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ABSTRACT:
Groundwater depletion-related subsidence is a significant issue in many parts of the world. It can permanently reduce the amount of 
groundwater stored in an aquifer and even cause structural damage to the Earth’s surface. The Ganga Basin in the northwestern region 
of India is no exception, with around a meter of subsidence occurring between 2018 and 2023. However, understanding the connection 
between variations in groundwater quantities and ground deformation has been challenging. We used surface displacement measure-
ments from InSAR and gravimetric terrestrial water storage estimates from the GRACE satellite pair to characterize the hydrological 
dynamics within the Ganga Basin. Sentinel-1 was used to map the entire Ganga River basin in the inundated zone. The InSAR time 
series shows coherent short-term changes that coincide with hydrological features when the long-term aquifer compaction is removed. 
For instance, an uplift is seen at the confluence of multiple rivers and streams that drain into the southeastern margin of the basin in the 
winters of 2018–2019 and 2021–2022. Imaging the monthly spatial variations in water volumes is based on these data and calculations 
of mass changes from the orbiting of Sentinel-1 and GRACE satellites. We even employ machine learning techniques as evaluative 
methods to make it simple to combine InSAR quickly and convincingly with gravimetric datasets, which will help advance global 
efforts to understand better and manage groundwater resources.

1. INTRODUCTION

1.1 Background and General Introduction

With 3% of all freshwater on Earth, groundwater is the largest 
freshwater resource. Approximately 69% of Earth’s freshwater 
is locked away in ice in glaciers and polar ice caps, and another 
30% of Earth’s freshwater is under the surface in the form of 
groundwater. It is a crucial resource for irrigation in agriculture, 
balancing the global food security challenges. This groundwa-
ter resource provides over 75% of the domestic water needs in 
the world while also serving as a major supplier of industrial wa-
ter. In addition, groundwater successfully maintains river flows 
during droughts and acts as a buffer against changes in precipi-
tation. Due to population growth and water constraints, ground-
water zones have become the primary freshwater supply. Some 
regions rely on it too much and utilise groundwater much more 
quickly than it replenishes itself, which causes water tables to fall 
constantly.

The middle and lower Gangetic River basin aquifer system sus-
tains essential agribusiness, industrial inputs, and the tanning in-
dustry (leather-based) and supplies drinking water. The Ganges 
River basin is home to more than 650 million people. Thus, be-
coming vital surface water and groundwater resource for many. 
Although it results in long-term storage loss and infrastructure 
damage, subsidence brought on by groundwater depletion has 
been challenging to assess and anticipate. The Indo-Gangetic 
Basin’s hydrodynamics are varied in complexity, and the funda-
mental elements of the geology are not well characterised. Fur-
thermore, the complex hydrology of the basin, with multiple sources

∗Corresponding author 

and sinks, can cause substantial changes over periods as short as
a few months. Thus, orbiting satellite-based systems are well
suited for monitoring variations within the Indo-Gangetic Basin
at various timescales. Here, we take into account Sentinel-1’s in-
terferometric synthetic aperture radar (InSAR) observations, which
offer estimates of line-of-sight (LOS) displacements of the Earth’s
changes in terrestrial water storage (TWS), as determined by NASA
- GRACE and GRACE Follow-On (FO) missions. Both data sets
have unique characteristics that make any study challenging, and
are both vulnerable to hydrologic changes in the Indo-Gangetic
Basin. For instance, differences in the water table, earth move-
ment, soil moisture, groundwater level mapping and snow cover
can all be linked to changes in the gravity field measured by
GRACE and GRACE-FO. As a result, using gravity data alone, it
is challenging, if not impossible, to discern between water mass
variations in shallow aquifers. Thus, it is difficult, if not impossi-
ble, to distinguish between water mass changes in the shallow
aquifers and in the underlying confined aquifer using gravita-
tional observations alone. Observations of surface deformation
have their own issues, primarily due to the complicated relation-
ship between ground motion and hydrological changes [Gido et
al., 2020].
The main hydrological drivers of deformation in a porous medium

are changes in the total stress minus the fluid pressure within a
given aquifer, a quantity known as the effective stress. In an un-
confined aquifer, the fluid pressure is moderated by the possible
upward movement of the water table and the coupling to the at-
mosphere.
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2. STUDY AREA AND DATA-SETS

The Indo-Gangetic Plain, also known as the North Indian River
Plain, is a 700-thousand sq. kilometres (172-million-acre) fertile
plain encompassing northern regions of the Indian subcontinent,
including most of northern and eastern India, most of east Pak-
istan, virtually all of Bangladesh and southern plains of Nepal.
Also known as the Indus–Ganga Plain, the region is named af-
ter the Indus and the Ganges rivers and encompasses a number
of large urban areas. The plain is bound on the north by the Hi-
malayas, which feed its numerous rivers and are the source of
the fertile alluvium deposited across the region by the two river
systems. The Deccan Plateau marks the southern edge of the
plain. On the west rises the Iranian Plateau. Many developed
cities like Delhi, Dhaka, Kolkata, Lahore and Karachi are located
in the Indo-Gangetic Plain. The Indo-Gangetic Plain (IGP) re-
gion of India, covering about 15% of the total area of the country,
is one of the most intensively cultivated regions of the world (Ya-
dav, 1998; Singh et al., 2015). The study area lies between 21°N
35 ′ - 32°N 28 ′ latitude and 73°E 50 ′ - 89° E 49 ′ longitude
with a geographical area of 5.72 lakh sq. kilometres [Ojha et
al., 2020]. This study used GRACE satellites to utilise satel-

Figure 1: Catchment Area of Indo- Gangetic Basin

lite gravimeters to measure Earth’s gravity field variations. These
variations are primarily caused by changes in water distribution,
including groundwater. By monitoring gravity anomalies over
time, GRACE can estimate changes in groundwater storage at
regional scales. This information is particularly valuable for as-
sessing long-term trends in groundwater availability and tracking
large-scale groundwater depletion or recharge patterns.

Sentinel-1 InSAR datasets, on the other hand, employ radar tech-
nology to measure ground surface displacements with high pre-
cision. By analyzing the interference patterns of radar waves re-
flected from the Earth’s surface, InSAR can detect subtle changes
in ground elevation. This capability makes it suitable for moni-
toring localized variations in groundwater levels and identifying
areas of land subsidence or uplift associated with groundwater
extraction or recharge.

The GRACE and Sentinel-1 InSAR datasets offer significant ad-
vantages for groundwater level mapping. GRACE provides a
broader view of regional-scale groundwater changes, while Sentinel-
1 InSAR offers finer spatial resolution to detect localized vari-
ations. By integrating these datasets, researchers can compre-
hensively understand groundwater dynamics, ranging from large-
scale trends to localized effects [Taneja et al., 2019].

Figure 2: Annual changes in Groundwater water level limit in
catchment sites

3. METHODOLOGY

3.1 Data Compilation and Preprocessing:

In order to accurately estimate hydrological variations, a compre-
hensive dataset was carefully curated and specifically designed to
meet the needs of our study. This section provides an overview
of the dataset compilation process, encompassing groundwater-
level data collection, interpolation techniques, and the integration
of satellite datasets. Groundwater Level Data Compilation: A
comprehensive dataset encompassed groundwater level measure-
ments from approximately 80,000 stations across India. These
measurements were collected during various time periods, specif-
ically May 2016, Aug 2016, Nov 2016, and Jan 2017.

3.1.1 Interpolation Techniques: The collected groundwater
level data points were subjected to interpolation using the Inverse
Distance Weighting (IDW) method to obtain a spatial represen-
tation of groundwater levels throughout India. This method en-
abled the generation of a raster file that effectively depicts the dis-
tribution of groundwater levels across the study area. The raster
file derived from the interpolation is the target date for training
our deep learning model.

3.1.2 Integration of Satellite Data: Our methodology incor-
porates the combined band information extracted from two essen-
tial satellite datasets: Gravity Recovery and Climate Experiment
(GRACE) and SENTINEL-1. The integration of the combined
information from GRACE and SENTINEL-1 datasets yields su-
perior performance compared to utilizing the information from
each dataset in isolation. Below, we elucidate the significance of
the information derived from each dataset in our final prediction:

GRACE Satellite Data : The GRACE satellite data provides
valuable insights into terrestrial water storage (TWS) changes
through gravitational measurements. By analyzing variations in
the gravity field, we can infer changes in water mass, includ-
ing ground movement, soil moisture, water table fluctuations,
and snow cover. Integrating GRACE data enhances our under-
standing of hydrological dynamics and facilitates the estimation
of groundwater levels. However, it is important to note that accu-
rately predicting groundwater levels based solely on GRACE data
can be challenging. This is because variations in the gravity field
are influenced by a combination of factors, including changes in
snow cover, soil moisture levels, and water table fluctuations and
ground movement [Liu et al., 2019].
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SENTINEL-1 Satellite Data : The SENTINEL-1 satellite data
offers invaluable Interferometric Synthetic Aperture Radar (In-
SAR) observations through phase shifts between the radar sig-
nals during the successive passes of the orbiting satellite. These
observations enable the detection of surface deformations asso-
ciated with hydrological changes. Incorporating SENTINEL-1
data allows us to capture localised surface deformations and fur-
ther refine our analysis of hydrological variations. However, it
is important to note that the relationship between ground defor-
mations detected by SENTINEL-1 and changes in groundwater
levels is complex and not directly proportional. Due to the influ-
ence of various factors, such as subsurface geological properties
and hydrological dynamics, SENTINEL-1 data alone does not of-
fer a reliable means to estimate groundwater levels [Massoud et
al., 2022].

By combining the data from both the GRACE and SENTINEL-
1 satellites, we have successfully avoided the limitations inher-
ent in individual datasets and achieved a more comprehensive
understanding of hydrological variations. GRACE data offers a
broader perspective on water mass changes, while SENTINEL-
1 data enables the detection of localised surface deformations.
This integration of satellite datasets empowers us to accurately
estimate groundwater levels and create detailed maps illustrating
variations across India [Ramjeawon et al., 2022].

3.2 Deep Learning Model:

In our study, we leveraged convolutional neural networks (CNNs),
a class of deep learning models widely recognized for their ex-
ceptional performance in various image analysis tasks. Estimat-
ing groundwater levels from satellite images involves a similar
paradigm to image segmentation, where the objective is to ac-
curately delineate specific objects or regions of interest within
an image. While image segmentation often focuses on classifi-
cation tasks, in the context of groundwater level estimation, we
perform regression analysis to predict the continuous groundwa-
ter levels [Rateb and Kuo, 2019].

To address this challenge, we employed the U-Net model [Vasco
et al., 2022]., widely regarded as the gold standard in image seg-
mentation. The U-Net architecture excels at capturing contex-
tual information and preserving high-resolution details through-
out the segmentation process. n the following section, we delve
into the specifics of the U-Net model and its adaptation for esti-
mating groundwater levels from satellite imagery. We discuss its
architectural details, training process, and the incorporation of the
combined information from GRACE and SENTINEL-1 datasets.

3.2.1 U-Net Architecture: To estimate groundwater levels from
satellite images, we employed the U-Net model, a widely ac-
claimed architecture renowned for its effectiveness in image seg-
mentation tasks. The U-Net architecture offers a powerful so-
lution by combining an encoding path, which captures contex-
tual information from the input image, and a decoding path that
generates an output segmentation map. What sets U-Net apart
is its ability to preserve high-resolution features throughout the
encoding and decoding process through the strategic use of skip
connections. This architectural design facilitates the accurate de-
lineation of groundwater features, ensuring that subtle variations
and intricate patterns essential for groundwater level estimation
are captured. By leveraging the U-Net model, we enhance our
ability to extract meaningful information from satellite images
and achieve precise estimations of groundwater levels in geospa-
tial analysis and remote sensing applications. Figure 3 illus-
trates the U-Net architecture, showcasing the flow of information
and the skip connections that facilitate the preservation of fine-
grained features [Vasco et al., 2022].

Figure 3: U-net architecture.

3.2.2 Model Training Process: The training process for our
U-Net model involves several steps to optimize its performance
in estimating groundwater levels. The model takes as input an
image containing combined band information from both GRACE
and SENTINEL-1 satellites, encompassing a (256 x 256) pixel
neighborhood centered around each query point. This neighbor-
hood context enables the model to capture essential features for
estimating groundwater levels with local precision. The model
then produces an output map representing the estimated ground-
water levels in the pixel neighborhood of the query point. It is
important to note that the input satellite images and the output es-
timation map may have different resolutions, these difference in
resolution can significantly impact the model’s performance [Tri-
pathi et al., 2022].

We hypothesize that aligning the resolutions of the input and out-
put images will maximize the model’s performance. One of the
key benefits of aligning the resolutions of the input image and
the output map is that they represent the same area in a physical
sense. This consistency in resolution ensures that the input im-
age and the output map capture groundwater dynamics within the
exact spatial extent. By representing the same area, the model
can accurately associate the localized features in the input image
with the corresponding groundwater level estimation in the out-
put map.

However, achieving the same resolution for the input image and
the output map can be challenging especially when it comes to
collecting ground-water level data with a resolution as high as
the SENTINEL-1 or GRACE satellites. Collecting ground truth
data at such fine resolutions would require extensive field mea-
surements or monitoring stations, which can be impractical and
costly, especially for large-scale studies. Consequently, the avail-
ability of high-resolution ground water level data that directly
corresponds to the satellite observations is often limited.

Interpolation methods, although commonly used to increase the
resolution of ground water level data, present their own chal-
lenges. Applying interpolation techniques to achieve a matching
resolution can incur high computational costs and introduce po-
tential issues such as inaccuracies and artifacts in the interpolated
data. Striking the right balance between resolution and compu-
tational efficiency is essential in achieving accurate and efficient
groundwater level estimations

In the subsequent section, we describe the data ingestion pipeline,
where we address the resolution considerations and outline the
steps taken to prepare the satellite data for training the U-Net
model

3.2.3 Dataset Preparation : In this section, we will discuss
the process of Data Acquisition and Preparation, which plays a
vital role in generating the training and evaluation datasets uti-
lized in our study. To construct the training dataset, a subset of ap-
proximately 10,000 points was randomly selected from the states
of Uttar Pradesh, Madhya Pradesh, Rajasthan, and Haryana. For
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each sampled point, satellite data (inputs) and corresponding ground-
water level data (targets) within a (256 x 256) pixel neighborhood
centered around the point were collected, forming the training
dataset. The selection of these states and the random sampling ap-
proach ensures representation from diverse geographical regions
within the Ganga River Basin.

Similarly, for the creation of the evaluation dataset, around 5,000
points were randomly sampled from the states of Delhi, Chat-
tisgarh, and West Bengal. The evaluation dataset follows the
same data collection and processing methodology as the training
dataset, ensuring consistency in the evaluation process.

Figure 4 illustrates the regions from which the points were sam-
pled to create the training and evaluation datasets. The regions
used for creating the training dataset are depicted in red, while
the regions for the evaluation dataset are highlighted in blue.

Figure 4: Sampling Regions for Training and Evaluation Datasets
in the Ganga River Basin.

3.3 Training and Evaluation Results:

The U-Net model was trained on an NVIDIA A100 GPU for a
total of 20 hours using the curated training dataset. An adap-
tive learning rate strategy was employed to optimize the model’s
convergence. Following training, the model was evaluated using
standard regression metrics. The evaluation results demonstrated
promising performance, with a mean absolute error (MAE) of 6.3
meters, a root mean squared error (RMSE) of 8.3 meters. These
metrics indicate the accuracy and reliability of the model’s pre-
dictions on unseen data, highlighting the effectiveness of our ap-
proach.

By implementing this methodology, we achieved precise and ro-
bust estimations of groundwater levels by leveraging the U-Net
model’s ability to extract relevant features from combined satel-
lite images. The interpolating groundwater level data using the
IDW method allowed for comprehensive estimates across India.
This research contributes to improved understanding and moni-
toring of groundwater resources [Gido et al., 2020].

4. RESULTS AND DISCUSSION

In this section, we present the results and observations derived
from our study on estimating groundwater levels using integrated
satellite datasets and ground truth data within the Ganga River
Basin. Through comprehensive analysis of our dataset, we have
gained valuable insights into the temporal trends of groundwater

Figure 5: Training Pipeline

levels in the study area. These findings contribute to a deeper
understanding of the hydrological dynamics and provide crucial
information for effective water resource management and plan-
ning.

4.1 Spatial and Temporal Variations

In our study, we examined the groundwater levels recorded dur-
ing specific periods: May 2016, Aug 2016, Nov 2016, and Jan
2017. These time intervals were chosen to capture seasonal vari-
ations in the data. Figure 4 illustrates the spatial distribution of
groundwater levels during these months, providing insights into
the observed values across the study area. From the spatial distri-
bution of groundwater levels in the study area during these time
periods, we made several notable observations. Firstly, we ob-
served that the region near Delhi exhibited the highest ground-
water levels among the sampled months. This finding can be at-
tributed to the data collection methodology, which primarily re-
lied on well data. Wells in the Delhi region recorded compara-
tively higher groundwater levels, contributing to this observation.

Furthermore, an important observation was made regarding the
groundwater levels in Assam during May. It became apparent
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Figure 6: Spatial Distribution of Groundwater Levels in the Study
Area: May 2016, Aug 2016, Nov 2016, and Jan 2017

that groundwater levels in Assam were notably higher during this
month, which can be explained by the heavy rainfall experienced
in the region during the monsoon season of 2016.

In addition to the spatial variations observed in the dataset, dis-
tinct seasonal trends in groundwater levels were identified. The
month of May consistently showed higher recorded groundwater
levels compared to the other sampled months. Following May,
there was a sharp decline in groundwater levels during August.
However, from November to January, there was a gradual in-
crease in groundwater levels.

These observed variations in groundwater levels align with the
temporal patterns of precipitation. The higher recorded ground-
water levels in May follows the peak of the precipitation season,
which typically occurs in April. During this time, increased rain-
fall contributes to enhanced recharge of the aquifers, resulting in
higher groundwater levels in following months.

Conversely, the decline in groundwater levels during August an
be attributed to higher evaporation rates and reduced recharge
from precipitation. The subsequent gradual increase in ground-
water levels from November to January may be attributed to the
rising precipitation levels during this period.

These observations highlight the dynamic nature of groundwa-
ter fluctuations, influenced by the interplay between precipitation
and evaporation. The findings underscore the importance of con-
sidering both factors when assessing and managing groundwater
resources.

Figure 7: Water Equivalent Thickness- Land (GRACE, GRACE-
FO JPL)

Figure 8: Water Equivalent Thickness- Land vs Water Equivalent
Thickness- Ocean (GRACE, GRACE-FO JPL)

4.2 Water Equivalent Thickness Land - Ocean using GRACE,
GRACE - FO JPL

To estimate the Water Equivalent Thickness over land, the GRACE
and GRACE-FO missions use mathematical algorithms and mod-
els to process the gravity data and convert them into water stor-
age variations. These variations are then represented in terms of
equivalent thickness of water, usually in centimeters or millime-
ters.

Groundwater monitoring and hydrological basin mapping are two
essential applications of GRACE and GRACE-FO data. By track-
ing changes in water storage over time, these missions provide
valuable information for understanding groundwater depletion or
replenishment rates, hydrological cycle dynamics, and water re-
source management.

When it comes to comparing Water Equivalent Thickness be-
tween land and ocean, there are some key differences:

Land Water Equivalent Thickness: This represents the mass of
water stored in various land regions, including soil moisture, snow,
and groundwater. Changes in land WET can be influenced by
factors such as precipitation, evapotranspiration, and human ac-
tivities like irrigation and dam construction.

Ocean Water Equivalent Thickness: This refers to the mass of
water stored in the oceans. It includes variations in ocean mass
due to processes like thermal expansion, melting glaciers and ice
sheets, and ocean currents. Changes in ocean WET are partic-
ularly relevant for studying sea level rise and its contribution to
climate change.

Figure 9: JPL GRACE Data Analysis Tool
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Figure 10: JPL GRACE Data Analysis Tool

Figure 11: Water Equivalent Thickness- Land (GRACE,
GRACE-FO JPL)

5. CONCLUSION

In conclusion, from using satellite datasets Sentinel-1, GRACE
and GRACE-FO, it is possible to compare time-series and spatio-
temporal changes in groundwater storage over time.

By utilizing WET data from GRACE and GRACE-FO, it is possi-
ble to quantify changes in water storage, including groundwater,
across the Ganga River Basin. WET provides a valuable mea-
sure of the overall water availability and can help identify areas
experiencing significant groundwater depletion or replenishment.

In the context of groundwater monitoring, U-Net can be utilized
to process satellite imagery, such as SAR data from Sentinel-1,
and extract relevant information related to groundwater extent
and dynamics. By training the U-Net model on labeled data, it
can learn to accurately segment and analyze the groundwater fea-
tures, enabling more automated and efficient groundwater moni-
toring. By integrating WET data from GRACE and GRACE-FO,
Sentinel-1 SAR data, and utilizing the U-Net deep learning archi-
tecture, scientists and water resource managers can benefit from a
multi-faceted approach to groundwater monitoring in the Ganga
River Basin. This integrated approach allows for a comprehen-
sive assessment of both large-scale and localized variations in
groundwater storage, facilitating sustainable groundwater man-
agement and decision-making process [Vasco et al., 2022].
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