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Abstract 

Integrating optical images with Light Detection and Ranging (LiDAR) data is an important advance in Photogrammetry, Geomatics 

and Computer Vision, registering the strengths of both modalities (height and spectral information). Most orthoimages and aerial 

LiDAR data are georeferenced to a common ground coordinate system; however, a registration gap remains, and achieving high-

accuracy registration between these datasets is challenging due to their differing data formats and frames of reference. In this paper, 

we propose an approach to enhance camera-LiDAR registration through combined LiDAR feature layer generation and Deep Learning. 

Our method involves creating weighted combinations of feature layers from LiDAR data, leveraging intensity, elevation, and bearing 

angle attributes. Subsequently, a 2D-2D Graph Neural Network (GNN) pipeline serves as an intermediate step for feature detection 

and matching, followed by a 2D-3D affine transformation model to register optical images to point clouds. Experimental validation 

across aerial scenes demonstrates significant improvements in registration accuracy. Notably, in urban building areas, we achieved an 

RMSE of around 1.1 pixel, marking a reduction of 5 pixels compared to georeferenced baseline values. In rural road scenes, our 

method yielded a pixel RMSE of 1.3, with a 4-pixel reduction compared to baseline results. Additionally, in water scenes, which tend 

to be noisy in LiDAR data, we achieved a pixel RMSE of 1.8, representing a slight half-pixel reduction compared to the baseline. 

Therefore, by using weighted and combined LiDAR feature layer and GNN feature matching, this approach augments the number of 

key points and matches, directly correlating with the observed registration reduction in pixel RMSE across diverse aerial scene types. 

1. Introduction

Combining optical images with Light Detection and Ranging 

(LiDAR) data is an important advancement in Photogrammetry, 

Geomatics and Computer Vision, registering color and texture 

from optical cameras with depth and geometric details from 

LiDAR. Establishing key point correspondences between data 

from the two sensors is central to this fusion. However, 

challenges such as diverse data formats, inconsistent frames of 

reference, and noise, contribute to the difficulty in achieving 

high accuracy, emphasizing the ongoing research in this field. 

In the domain of 2D-3D LiDAR-image registration, Li et al. 

(2022) categorized developed techniques into four classic 

methods. Information Theory methods integrate statistical 

relationships between sensor data (Parmehr et al., 2012; Weese 

et al., 1997). Feature-based techniques leverage distinctive 

features in LiDAR and image data (Shu et al., 2022; Yan et al., 

2023; Yao et al., 2010). Ego-motion approaches, seen in 

Odometry (Bai et al., 2022; Dellenbach et al., 2021; Taylor & 

Nieto, 2015) and Kalman Filtering (Das et al., 2022; Gao & 

Harris, 2002; Kunjumon & G S, 2021; Mu et al., 2020) aim to 

model the movement or motion of the sensor platform, providing 

valuable context for registration. Finally, Learning-Based 

methods use neural networks to learn mappings between LiDAR 

and image data (Chen et al., 2022; Jeon & Seo, 2022; J. Li & 

Lee, 2021). Despite notable progress in the field, current 

methods lack the simplicity and computational efficiency of 2D-

2D image matching techniques (Karami et al., 2015), attributed 

to the complexities of handling 3D data in three-dimensional 

space. Recognizing this highlights the central challenge of this 

work: integrating a 2D-2D multi-modal feature matching into 

camera-LiDAR registration. This entails transforming LiDAR 

data into a 2D feature layer, aligning it with the intricacies of an 

optical camera image.  The 2D-2D correspondences between the 

datasets are then employed in the 2D-3D registration model.  

In this paper, Section 3.2, outlines our method for creating 

combined feature layers from LiDAR data. This involves 

leveraging various channel combinations, including intensity, 

elevation, and bearing angle. In Section 3.3, we present the 

implementation of a 2D-2D Deep Leaning pipeline for keypoint 

detection and image matching using a Graph Neural Network 

(GNN). In section 3.4, we employ Random Sample Consensus 

(RANSAC) to eliminate outliers and establish a 6-parameter 

affine transformation to register optical images to point clouds. 

We evaluate performance using metrics like Euclidean distance 

and Root Mean Square Error (RMSE), which measure the 

disparity between the GNN's camera image keypoint pixel 

coordinate location and the predicted value by the model. In 

section 4, our methodology is validated with 3 scenes of aerial 

LiDAR data and orthophotos across diverse conditions, 

including dense urban areas, rural road networks, and water 

bodies. 

2. Related Work

Two-dimensional image matching has advanced beyond 

traditional methods like Scale Invariant Feature Transform 

(SIFT) and Speed Up Robust Feature (SURF). While these 

methods are effective at finding correspondences between 2D 

images regardless of orientation and scale (Karami et al., 2015), 

there has been a recent paradigm shift driven by the integration 

of machine learning. Transformers have played a pivotal role in 

this evolution, as demonstrated by Wang et al.'s (2023) Cross-

modality Multi-scale Progressive Dense Registration (C-MPDR) 

scheme, optimizing coarse-to-fine registration in a single stage. 

Similarly, Sun et al. (2021) introduced Local Feature Matching 

with Transformers (LOFTR), which produces dense matches 

even in low-texture areas. Another notable advancement 

involves Graph Neural Networks (GNN), such as SuperGlue 

(Sarlin et al., 2020), which not only finds correspondence but 

also rejects non-matchable points, achieving state-of-the-art 

results in pose estimation for challenging real-world 
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environments. Its front-end keypoint detector, SuperPoint 

(DeTone et al., 2017), seamlessly pairs with its middle-end 

pipeline, which incorporates attention-based context 

aggregation. 

The shift towards utilizing LiDAR in a 2D image format has 

emerged as a key focus in recent research, capitalizing on the 

superior performance of image-matching algorithms. Liu et al. 

(2017) investigated various 2D LiDAR image models, among 

which the Fast Optimal Bearing-Angle (FOBA) notably reduced 

scene segmentation time costs with minimal accuracy loss. 

Although FOBA's primary purpose was for scene segmentation, 

Lin et al. (2017) built upon this foundation and used it for 

registration, namely between 3D point clouds. They utilized 

Bearing Angle images with SURF for matching and achieved a 

significant reduction in computational costs. Zhuang et al. 

(2013), use a similar methodology but deal with the random 

disturbances caused by unexpected movements of people and 

other objects. Addressing increased outliers in these image 

pipelines, Li & Li (2021) incorporated Random Sample 

Consensus (RANSAC) into their method, leveraging 2D submap 

projection images to find dependable matched pairs for the pose 

estimation. 

Subsequent studies have further expanded the application of 

creating 2D images from LiDAR data, to include the registration 

of camera images with LiDAR data. For example, Scaramuzza 

et al. (2007) focused on camera-LiDAR extrinsic calibration 

using range images, a concept extended by Koide et al. (2023) 

with Super Glue, a Graph Neural Network, on intensity images. 

While these methods make strides in advancing singular aspects 

of LiDAR data, such as range, intensity, or bearing angle, they 

may overlook the potential of exploring various combinations 

and weights of LiDAR layers to better represent the three bands 

of an optical camera image. 

3. Proposed Method

3.1 Overview 

This research employs a systematic approach leveraging high-

resolution orthoimages and dense aerial LiDAR data to establish 

accurate correspondences for registration within a two-

dimensional framework. We presume that essential information 

such as intensity, elevation, and scan angles can be extracted 

from the LiDAR dataset. This pipeline can be employed across 

diverse outdoor scenes. Figure 1 presents a general flowchart 

detailing the process.  

3.2 LiDAR Feature Layer Generation 

Each LiDAR data point contains information apart from its 

geometric coordinates. The returned LiDAR pulses may also 

record the intensity of the reflected signal off the surface, 

providing visual information similar to that of an optical camera. 

Elevation data, is also obtained from the laser beam's vertical 

position, indicating terrain or object height. Additionally, scan 

angles between pulses reveal the laser beam's direction relative 

to the LiDAR sensor and surface, aiding in capturing geometric 

detail. By utilizing the first returns of intensity, elevation, and 

scan angle information, LiDAR feature layers can be created by 

converting each 3D point into a 2D grid cell. This cell represents 

a specific area on the ground and contains the respective 

information derived from the LiDAR data. 

Figure 1. Workflow for Registration of Orthoimages and Aerial 

LiDAR Data 

Additional steps are involved for creating a Bearing Angle image 

as it requires a relationship between the range and scan angle 

information. The range information is derived from the sensors’ 

constant flight height (H), the surface elevation (h), and the 

cosine of the scan angle (A). Treating each input data as a raster, 

each pixel can be transformed into the range data according to 

Equation 1 below.  

𝑝 = (𝐻 − ℎ)/𝑐𝑜𝑠𝐴 (1) 

Building upon previous research (Liu et al., 2017), a function 

was created to compute the bearing angles for each pixel. The 

bearing angle is the angle between the laser beam and the line 

segment connecting two consecutive laser scanning points. The 

function takes the range and scan angle rasters as inputs and 

proceeds to iterate through each pixel applying Equation 2 

below. 

BA = (a - b * cos Φ) / (√ a² + b² - 2ab * cos Φ), (2) 

where a = current height value in the height image 

b = preceding range value in the height image 

Φ = corresponding angle of increment 

The rasterized LiDAR data undergo a two-step enhancement 

process. Firstly, their intensity values are stretched using 

Histogram Equalization, enhancing contrast. Subsequently, the 

images are cubically interpolated for smoother transitions and 

finer details. Finally, they are exported as 8-bit image files, 

resized to reduce their dimensions, and made compatible with 

subsequent processing steps. 

Our investigation aims to combine these feature layers into a 

multilayer format, exploring various combinations and weight 

distributions to assess their impact on matching results and 

accuracy. Given that the GNN operates most effectively with 
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grayscale images, we merge the three layers into a single band to 

maintain control over band weighting. This process begins with 

normalization, scaling each layer's pixel values to fall within the 

range of 0 to 1. Subsequently, we merge and weigh the layers in 

different combinations, so that the combined contributions of all 

layers sum up to 1. Weight adjustments are fine-tuned with 

smaller increments allocated to areas yielding more confident 

matches, while larger increments are assigned to areas showing 

underperformance. By testing different combinations of weight 

increments (as shown in Table 1), including individual layer 

weighted at 100%, double layer combinations, and triple layer 

combinations, we aim to find the most effective input 

configuration for the GNN. 

3.3 Correspondences with Graph Neural Networks 

The Graph Neural Network architecture for this methodology 

consists of a front-end keypoint detector, SuperPoint (DeTone et 

al., 2017), and a middle-end keypoint matcher, SuperGlue 

(Sarlin et al., 2020). Illustrated in Figure 2, this GNN adaptation 

leverages combined LiDAR feature layers. 

Figure 2. GNN Pipeline Adaptation using Combined LiDAR 

Feature Layers 

In the front end, both the raw optical image and its corresponding 

LiDAR feature layer serve as inputs. They undergo processing 

through a shared encoder and two parallel interest and descriptor 

decoders. The shared encoder preprocesses the images, 

generating tensor B, reduced to 1/8th of its original size. 

Meanwhile, the interest and descriptor decoders evaluate each 

pixel of Tensor B, predicting its likelihood of being a key point 

and computing associated descriptors, resulting in the creation of 

Tensor X, with image features. 

Following feature detection, the middle-end utilizes key points 

from tensor X as interconnected nodes throughout and between 

image pairs. Messages about descriptors are transmitted along 

these edges, with attention mechanisms prioritizing relevant 

information. Finally, the Optimal Matching Layer determines the 

best match between key points based on their descriptors, by 

assigning a score to each potential match. The objective is to 

maximize the total score of all matches to find accurate and 

reliable features matching across both camera and LiDAR 

images. 

To validate the correspondence results and proceed only with the 

high-performing LiDAR feature layers, the inputs undergo 

SuperGlue evaluation at a significantly higher set matching 

threshold of 0.95. The matches are assessed by calculating 

Euclidean distances and Root Mean Square Error (RMSE) 

between all predicted values and manually selected ground truth 

values. 

3.4 Image Transformation 

Establishing (x, y) pixel coordinate correspondences between the 

camera and LiDAR image data enables the use of a 6 parameters 

affine transformation to register the datasets, facilitating the 

creation of a colorized 3D point cloud model. This 

transformation model is suitable for this research because the 

LiDAR and camera images are rasters in the same coordinate 

system and relief displacement has already been rectified. It 

incorporates linear translation, rotation, and uniform scaling, to 

align the 2D image with the 3D LiDAR data. 

The transformation equation, expressed in Equation 3 below, 

was implemented in Python using the RANSAC algorithm. 

RANSAC randomly selects a subset of data points from the input 

correspondence and iteratively fits the 6-parameter affine model 

to each subset, evaluating the residuals selecting the coefficients 

that minimize the residuals, and removing outliers from the data. 

The fitted coefficients, a to e, are calculated using least squares. 

Essentially, these coefficients determine how the pixel 

coordinates in the optical image (x, y) are transformed to match 

the corresponding coordinates in the LiDAR data (X, Y).  

   X = a * x + b * y + c (3) 

 Y = d * x + e * y + f 

To evaluate the accuracy of the transformation, the matching 

correspondences from SuperGlue were randomly divided into 

70% for training and 30% for testing. The accuracy was assessed 

by computing the RMSE between the original LiDAR point 

location and the transformed layer point to that location. 

4. Experiment Validation

To validate our research experimentally, we utilized aerial 

LiDAR data from the RIEGL VQ-780i system, with the density 

of 6 points per square meter, alongside high-resolution ortho 

imagery acquired by the UltraCam Eagle at a resolution of 0.07 

meters per pixel (GeoNB, 2015, 2020). Our investigation spans 

three distinct outdoor scenes—buildings, roads, and water—

within the city of Fredericton, New Brunswick, as depicted in 

Figure 3. With the airborne sensors Operating at an approximate 

altitude of 1000 meters, our study areas, strategically sized to 

encompass a square kilometer, facilitate focused analysis. 

Throughout, we maintain a uniform coordinate system of 

NAD1983 CSRS datum, NB Stereographic map projection, and 

CGVD2013 vertical datum. 

Figure 3.  Study Area Encompassing 3 Scenes: Buildings, 

Roads, and Water 
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In each scene, specific Regions of Interest (ROIs) are 

deliberately shifted between the image and LiDAR data to 

exaggerate the proof of concept. The camera images, inherently 

in RGB format, remain unaltered throughout the process. The 

LiDAR data are subjected to preprocessing in ArcGIS Pro, 

utilizing first return lidar values to generate three raster outputs: 

elevation, intensity, and bearing angle, for each of the three 

scenes outlined in Section 3.2. Consequently, this yields nine 

distinct image outputs, as illustrated in Figure 4., with columns 

representing Buildings, Roads, and Water, and rows 

corresponding to intensity, elevation, and bearing angle. 

Figure 4. Single LiDAR Feature Layer Outputs 

When creating the rasters, a sampling value of 0.5 was chosen, 

relative to the point spacing of our data 0.3, adhering to the 

guideline recommending twice the average point spacing. To fill 

the gaps in the created raster, bilinear interpolation was used to 

average values from neighboring data cells, eliminating small 

voids within the data. Subsequently, after raster creation, the 

intensity, elevation, and bearing angle values underwent cubic 

interpolation and stretching using Histogram Equalization, to 

improve visualization of the data. Finally, all outputs were 

exported as 8-bit Unsigned files. 

Figure 5. Visualization of SuperGlue Matches for Buildings 

(Top), Roads (Middle), and Water (Bottom). 

The individual intensity, elevation and bearing angle rasters are 

combined into a single layer within each respective scene, using 

the normalization and weighting process described in Section 

3.2. Various combinations and weights are tested, as detailed in 

the first three columns of Table 1, to find the most effective input 

configuration for the GNN. These multi-layer images are input 

to Super Glue's Graph Neural Network (GNN) for feature 

detection and matching. Initial optimal results are attained by 

utilizing the 'outdoor' Super Glue configuration, with a keypoint 

threshold of 0.1 and a match threshold of 0.5, alongside a Non-

Maximum Suppression (NMS) radius of 5 and maintaining a 

consistent image size of 320x240. This configuration provides 

low run-time and high confidence, yielding numerous matches 

during the initial examination. Visual representations in Figure 5 

showcase the match strengths, color-coded from weakest (blue) 

to strongest (red). 

The matching results are compiled in Table 1 to categorize layers 

based on Bearing Angle, Intensity, and Elevation, showcasing 

their respective weighted influences. Weight values of 'NA' and 

100 indicate exclusion and sole representation, respectively. 

Bolded red values denote superior combinations compared to the 

more traditional single-layer approach and red arrows point in 

the direction of increasing matches, showing the trends in each 

scene. 

Table 1. Number of Correspondences based on Layer 

Combination Weights 

The Building scenes show the most matches with 10% Intensity 

+ 90% Elevation, while the Road scene performs best with 10%

BA + 60% Intensity + 30% Elevation. The Water scene exhibits

relatively consistent performance across layers, with enhanced

results observed at 5% Intensity + 95% Elevation. Further trends

reveal a preference for heavier weighting on the layer that best

represents the scene's key features: Buildings and Water benefit

from heavier Elevation weighting, capturing taller features,

while Roads benefit from heavier Intensity weighting,
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highlighting flatter areas and road features. It’s also noteworthy 

that the Bearing Angle layer underperformed, lacking clear 

feature definition, and offering minimal benefit to the multi-layer 

format. Weighting this layer over 30% led to suboptimal 

outcomes. 

To validate results, a select few LiDAR feature layers from each 

scene undergo SuperGlue evaluation at a higher matching 

threshold of 0.85 at a resolution of 770 × 680. Subsequently, with 

these strong matches, the Python scikit-learn library's 

RANSACRegressor is employed to fit the 6-parameter affine 

transformation. This process utilizes 70% of matches as training 

data and 30% as testing data, effectively eliminating outliers. 

Through this registration of camera and LiDAR datasets, the 

generation of a 3D RGB point cloud model is facilitated for each 

scene, as depicted in Figure 5. 

Figure 6. Snapshots of registered RGB Point Clouds of 

Buildings (Top), Roads (Middle), and Water (Bottom). 

Model performance is assessed post-prediction with the testing 

data using Euclidean distances and RMSE between predicted and 

ground truth values, with results detailed in Table 2. The baseline 

was established from the original georeferenced rasters, with a 

manual selection of matching pixel locations across the image. It 

was divided into 16 sections, with 16 points chosen, including 

ground points, vegetation, and building corners, to create a 

diverse baseline evaluation.  

Our analysis yielded significant improvements in registration 

accuracy across various environmental settings. In the Building 

scene, the baseline RMSE of 6.3 pixels was substantially reduced 

to 1.1pixels using a combination of 66% Intensity and 34% 

Elevation, marking a 5-pixel improvement in accuracy. 

Similarly, in the Road scene, the initial baseline RMSE of 5.3 

pixels saw a reduction by 4 pixels to 1.300 when employing the 

intensity image. Furthermore, in the Water scene, the baseline 

RMSE of 2.3 pixels was improved by a half pixel to 1.8 pixels 

RMSE with the use of the Elevation image. Notably, all chosen 

combinations of layers yielded better accuracy than the baseline, 

demonstrating that utilizing a weighted and combined LiDAR 

feature layer and 2D image GNN approach to register these 

modalities provides meaningful results. 

Table 2. Registration Parameters, Accuracy, and Baseline 

RMSE Values in Various Scenes 

This research provides insights for those aiming to register aerial 

optical images with LiDAR data. The findings suggest that using 

a combination of intensity, elevation, and bearing angle rasters, 

weighted appropriately, yields accurate results when matched 

with a GNN. For flat areas, a heavier emphasis on intensity 

weights is recommended, while varied intensity and elevation 

combinations are best for tall structures, like buildings and trees. 

But these combinations should be fine-tuned based on specific 

scene characteristics. 

5. Conclusion

In this study, we investigated an approach to enhance optical 

camera-LiDAR registration through combined LiDAR feature 

layers and Graph Neural Networks. By generating combined 

feature layers from LiDAR data, employing a 2D-2D GNN 

pipeline for feature detection and matching, and establishing a 6-

parameters affine transformation, we achieved significant 

improvements in registration accuracy across diverse outdoor 

scenes. For instance, our results indicated a 5-pixel improvement 

in registration accuracy compared to the baseline for Building 

scenes, a 4-pixel improvement in Road scenes, and a half pixel 

improvement in Water scenes. 

Our experiments confirm our hypothesis that using a Graph 

Neural Network for feature matching between aerial 

orthoimages, and combined LiDAR feature layer combinations 

produces strong, viable matches, leading to accurate registration 

results and improving upon traditional baselines. The GNN’s 

ability to focus on geometric features, rather than relying solely 

on spectral and intensity gradients like traditional methods, 

allows it to handle multi-modal matching effectively. 

Despite these successes, our study identified limitations, 

particularly regarding the performance of bearing angle images, 

potentially due to the nature of the height and scan angle data 

obtained at high altitudes. Future work could focus on optimizing 

BA image processing techniques to enhance their suitability for 
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registration tasks. Additionally, our future research will involve 

implementing this methodology with a wider range of data such 

as terrestrial LiDAR point clouds, hand-held camera imagery, 

and low-cost multi-sensor Mobile Mapping System (MMS) 

datasets. Accurate registration between optical cameras and 

LiDAR data holds significant potential to advance autonomous 

systems, urban planning, environmental management, and non-

invasive mapping practices. Thus, our study contributes valuable 

insights and sets the stage for further research and innovation in 

this field. 
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