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Abstract 

 

Remote Sensing-based change detection (CD) focuses on the identification of Earth's surface transformations through analysis of multi-

temporal satellite images captured for the same geographic region at different points in time. Two common classification-based change 

detection techniques are post-classification comparison of land cover maps and direct classification of image differences between two 

periods of interest. In either approach, the selection of an appropriate classifier is critical. Consequently, this study focuses on assessing 

the performance of different classifiers, including the multi-layer perceptron neural network (MLPNN), support vector machine 

(SVM), random forest (RF), maximum likelihood (MLH), k-nearest neighbor (KNN), and gaussian naïve bayes (GNB). For this 

evaluation, two high resolution images captured in 2016 and 2020 by the PS2 sensor within the PlanetScope satellite constellation 

were used. Additionally, a novel unbiased sampling technique was introduced to selectively capture a minimal number of reference 

pixels.  In the context of change detection, slight variations were observed in classification performance rankings between post-

classification and difference image classification methods. However, a consistent trend emerged. The MLPNN consistently achieved 

the highest accuracy, closely followed by RF and SVM as the second or third-best performers in each technique. In contrast, GNB 

consistently yielded less favourable results. Importantly, our findings highlight the persistent superiority of the difference image 

classification in terms of change detection accuracy across all six classifiers. Furthermore, this method offers a significant advantage 

due to its reduced processing time and computational demands, positioning it as the preferred choice for binary change detection when 

compared to post-classification techniques. 

 

 

1. Introduction 

The earth’s surface is rapidly changing due to the dynamic and 

evolving nature of ecosystems and the acceleration of the human 

transformation of nature (Li et al., 2017). Thus, accurate access 

to surface change data is crucial for improving land management, 

protecting the ecological environment, and understanding the 

interactions and relationships between human life and the 

environment (Tan et al., 2019). Aiming to identify changes in the 

Earth’s surface over time, change detection (CD) is an important 

field of study in remote sensing by the analysis of multi-temporal 

satellite images captured for the same geographical area at 

different times. Change detection has a wide range of 

applications, including monitoring urban development, 

deforestation, natural disasters, etc. (Daudt et al., 2018; Khan et 

al., 2017; Usman et al., 2015; Mucher et al., 2000). 

 

Many techniques and methodologies have been developed for 

change detection using remotely sensed data and newer 

techniques are still emerging. These techniques can be 

categorized differently based on different viewpoints (Hussain et 

al., 2013). A common grouping is unsupervised and supervised 

CD techniques (Fernandez-Prieto and Marconcini, 2011). 

Unsupervised change detection refers to a set of methods that can 

identify changes entirely driven from the input data without the 

use of predefined labeled trained data (Bovolo et al., 2011). 

Supervised methods require labeled training examples as a basis 

for comparison and classify pixels in images into various 

categories based on how closely they resemble the training 

examples for each type of change (Ye, 2015). In general, 

supervised change detection techniques produce more accurate 

and more detailed information about transition between two land-

cover types as the training examples help spate spurious changes 

from the desired changes to be detected. One of the most well-

established and widely used detection techniques among the 

supervised change detection techniques is post-classification 

comparison. This technique finds change by comparing the 

thematic classification maps of two dates (Yuan et al., 2005). 

This method can provide accurate change information which may 

maybe less affected by external factors such as atmospheric 

interferences depending on the classes chosen (Asokan and 

Anitha, 2019). 

 

The choice of a classification method plays a pivotal role in post-

classification change detection techniques. The more accurate 

each map is, the better the resulting change. Consequently, 

evaluating the effectiveness of various classifiers for land cover 

classification remains a prominent focus within this field. In 

2023, Affonso et al. conducted an examination of changes in land 

use and land cover (LULC) between 2000 and 2017 within a 

portion of the Brazilian Amazon Forest. They evaluated several 

classification methods in their study, which included both 

parametric approaches such as Mahalanobis distance, maximum 

likelihood (MLH), and minimum distance, and non-parametric 

methods like multi-layer perceptron neural network (MLPNN), 

random forest (RF), and support vector machine (SVM) 

algorithms. Changes in the landscape were assessed through the 

post-classification comparison method. The outcomes of their 

investigation revealed that while maximum likelihood effectively 

identified errors in specific classes, SVM exhibited a slight 

advantage when compared to other non-parametric alternatives 

(Affonso et al., 2023). Dahiya et al. in 2023 proposed a simple 
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framework-based artificial neural network (ANN) and post-

classification comparison to detect the multitemporal changes 

using both hyperspectral and multispectral datasets and 

compared their method with well-known RF and SVM post-

comparison methods. Their experimental outcomes on both 

datasets confirmed the effectiveness of ANN post-classification 

method in the extraction of multitemporal changes followed by 

RF and SVM post-classification methods (Dahiya et al., 2023). 

These investigations have demonstrated that the performance of 

various classifiers can vary based on factors such as data 

characteristics, the study region, and the context of use. For 

instance, certain classifiers might be more effective in identifying 

changes within intricate land use patterns in urban zones, whereas 

others could be better suited for detecting changes in vegetation 

or water bodies. Consequently, identifying the most suitable 

classifiers for extracting distinct urban land use and land cover 

classes across various timeframes and spatial contexts remains a 

difficulty, particularly when dealing with datasets that involve 

multiple time points and sensors (Ouma et al., 2023). 

  

An alternative approach for change detection involves employing 

difference images as direct input for supervised classifiers to 

distinguish between changed and unchanged regions. 

Nonetheless, limited research has been conducted to assess the 

comparative performance of various classifiers in this context. 

This approach decreases the time spent on change detection by 

eliminating the need for land cover classification of multi-

temporal images. In 2018, Wang et al. proposed a new change 

detection scheme that combines multiple features and ensemble 

learning. They used three kinds of object features including 

spectral, shape, and texture. Using the image differencing 

process, a difference image was generated and used as the input 

for nonlinear supervised classifiers, including k-nearest neighbor 

(KNN), SVM, extreme learning machine and RF. Finally, the 

results of multiple classifiers were integrated using an ensemble 

rule called weighted voting to generate the final change detection 

result. Their results demonstrated that their proposed approach 

outperforms four different single supervised classifiers in terms 

of overall accuracy and generates change detection maps with a 

higher number of homogeneous regions in urban areas (Wang et 

al., 2018).  

 

To the best of our knowledge, little research has conducted a 

comparison between different classifiers in change detection 

using both post-classification change detection and difference 

image classification in terms of their efficacy in distinguishing 

changed and unchanged regions. In this study, six widely 

employed classifiers—namely KNN, MLH, Gaussian Naïve 

Bayes (GNB), RF, SVM, and MLPNN—were assessed for their 

performance in change detection within an urban area using 

Planet high-resolution satellite imagery. This assessment 

involves two distinct procedures: post-classification comparison 

and difference image classification. In addition, one of the most 

important considerations in supervised classification is to select 

unbiased training and reference data. In this study, a new 

unbiased procedure is used to select limited reference data from 

unchanged and changed areas for change detection.  

 

The rest of the paper is organized as follows. Section 2 introduces 

the study area and dataset, Section 3 presents our sampling 

method, post-classification comparison, and difference image 

classification methods, and Section 4 describes and discusses the 

results. Section 5 presents our conclusion. 

2. Area and Dataset  

2.1 Study Area 

The study area covers the main part of the City of Kingston 

located in Eastern Ontario, Canada where the St. Lawrence River 

flows out of Lake Ontario. This area extends from 76°28ʹ30” W 

to 76°37ʹ30” W and from 44°12ʹ26” N to 44°17ʹ0.5” N, covering 

approximately 103 km2. This area is completely flat and its main 

land covers include forestry areas, agricultural lands, and urban 

buildings. The elevation range of the study area is from 60 to 145 

m above the mean sea level. Google earth satellite image of the 

study area captured in August 2016 is shown in Figure 1. 

 

 
Figure 1. Google earth high resolution satellite image of the 

Kingston city captured in August 2016. 

 

2.2 Dataset 

In order to assess and contrast the effectiveness of various 

classifiers in detecting urban changes, two remote sensing images 

were utilized. These images were captured by the PS2 sensor 

within the Planetscope satellite constellation, offering a 

resolution of 3 meters. The acquisition dates were September 

2016 and July 2020, and each image encompassed four 

multispectral bands: blue, green, red, and near infrared. Figure 2 

presents true-color composite depictions of both images. In an 

effort to establish reference data, satellite images from Google 

Earth were employed as supplementary data. These Google Earth 

images, captured in August 2016 and June 2020, featured a 

submeter resolution. 

 

  

Figure 2. True-color composites of Planet images acquired on 

a) September 15, 2016, and b) July 16, 2020 of Kingston city. 

 

3. Methodology 

As outlined in the introduction, the objective of this study is to 

compare the performance of six widely employed classifiers in 

remote sensing using two distinct change detection methods: a) 

post-classification comparison using classified land cover maps, 

and b) classification of image band differences to delineate 

changed and unchanged regions, thus creating a binary change 

map. To ensure consistency and impartiality, both procedures 
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employ identical reference data locations for training and testing 

classifiers and assessing the accuracy of change detection maps. 

Accordingly, the study introduces a novel unbiased sampling 

technique that selectively captures a minimal number of 

reference pixels from both changed and unchanged areas. The 

procedure of generating training and test data used in this study 

and the features and steps used in classification are explained in 

the following sections. 

 

3.1 Sampling method 

The efficiency and cost of accuracy assessment in supervised 

techniques are predominantly influenced by two critical factors: 

the selected sampling approach and the number of samples, also 

known as sample size (Chen and Wei, 2009; Jensen, 1996). In 

order to select spatially and class-unbiased reference pixels in the 

study area from both changed and unchanged areas, first of all 

the whole study area was classified into changed and unchanged 

areas using the RF classifier, one of the most commonly used 

classifiers in remote sensing for land cover classification (Phan 

et al., 2020). To this end, regions of interest (ROIs) for different 

changed and unchanged classes were selected using ENVI 

software and planet images. The classes used for this section are 

“change from vegetation to infrastructure (building and roads)”, 

“change from soil to infrastructure”, “change from vegetation to 

soil”, “unchanged trees”, “unchanged buildings”, “unchanged 

roads”, “unchanged soil”, “unchanged vegetation”, and 

“unchanged shadowy area”. Google Earth images featuring 

submeter spatial resolution, captured around the same date as the 

planet images, were additionally employed as supplementary 

data to enhance the precision of creating ROIs. One of the 

challenges in ROI creation is shadow areas. To handle this issue, 

Improved Shadow Index (ISI) , as an effective index in 

identifying shadows in urban areas, was also used as auxiliary 

data (Zhou et al., 2021). ISI combine YCbCr color space with a 

near infrared (NIR) band and is defined by the following formula: 

 

ISI =
SI + (1 − NIR)

SI + (1 + NIR)
 (1) 

 

in which NIR is the near infrared band and SI is defined as: 

 

SI =
Cb − Y

Cb + Y
 (2) 

 

where Y and Cb are components in the YCbCr model. The 

YCbCr is defined as follow: 

 

[
Y

Cb

CR

]= [
0.257 0.504 0.098

−0.148 −0.291 0.439
0.439 −0.368 −0.071

] [
R
G
B

] + [
16

128
128

] (3) 

 

In the YCbCr model, R,G, and B are red, green, and blue bands, 

respectively and the Y, Cb, and Cr components are equivalent to 

the intensity component I, saturation component S, and hue 

component H in the HSI model (Tsai, 2006). ISI was calculated 

for both planet images and used as auxiliary data helped to 

identify shadow areas. 

 

After creating the first ground truth (GT), it was divided 

randomly into train (60% of GT) and test (40% of GT) data and 

was used for image classification. Our purpose at this stage was 

to classify our study area as accurately as possible to changed and 

unchanged classes and randomly select spatially and class-

unbiased samples from both changed and unchanged areas. In 

this study, red, green, blue and NIR bands along with NDVI and 

ISI were layer stacked for each image and used for image 

classification. All the 6 layers at time 1 were subtracted from 

layers at time 2 and the absolute values of the difference bands 

were used for image classification using RF classifier. Once the 

study area was classified into nine distinct classes (comprising 

three changed and six unchanged classes), the changed classes 

were merged into a single category labeled as "changed," while 

the remaining classes were combined into a category labeled as 

"unchanged." This process yielded a binary change map. The 

initial classification of the image into various changed and 

unchanged classes, followed by their integration into a binary 

map, aimed to enhance the accuracy of the initial change map 

which increases the speed of reference point generation as the 

quality of the selected reference points are checked manually.  

 

Based on the Kappa coefficient of test data, the random forest 

classifier led to an accuracy of 79% for classifying 9 classes and 

97% for classifying the images to binary change map when all 

the changed classes were merged to changed class and the rest of 

them were merged to unchanged class. The initial GT used in this 

section (all classes were merged into changed and unchanged for 

better illustration) and the resulted binary change map are 

illustrated in Figure 3 (a) and Figure 3 (b), respectively. 

 

 
(a) 

 
(b) 

Figure 3. a) The initial GT of the study area created using 

Planet images and with the help of google earth images as 

auxiliary data. Red and green ROIs represent changed and 

unchanged regions, respectively; b) The binary change map 

produced using random forest. 

 

Our primary focus when choosing reference points for change 

detection is to ensure impartiality. Therefore, in the process of 

selecting reference points based on the computed binary change 

map, approximately 1000 pixels from changed class and another 

1000 pixels from unchanged class were randomly chosen. Figure 

4 shows some sample areas and sample points selected randomly 

from the initial change map. Next, changed and unchanged pixels 

were inspected carefully and divided into four different groups 

including true change, false change, true unchanged and false 

unchanged by the help of auxiliary dataset such as high resolution 

google earth images and ISIs. The number of reference data used 

for change detection accuracy assessment are presented in Table 

1. It should be noted that all the false changed pixels and false 

unchanged pixels were considered as unchanged and changed 

pixels, respectively. This reference data was used to generate 

training and test data in the process of classifying the study area 

to change and unchanged areas using image band differences. 

 

 
Sample 1 at time 1 

 
Sample 2 at time 1 
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Sample 1 at time 2 

 
Sample 2 at time 2 

 
Reference points 

 
Reference points 

Figure 4. Sample areas and sample points selected randomly 

as reference data from the change map. Red and green points 

represent changed and unchanged pixels, respectively. Points 

labels (changed and unchanged) were revised carefully using 

auxiliary data. 

 

Type of 

reference 

data after 

visual 

inspection 

True 

changed 

pixels 

False 

changed 

pixels 

True 

unchanged 

pixels 

False 

unchanged 

pixels 

Number 

of pixels 
796 233 1165 15 

Table 1. Number of pixels used as reference data for change 

detection using planet images. 

 

In order to train the classifiers in the post classification 

procedure, the same points used as reference data described 

earlier (~2000 randomly selected points) were utilized, but this 

time labeled as Constructed area, Asphalt, Vegetation, and Soil 

classes. To decide about their labels more accurately, auxiliary 

datasets such as very high resolution google earth images, ISI 

shadow index, and NDVI were also used. The quantity of 

reference data utilized for the classification of planet images into 

distinct land covers is presented in Table 2. 

 

 Landcover 

 

 

 

Image Date 

Constructed Asphalt Vegetation Soil 

2016 282 396 1206 325 

2020 379 449 901 480 

Table 2. Number of pixels used as reference data for landcover 

classification using planet images. 

 

3.2 Post classification change detection 

In the first procedure, Planet image bands captured at two 

different times, referred to as time 1 and time 2, in addition to 

NDVI and ISI underwent classification using a selection of six 

widely recognized classifiers commonly employed in the field of 

remote sensing. These classifiers encompass three conventional 

approaches: KNN, MLH, and GNB; as well as three more 

advanced machine learning oriented techniques: RF, SVM, and 

MLPNN. A brief description of each classification method is 

provided below. 

3.2.1 KNN Classifier: The KNN classifier is a simple, yet 

effective algorithm widely used in classification and regression 

tasks. It assigns a new data point to the most common class 

among its k nearest neighbors in the feature space. This approach 

is based on the assumption that similar instances belong to the 

same class. KNN has been successfully applied remote sensing 

for various applications, including urban change detection (Fix 

and Hodges, 1951; Meng et al., 2007). 

 

3.2.2 MLH Classifier: The MLH classifier is a widely used 

supervised classification method in remote sensing. It calculates 

the probability of each pixel belonging to a specific class based 

on the statistical distribution of training samples. It assumes that 

the spectral values of different classes follow a multivariate 

normal distribution. The class with the highest likelihood value 

is assigned to each pixel (Sisodia et al., 2014).  

 

3.2.3 GNB Classifier: The GNB classifier is a probabilistic 

algorithm used in remote sensing applications. It assumes that the 

features are independent and normally distributed. It calculates 

the probability of a sample belonging to a particular class by 

using Bayes' theorem and assuming that the features are 

conditionally independent given the class. It has been widely 

used in remote sensing studies for land cover classification and 

change detection (Yang et al., 2017; Jamali et al., 2021). 

 

3.2.4 RF Classifier: The RF classifier is a popular machine 

learning algorithm widely used in various fields, including 

remote sensing. In the RF classifier, a collection of decision trees 

is built, and each tree is trained on a random subset of the training 

data. During classification, each tree in the forest independently 

predicts the class of a sample, and the class with the most votes 

is selected as the final prediction. The RF classifier is known for 

its robustness, ability to handle high-dimensional data, and 

resistance to overfitting (Pal, 2005).  

 

3.2.5 SVM Classifier: The SVM classifier is another machine 

learning algorithm commonly used for classification tasks in 

remote sensing studies. It works by finding an optimal 

hyperplane in a high-dimensional feature space that separates 

different classes and minimizes classification error. SVM can 

handle both linear and nonlinear classification problems by using 

various kernel functions (Mountrakis et al., 2011). 

 

3.2.6 MLPNN Classifier: The MLPNN constitutes a neural 

network type characterized by an input layer, one or more hidden 

layers, and an output layer which are interconnected in a feed-

forward manner (Panchal et al., 2011). The MLPNN undergoes a 

training procedure wherein model parameters are iteratively 

adjusted to closely align model outputs with observed outputs. 

The MLPNN classifier is utilized in this study for image 

classification, with specific parameters tailored for optimal 

performance. The parameters of the MLPNN, as outlined in 

Table 3, were determined through experimental exploration 

aimed at achieving optimal results. MLPNN classifiers have been 

widely used in remote sensing studies for various applications, 

including change detection (Dai and Khorram, 1999). 

 

Parameters Values 

Number of 

hidden layers 
4 

Number of 

neurons in each 

hidden layer 

Layer 1: 64 

Layer 2: 32 

Layer 3: 16 

Layer 4: 8 
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Hidden layers’ 

activation 

functions 

Relu 

Output layer’s 

activation 

functions 

Multiclass classification (Post-

classification CD): Softmax 

Binary classification (Image differencing 

CD): Sigmuid 

Maximum 

number of 

training iteration 

1000 

Batch size 15 

Optimizer Adam 

Table 3. Parameters used in the MLPNN classifier. 

 

The landcovers considered for image classification are on 

structed area, Road, Vegetation cover and Soil. For 

training the classifiers, 60% of the reference pixels from 

both 2016 and 2020 images were selected randomly and 

used as training data and the rest of them were used as test 

data. Afterward, land cover classification was performed 

on both images, followed by a post-classification 

comparison of the classification maps. By comparing the 

landcover classes, if the label assigned to a pixel at time 1 

was different from its label at time 2, that pixel was 

considered as changed pixel, otherwise it was considered 

as unchanged pixel. 

 
3.3 Classification of differencing image for change detection 

As the second procedure for the change detection process, the 

initial step involved subtracting the bands of the planet image at 

time 1 from their corresponding bands at time 2. Subsequently, 

the difference of red, green, blue, and NIR bands in addition to 

NDVI and the ISI were used for image classification. The classes 

used for image classification are changed and unchanged classes. 

In this section, the same six classifiers mentioned in Section 2.2 

were used for image classification and for consistency, exactly 

the same pixels used as training and test samples in the first 

procedure (Post classification change detection), but with change 

and unchanged labels, were used for training classifiers and 

testing the accuracy of the change maps, respectively. 

 

4. Results and Discussion 

4.1 Post classification change detection 

The results of landcover classification and post classification 

change detection, based on kappa coefficient and the randomly 

selected reference test data are tabulated in Table 4. The results 

indicate that, considering landcover classification and evaluating 

the kappa coefficient of the test data, the MLPNN classifier 

yielded the highest performance. It was closely followed by the 

SVM and RF classifiers for both the images captured at time 1 

and time 2. All three conventional classifiers yielded lower 

accuracies compared to neural network, SVM, and RF classifiers. 

Among the conventional classifiers, the GNB classifier produced 

the least favourable results, while the accuracy of the MLH 

classifier closely approached that of the advanced methods. 

 

In terms of post-classification change detection results, the 

change maps generated by the MLPNN classifier produced the 

most favourable outcomes with a kappa coefficient of 70.1% on 

test data, with the RF and SVM classifiers following closely in 

performance. Among the conventional methods, MLH achieved 

results comparable to the advanced techniques with a kappa 

coefficient of 68.4% on test data, while the GNB classifier 

yielded the least favourable outcomes. The performance of 

various classifiers in post-classification change detection aligns 

with their performance in land cover classification, except for 

SVM and RF classifiers. Specifically, SVM demonstrated 

superior performance in land cover classification compared to 

RF, while RF excelled in generating more accurate binary change 

maps than SVM. The landcover classification maps at time 1 and 

time 2 created using MLPNN classifier and their corresponding 

change map are represented in Figure 5. 

 

Classifiers 

Landcover 

classification 

at time 1 

Landcover 

classification 

at time 2 

Binary post-

classification 

change 

detection 

KNN 0.602 0.574 0.644 

MLH 0.663 0.623 0.684 

GNB 0.541 0.416 0.668 

RF 0. 671 0. 636 0.698 

SVM 0. 684 0. 641 0.688 

MLPNN 0. 702 0. 642 0.701 

Table 4. Accuracies of landcover classification and post 

classification change maps based on kappa coefficient on test 

data using different classifiers. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. a) Land cover classification maps created using 

MLPNN classifier at a) time 1 and b) time 2 and c) their 

corresponding change map. 

 

4.2 Classification of differencing image for change detection 

As the second procedure for change detection, differences of red, 

green, blue, and NIR bands in addition to NDVI and ISI at time 

1and 2 were used for image classification. As noted earlier, the 

same reference pixels were used as training and test data to train 

classifiers and assess the accuracy of change maps for both 

procedures. The classes used for image classification in this 

section are just changed and unchanged classes. The results of 

change detection using different classifiers are presented in Table 

5. 

 

As the results show, based on the kappa coefficient of test data, 

MLPNN classifier led to best results with a kappa coefficient of 

87.4% on test data, followed by SVM and RF classifiers. Same 

as the previous procedure, all the three conventional classifiers 
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produced lower accuracies than the more advanced classifiers, 

and the GNB classifier produced the worst results. It is 

noteworthy that while MLH yielded results comparable to 

advanced classifiers in post-classification change detection, in 

the context of the classification of differencing images, the 

performance of the KNN classifier demonstrated comparable 

results to the advanced classifiers, with a kappa coefficient of 

84.2% on test data which is very close to that of the RF classifier. 

 

Change map created using MLPNN classifier, as the best case in 

our study, is presented in Figure 6. As the results show, the 

accuracy of change detection using classification of differencing 

images (Table 5) is much higher than the post classification 

method (Table 4) and this is consistent for all the different 

classifiers used in this study. As a result, the performances of 

different classifiers for change detection using the second 

procedure (classification of differencing images) are studied in 

more detail. For a more in-depth comparison of classifier 

accuracies, their performances in detecting changed and 

unchanged areas for some sample regions are investigated. The 

sample regions include changes from soil to building, changes 

from vegetation cover to soil, unchanged building, and 

unchanged soil. The true color images of the sample regions at 

time 1 and time 2 in addition to their corresponding change maps 

created by each classifier are presented in Figure 7.  

 

Classifiers 
Binary change detection using image 

differencing process 

KNN 0.842 

MLH 0.838 

GNB 0.8 

RF 0. 846 

SVM 0. 859 

MLPNN 0. 874 

Table 5. Accuracies of binary change detection using Image 

differencing based on kappa coefficient for different 

classification methods. 

 

 
Figure 6. Change map created using MLPNN classifier 

and image differencing. 

 

Based on Figure 7, MLPNN classifier could detect the real 

changes more accurately than other classifiers. In the sample 

showing transition from "soil to building", where three new 

buildings are the primary changes, all classifiers except MLPNN 

identified some false changes in the vicinity of the buildings. 

Some of the false changes on the left side of the buildings are 

because of the shadows created by buildings. Regarding the 

“vegetation to soil” sample, MLPNN and SVM classifiers could 

detect the true changes more accurately. The main issue of other 

classifiers in this case, especially the MLH and GNB classifiers, 

is missing some parts of truly changed areas. Regarding both 

unchanged samples, MLPNN and SVM led to the lowest rates of 

errors in terms of creating false changes while the MLH and GNB 

classifiers led to the highest rate of commission errors. By 

comparing RF and KNN classifiers, it can be concluded that 

KNN classifier could perform even better in these two cases as 

the RF classifier produced more false changes. 

 
Feature 

type 

Soil to 

building 

Vegetation to 

Soil 

Unchanged 

building 

Unchanged 

soil 

RGB 

image at 

T1 
    

RGB 

image at 

T2 
    

MLPNN 

    

SVM 

    

RF 

    

KNN 

    

MLC 

    

GNB 

    

Figure 7. The true color images of the sample regions in 

addition to change maps created by each classifier method are 

presented. 

 

5. Conclusion 

As the selection of a classification method plays an important role 

in classification-based change detection techniques, this study 

aimed to assess the performance of various classification 

methods, including MLPNN, SVM, RF, GNB, MLH, and KNN, 

utilizing two distinct change detection techniques: post-

classification and classification of image differences. To ensure 

unbiased training and testing of classifiers, we initially classified 

the study area using visually interpreted ROIs. Subsequently, we 

employed the resulting change map to select limited random 

sample points from both changed and unchanged regions, 

maintaining consistency in the sample points for both change 

detection techniques. The accuracy of reference points was 

carefully checked before using them for training and testing the 

classifiers. 

 

While the specific ranking of classifier performance varied 

slightly between the two methods, a consistent pattern emerged. 

MLPNN consistently delivered the highest accuracy, with RF 

and SVM closely following as the second or third-best 

performers in each technique. On the other hand, GNB 

consistently yielded the least favorable results. Among the 

conventional methods, MLH in the post-classification technique 

and KNN in the image differencing method yielded comparable 

results to the more advanced methods. Notably, our findings 

revealed that the image differencing technique consistently 

outperformed post-classification in terms of change detection 

accuracy across all six classifiers. Additionally, this method 

demonstrated a significant advantage in terms of reduced 

processing time and computational resources, making it the 
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superior choice for binary change detection when compared to 

post-classification techniques. In future research, we intend to 

investigate how changes in training sample sizes and image 

scales affect classification-based change detection when 

employing a range of diverse classifiers.  
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