbours 

and Xr,d(t) from the population as shown in Equation 8. 

Ni(t) = {Xj(t) | Di (Xi(t),Xj(t))Ri(t),Xj(t) ∈ Population} (7) 

Xi−DLH,d(t+1) = Xi−d(t)+rand×(Xn,d(t)−Xr,d(t))        (8) 

The selection and updating phase, which involves comparing 
the fitness functions of the two candidate solutions from 
GWO Xi−GWO(t) and DLH Xi−DLH,d(t) using Equation 9, is 
used to determine the best candidate solution. This phase is 
essential in the algorithm, and it helps choose the better 
solution between Xi−GWO(t) and Xi−DLH,d(t). The algorithm 
steps are illustrated in the following flowchart. More 
information on IGWO can be found in (Nadimi-Shahraki et 
al., 2021). 

𝑋𝑖(𝑡 + 1)

= {
𝑋𝑖−𝐺𝑊𝑂(𝑡 + 1),  if 𝑓(𝑋𝑖−𝐺𝑊𝑂) < 𝑓(𝑋𝑖−𝐷𝐿𝐻)

𝑋𝑖−𝐷𝐿𝐻(𝑡 + 1)  otherwise 
     (9) 

 

Figure 8. The flowchart of the IGWO algorithm 

 

4. EXPERIMENTAL RESULTS 

The objective of this research is to propose a method for 

improving the accuracy of camera pose estimation using 

various metaheuristic optimization algorithms. These 

algorithms are employed to obtain the global optimal 

solution (relative orientation), which is determined by 

minimizing the reprojection errors represented by the 

symmetric geometric error cost function. Since there is no 

single optimization technique suitable for solving all 

problems, multiple metaheuristic optimization algorithms 

that are suited for addressing complex problems were tested. 

The experimental dataset used the SPIN Lab dataset 

included image pairs with known camera intrinsic 

parameters and lens distortion removed; example images are 

shown in Figure 9. The known camera poses were used as a 

reference to evaluate the performance of the metaheuristic 

optimization algorithms. The pose estimation accuracy was 

further improved by the metaheuristic optimization 

algorithms applied to obtain more precise results compared 

to the initial approximations obtained from the traditional 

methods. For this study, different numbers of populations 

were utilized as candidate solutions generated from the 

initial solution by the five-point algorithm (Kukelova et al., 

2008). Figure 10 illustrates that the cost function 

experienced a significant reduction, and after conducting 

multiple trials with 100 iterations across all experiments, the 

Improved Grey Wolf Optimization (IGWO) algorithm 

achieved the minimum for the selected cost function. IGWO 

also achieved the best mean square error of 0.029, with a cost 

function of 2.701x10−5, outperforming both PSO and GWO 

algorithms. Conversely, the WOA algorithm had poor 

performance. With respect to the time taken by the 

algorithms, as illustrated in Figure 12, it took the GWO 

algorithm around 0.2 seconds to initiate the camera pose 

estimation by the essential matrix, then calculating the 

relative orientation and performing triangulation, the IGWO 

method took longer as it included an additional step for 

improving accuracy. 

 

Figure 9. Samples of SPIN Lab dataset 
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Figure 10. Results obtained from metaheuristic optimization 
algorithms. 

 
Figure 11. Histogram of comparing between the 

algorithms. 

 

Figure 12. Histogram of computational time for the 

different algorithms 

5. CONCLUSION 

This study proposes a robust algorithm that employs particle 
swarm algorithms (PSA) that provide faster solutions 
compared to classical computations for pose estimation 
between two cameras. The PSA is inspired by natural 
behaviors observed in animals, birds, and insects. However, 
since the performance of PSA can vary widely for more 
complex problems, various PSAs were applied to identify 
the optimal solution for the problem at hand. The results of 
multiple trials indicate that the Improved Grey Wolf 
Optimization (IGWO) algorithm has the most accurate 
solution, followed by Particle Swarm Optimization (PSO) 
and Grey Wolf Optimization (GWO). To compare the 
algorithms, they were applied to the same dataset and the 
results, as shown in Figures 10-11, demonstrate a significant 
difference in performance when using the PSA algorithms. 
These results were obtained by evaluating the performance 
of different optimization algorithms that utilize animal 
behaviors to solve optimization problems. The algorithms 
were compared based on their strategy and approach to 
solving the problem, and their performance was measured by 
the achieved cost function and mean square error as shown 
in Figure 11. 
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