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Abstract 

Aerial and satellite imagery can provide vital information to relief organizations about the extent and distribution of damages after 

natural disasters. With manual change detection being too inefficient to be effective, the pursuit of automated change detection has 

accelerated with the recent developments of deep learning methods. Off-nadir imagery (captured not directly overhead) is the fastest 

to acquire post-disaster, making it ideal for disaster management scenarios. However, the changes in viewing angles result in shadows 

and occlusions, making damage detection more difficult. Differences in illumination conditions are ever present in bitemporal aerial 

and satellite imagery, especially for off-nadir imagery, where the reflectance angle affects the amount of light returning to the sensor, 

making it harder to detect changes and damages. The hypothesis of this study was that artificial intelligence methods fail to adequately 

account for the illumination differences between images. To test this hypothesis, two radiometric enhancements, matching and 

equalization, were applied to four change and damage detection datasets, including a damage detection dataset from the 2010 Haiti 

earthquake. Using a leading high accuracy fusion convolutional neural network architecture called Changer, improvements of up to 20 

percent for F1-Score, a popular remote sensing metric for quantifying the number of correctly classified pixels for specific datasets, 

were achieved through applying radiometric enhancement techniques. Applying radiometric enhancements on a case-by-case basis led 

to considerable improvements in accuracy, showing the promise of radiometric enhancement. Lower accuracies were achieved on the 

Haiti dataset, outlining the need for large disaster-specific datasets for training.  

1. Introduction

Natural disasters like earthquakes have profound societal 

impacts, necessitating swift relief efforts. Quantifying how much 

damage and where the damage has occurred is vital for rescue, 

relief, and reconstruction efforts. Post-disaster imagery from 

satellites, planes, or Unmanned Aerial Vehicles (UAVs) can 

provide a timely way to assess damages after a natural disaster 

by looking at building rooftops. Manual damage detection is a 

time-consuming and inefficient task, prompting the use of 

automated methods to detect damages. The leading techniques to 

detect these changes use a form of artificial intelligence called 

convolutional neural networks. Novel network architectures are 

frequently being developed to improve the accuracy of building 

change and damage detection. 

Neural networks necessitate large datasets for training so that the 

networks can learn what changed or damaged buildings look like 

and adjust the functions within their network to detect these 

features. The ability of a neural network to detect changes and 

damages is limited by its training data. Most current change and 

damage detection datasets are comprised of nadir-angle images, 

where the camera is directly overhead (Shen et al., 2021; Pang et 

al., 2023). While nadir imagery can yield better results, the delay 

in image acquisition makes it less practical than off-nadir 

imagery (Shen et al., 2021). The reported accuracies on nadir 

datasets are less relevant for disaster response purposes as models 

trained on nadir-angle images will not have the same 

performance on the quicker-to-acquire off-nadir-angle images. 

There is no consistent angle value that determines when an image 

is “off-nadir”. For instance, the S2Looking dataset (Shen et al., 

2021) discerns images as off-nadir when the viewing angle 

surpasses 15 degrees away from the nadir. Meanwhile, other 

sources (Wang et al., 2022) advocate for an angle of 25 degrees 

to classify an image as “off-nadir.” The farther the off-nadir angle 

for the images, the harder it is to detect change and damage for 

humans and neural networks alike. Some challenges with off-

nadir images are illumination differences, perspective distortion, 

shadows, visible facades, occlusions, and shifts in rooftop 

locations (Jabari & Zhang, 2017, Wang et al., 2022, Pang et al., 

2023). Differences in illumination conditions are ever present in 

bitemporal aerial and satellite imagery, especially for off-nadir 

imagery where the reflectance angle affects the amount of light 

returning to the sensor (Chen & Shi, 2020). In addition, differing 

atmospheric conditions, time of day, and time of year all 

contribute to changes in illumination conditions between pre- and 

post-disaster images (Chen & Shi, 2020, Jabari & Zhang, 2017). 

Due to the additional challenges with off-nadir imagery, current 

networks are still much less accurate on off-nadir imagery change 

detection tasks, leading to unsatisfactory results (Shen et al., 

2021, Pang et al., 2023, Fang et al., 2022). Any improvements in 

accuracy are vital as they could lead to better rescue, relief, and 

reconstruction efforts when disasters strike.  

Based on the available data, there appears to be a lack of damage 

detection datasets for training and testing neural networks. How 

networks trained on change detection perform on damage 

detection tasks has not been thoroughly tested. 

1.1 Objectives 

The first goal was to test the accuracy of a leading neural network 

on earthquake-specific imagery by creating a new dataset. The 

second goal was to improve the accuracy of deep learning 

methods on off-nadir imagery by addressing the differences in 

illumination conditions between images through radiometric 

enhancement. 

By improving upon existing methods, this research aimed to 

enable swifter and more precise damage detection based on off-

nadir images, with the ultimate goal of improving the way 

support could be delivered to those experiencing unimaginable 

loss due to disaster.  
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1.2 Dataset Selection 

The quality of results from a network depends on the quality and 

quantity of the training dataset used. The training data should 

provide a representative sample to achieve the best accuracies 

across various testing scenarios. Thus, the choice of datasets was 

pivotal to this project. A wide range of building change and 

damage detection datasets from aerial and satellite imagery are 

publicly available (Shen et al., 2021). Three primary change 

models classify label annotations between image pairs so a 

network can learn how to identify change: a binary, scaled, or 

categorical change model. Binary models (Ji et al., 2018; Holail 

et al., 2023) describe binary changes (e.g. changed vs unchanged 

or damaged vs not damaged), whereas scaled models (Gupta et 

al., 2019, Abdi et al., 2022) provide more detailed classifications. 

In the case of Gupta et al., for their dataset xBD, they created a 

“joint damage scale” ranging from no damage (0) to completely 

destroyed (3) (Gupta et al., 2018). Categorical models (Ji et al., 

2018) classify the pixels into semantic classes, such as grass, 

building, and water. Categorical and scaled models have different 

options, which can be more challenging than the binary 

annotations for networks to classify (Wang et al., 2022) and have 

less compatibility between datasets. Therefore, the xBD dataset 

was not selected for this project despite being specific to natural 

disasters. With the lack of datasets being a central issue for the 

change detection field, it becomes even more of an issue when 

looking at damage detection. For example, in comparing datasets 

for change detection and damage detection, many instances of 

change are not equivalent to damage like new buildings. 

 

There is a lack of available datasets for network training and 

testing, particularly for off-nadir angle imagery, with BANDON 

and S2Looking being two of the few public off-nadir image 

datasets. The building change detection with off-nadir aerial 

images dataset (BANDON) was chosen for training due to its 

large size, urban setting, and compatibility with semantic and 

binary change detection (Pang et al., 2023). The BANDON 

dataset is composed of 2283 off-nadir 2048 × 2048 image pairs 

depicting 123,000 change instances (Pang et al., 2023). The 

BANDON dataset includes change masks and three semantic 

classes: building rooftops, facades, and background pixels (Pang 

et al., 2023). The binary labels classify all pixels as changed (like 

a new building or a damaged building) or unchanged (all other 

pixels). Additional datasets were used for testing: S2Looking 

(Shen et al., 2021), LEVIR-CD (Chen and Shi, 2020), and a Haiti 

dataset (Abdi et al., 2021). The S2Looking dataset is a large off-

nadir satellite image dataset with changes and damages 

consisting of 5000 bitemporal off-nadir image pairs of rural areas 

with 65,920 annotated instances of change (Shen et al. 2021). It 

was used for testing instead of training since it did not have the 

additional semantic information and captured more rural areas, 

leading to an imbalance in the dataset with very few change 

pixels. Another dataset chosen for testing was the LEVIR-CD 

dataset, as it is one of the most popular change detection datasets, 

so it is useful for comparison. It consists of 637 high-resolution 

image pairs from Google Earth with a size of 1024 × 1024 pixels 

with a total of 31,333 instances of change. The final dataset used 

for testing was a dataset from the 2010 Haiti earthquake created 

by Abdi et al. (2021) that was modified for this project to test the 

network on earthquake-specific images with extensive damage. 

 

Pre- and post-disaster multispectral training images are 

occasionally supplemented with additional data. Supplementary 

data sources include building footprints, hyperspectral imagery, 

radar imagery and coordinates for the images (Abdi et al., 2021; 

Ji et al., 2019; Li et al., 2023; J. Liu et al., 2018). Many change 

detection datasets like BANDON and S2Looking do not have 

these additional data sources, limiting the possible computations 

on the dataset. The Haiti dataset had one georeferenced image, 

allowing one image to be projected onto the other. 

 

1.3 Network Selection 

Detecting damaged or changed buildings from aerial and satellite 

imagery is crucial to providing timely and accurate information 

for natural disaster relief and reconstruction efforts. In recent 

years, several types of deep learning neural networks have been 

developed to automate this challenging task accurately and 

efficiently. The primary objective of these networks is to increase 

accuracy and reduce the training and testing time. Existing 

networks continue to have difficulty achieving high accuracies, 

especially when confronted with off-nadir images that can be 

acquired quickly after natural disasters (Pang et al., 2023, Shen 

et al., 2021). 

 

The accuracy of building change detection networks is 

determined by several metrics, including IOU, F1, Recall, 

Precision, Overall Accuracy, and other custom-made metrics 

(Codegoni et al., 2022; Pang et al., 2023; Shen et al., 2021). 

These metrics are ratios between true positives, false positives, 

true negatives, and false negatives. They attempt to quantify the 

number of correctly identified pixels. The accuracy of the 

networks varies greatly depending on the dataset. Two of the 

most common metrics are F1-Score (or F-Score), the harmonic 

mean of precision and recall as shown in Equation 1, and 

Intersection Over Union (IOU), the number of overlapping pixels 

divided by the union of the two classes. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

𝑇𝑃+0.5(𝐹𝑃+𝐹𝑁)
                     (1) 

 

where  TP = true positives 

 FP = false positives 

 FN = false negatives 

 

Testing accuracies are the most pertinent metrics as they show 

how a network performs on unseen data, mirroring how disaster 

relief organizations could use these networks. Neural networks 

that are too complex run the risk of overfitting, causing the testing 

accuracy to be much lower than its training accuracy. Most 

existing neural networks for building change detection use 

supervised learning with labelled before and after training 

images. Existing networks are primarily built using PyTorch, a 

cutting-edge Python deep-learning library (MetaAI, 2023; Shen 

et al., 2021).  

 

With deep learning methods constantly evolving, novel network 

architectures are being developed, optimized, and tested for 

detecting building changes in satellite imagery. The 

Convolutional Neural Network (CNN) architecture forms the 

basis of most change detection deep learning models, where 

trainable filters are passed over images to pick out features. U-

net and Resnet are two of the most popular backbones for CNNs 

as they use skip connections to expedite training (Gupta et al., 

2019; Ji et al., 2019).  

 

Optimizing the architecture of a network and the preprocessing 

steps used in building change detection networks can improve 

results. An online dashboard that compares the accuracy of 

networks on a nadir satellite imagery dataset, LEVIR-CD, shows 

that the Changer network achieved the highest F1 and IOU scores 

to date, at 92.33 and 85.76 (MetaAI, 2023). When dealing with 

more complex datasets, notably ones with off-nadir imagery, 

existing networks have produced lower accuracies with F1 and 
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IOU testing accuracy scores in the 50 to 70 range (Pang et al., 

2023; Shen et al., 2021).  

 

The Changer network architecture developed by Feng et al. in 

2023 was selected for this project primarily for its high accuracy 

on change detection datasets including S2Looking, BANDON, 

and LEVIR-CD as demonstrated on online dashboards and when 

comparing their research to others (Fang et al., 2022, MetaAI, 

2023). The Changer network is a convolutional neural network 

with a ResNet backbone (Fang et al., 2022). It has feature 

interaction layers to exchange spatial and channel information to 

gain the context of pixels, and fusion layers to improve the spatial 

alignment between images (Fang et al., 2022). Cross-entropy loss 

and the AdamW optimizer are used as hyperparameters for the 

Changer network (Fang et al., 2022). The Changer network uses 

the mmsegmentation library, a subset of Pytorch, a common 

deep-learning Python library. 

 

1.4 Preprocessing Steps 

Preprocessing can be pivotal to improving the accuracy of 

networks. To increase the number of training samples obtained 

from one dataset, colour jittering, rotation, flips, and cropping 

can be applied to the training images (Fang et al., 2022; Pang et 

al., 2023). Downsampling of images can expedite training (T. Liu 

et al., 2021; Pang et al., 2023; Shen et al., 2021). These 

preprocessing steps do not solve the problem of illumination 

differences in bitemporal image pairs. Performing calculation 

preprocessing tasks on datasets can improve accuracy, yet it can 

introduce additional error sources (Pang et al., 2023; Shen et al., 

2021). Radiometric enhancements have not been extensively 

applied to change detection datasets.  

 

2. Methodology 

2.1 Applying Radiometric Enhancements 

To test whether radiometric enhancement can improve the final 

accuracy of change detection by addressing illumination 

differences between images, two types of radiometric 

enhancement, equalization and matching, were implemented on 

the four selected datasets: BANDON, S2Looking, LEVIR-CD, 

and the Haiti dataset. The hypothesis was that, by reducing the 

variations in the spectral characteristics of the images, the neural 

network could focus on detecting building changes instead of the 

changes in colour between images. 

 

Histogram equalization evenly spreads the brightness values 

across the spectrum. The first step is to create the cumulative 

histogram for each band. Next, values in the cumulative 

histogram are multiplied by the number of brightness values – 1 

and divided by the total number of pixels in the image. These new 

computed brightness values replace the old brightness values for 

every pixel, with the resultant equalized images having the same 

number of pixels across the entire spectrum. In the case of 8-bit 

images, the brightness values are evenly distributed from 0 to 

255. Equalization was effective at highlighting dark features and 

making the spectral profiles identical, although it did cause 

colour distortion. 

 

A second radiometric enhancement technique, histogram 

matching, was also applied, altering the colours of the after 

images to match the colours of the before images with less colour 

distortion than equalization. The after image was chosen to be 

matched to the before image since, in natural disaster scenarios, 

the before image is the baseline to compare against, so it was left 

unchanged. Firstly, cumulative histograms were made for each 

pair of before and after images. The brightness values in the 

cumulative histogram of the before image replaced the brightness 

values in the cumulative histogram of the after image with the 

closest frequency. As a result, the histograms of the after image 

matched the shape and average pixel value of the before images. 

Figure 1 shows an example of equalized and matched images, 

with the matched after image now having the same dominant 

green colour. For the BANDON dataset with three timestamps 

for some images, the second and third images were matched to 

the earliest timestamp that formed a pair of images. Despite 

changing the colours in the after image with matching and 

equalization, changes in the buildings were still easily visible 

between images.  

 
Figure 1. BANDON Radiometric Enhancement Example 

 

A radiometric enhancement software was created in Python to 

efficiently apply equalization and matching to entire datasets at a 

time. It is available on GitHub for future use at 

https://github.com/SMProgrammer/RadiometricEnhancement. 

 

2.2 Network Training and Testing 

The training was performed in Python in Google Colab with a 

V100 Graphic Processing Unit and took approximately 8 hours 

for each network. The number of iterations used for training was 

40,000 since it is a standard training time for this type of network 

(Fang et al., 2022; Pang et al., 2023), and the results were 

levelling off at that number of iterations. The testing generally 

took two to three minutes per dataset, with about a second 

required per image. The speed of the test results shows that a 

relief organization could use a network to obtain timely results in 

a real-world natural disaster scenario. 

 

The same radiometric enhancement technique was applied to the 

training and the testing data. First, the Changer network was 

trained on the regular BANDON dataset and tested on the test 

portion of the BANDON dataset and the other three datasets to 

achieve baseline accuracies for comparison. Second, the Changer 

network was trained on the equalized BANDON training images 

and tested on the equalized datasets. Third, the Changer network 

was trained on the matched BANDON training images and tested 

on the matched datasets. These three steps were repeated with the 

semantic information included for the BANDON and Haiti 

datasets, resulting in a total of six networks being fully trained 

and tested. Semantic testing and training were only performed for 

the BANDON and Haiti datasets, as they were the only datasets 

compatible with semantic change detection. Configuration files 

were created for the BANDON and Haiti datasets to make them 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-4-2024 
45th Canadian Symposium on Remote Sensing (CSRS), 10–13 June 2024, Halifax, Canada

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-4-2024-33-2024 | © Author(s) 2024. CC BY 4.0 License.

 
35



 

compatible with the Changer network for semantic and non-

semantic change detection. 

 

2.3 Earthquake Dataset Preparation 

The Haiti dataset, developed by Abdi et al. (2021) was modified 

to be compatible with image-level damage detection for a 

network trained on the BANDON dataset. The original Haiti 

dataset contained a 2009 0.5-meter resolution off-nadir pre-

disaster image, a 2010 post-disaster nadir 0.5-meter resolution 

georeferenced orthophoto, and a building footprint polygon 

layer.  

 

Firstly, the pre-disaster image was georeferenced to the post-

disaster orthophoto using the Auto-Georeference tool in ArcGIS 

Pro as it yielded superior results to manual georeferencing. The 

registration used a second-order polynomial transformation with 

619 control points to achieve RMS forward, inverse and forward-

inverse error values of 2.642, 2.662, and 0.015. Secondly, the 

building footprints were projected and snapped onto the 2010 

orthophoto to create a raster while maintaining the same cell size, 

extent, and coordinate system. Thirdly, a change mask with only 

collapsed pixels, a raster with only non-collapsed buildings, and 

a raster with all building images was created. Having this 

semantic information with which pixels were buildings allowed 

the Haiti dataset to be compatible with the semantic classes in the 

BANDON dataset. Fourthly, the images, change mask, and 

building rasters were split into forty-one 512 by 512 images 

which corresponded to the crop size applied by the Changer 

network to ensure full compatibility and to maximize the number 

of image pairs the dataset could provide. 

 

3. Results 

The results indicated that histogram matching and equalization 

can lead to notable accuracy improvements in certain situations. 

The visual results for non-semantic testing on the S2Looking and 

Haiti datasets are shown in Figures 1 and 2. The image on the 

bottom left shows the ground truth labels with white pixels 

indicating changes or damages. The regular, matched and 

equalized predictions from the three non-semantic networks are 

shown in the rest of the bottom row.  

 
Figure 2. Visual Results for a Pair of S2Looking Images  

 
Figure 3. Visual Results for a Pair of Haiti Images 

 

The F1-Score and IOU for the changed class and the mean for 

both the changed and unchanged classes for the non-semantic 

testing are shown in Table 1 and displayed in Figure 4. LEVIR-

CD was the dataset with the highest accuracy scores. Depending 

on the dataset, different types of enhancements produced the 

highest scores. 

 

Dataset Enhancement 

Changed Class Mean Metrics 

F1-

Score  
IOU 

F1-

Score 
IOU 

BANDON 

Regular 66.03 49.29 82.55 73.73 

Equalized 66.54 49.86 81.96 73.06 

Matched 66.12 49.38 82.57 73.73 

Haiti 

Regular 7.82 4.07 52.27 48.86 

Equalized 4.77 2.44 50.73 48.01 

Matched 28.49 16.61 62.55 55.03 

S2Looking 

Regular 32.40 19.33 65.94 59.15 

Equalized 50.53 33.81 74.27 65.73 

Matched 15.14 8.19 57.28 53.53 

LEVIR-CD 

Regular 70.07 53.93 84.16 75.25 

Equalized 68.64 52.25 82.23 73.09 

Matched 62.07 45.00 80.07 70.61 

 

Table 1. Summary of Non-Semantic Testing Accuracies 

 

 

 
Figure 4. Numerical Testing Results - Changed Class F1-Score 
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The Haiti dataset saw the lowest accuracies of all the datasets 

tested. Applying histogram matching to the results for the non-

semantic network produced an increase of over 20.7 in F1-Score 

on the changed class and a 10.3 increase in the mean F1-Score 

between the changed and unchanged class. Visually, the matched 

prediction picked up more damaged buildings and more pixels of 

damaged buildings, leading to higher scores (see Figure 3). 

 

Histogram equalization resulted in major increases in accuracy 

for S2Looking. The equalization method improved the F1-Score 

by 18.1 and the IOU by 14.5 for the changed class. Applying 

radiometric enhancement techniques to the BANDON and 

LEVIR-CD datasets resulted in minor increases and decreases in 

accuracy.  

 

In general, testing networks on data that had been enhanced 

differently than their training data led to lower accuracies. 

However, since the equalized S2Looking drastically improved 

results, networks trained on the regular and matched BANDON 

data were also tested on the equalized S2Looking images. The 

network trained on the regular S2Looking images saw an 

improvement of 10 in F1-Score when tested on equalized 

S2Looking images. 

 

4. Discussion 

Applying radiometric enhancements showed much promise as it 

led to substantial accuracy improvements for the S2Looking and 

Haiti datasets. The Haiti dataset provided a challenge for a 

network trained on change detection as that dataset contained 

exclusively damages, leading to lower accuracies. 

 

There were much higher precision scores than recall scores for 

the changed class for all the datasets except for LEVIR-CD. In 

addition, the unchanged class scored highly at over 93% on all 

metrics for all networks and all datasets. These results indicate 

that the networks were not detecting enough changes or damages, 

but the changes or damages the networks did detect were 

generally correct. Even the Haiti dataset, with low scores overall, 

still had precisions over 50 percent for the changed class. To 

make the networks focus more on the changed pixels, weighting 

the loss function in future research may be necessary to address 

the imbalance in the number of pixels in the changed and 

unchanged classes.  

 

The addition of the semantic information for the BANDON and 

Haiti datasets made little difference to the achieved accuracies, 

indicating that future datasets may not need this additional 

information. One case where additional semantic information 

may be useful is labelling what type of natural disaster has 

occurred in an image, as ideally, a network would affect its pixel 

classifications. 

 

4.1 BANDON Validation Accuracies 

There is inherent variability in training AI models. The networks 

were trained for 4,000 iterations several times, resulting in 

validation accuracies within 1 percent. Results well above this 

threshold were obtained with histogram equalization and 

matching, indicating that these variations were due to the image 

enhancements. In general, the validation accuracies during 

training levelled off by 40,000 iterations, indicating that the 

networks were trained for a sufficient number of epochs. The 

average difference between the validation and testing accuracy 

for F1-Score  and IOU for BANDON for all six networks 

(regular, equalized, and matched with and without semantic 

information) was less than 1, indicating that the network did not 

suffer from overfitting. 

 

4.2 Enhancement Techniques 

From the visual and numerical results, it is evident that while both 

histogram equalization and matching can drastically improve 

testing accuracies, there is no method to apply universally in all 

cases. Instead, the decision of which enhancement to apply 

should depend on the spectral characteristics of the 

dataset.                                                                                       

 

The highest accuracies occurred when the same enhancement 

was used for training and testing. This result was expected since 

networks do not perform as well on data that differs from their 

training data. 

 

In the case of S2Looking, histogram equalization was found to 

be particularly effective, as almost all the images were very dark 

before equalization. This leads to the recommendation that 

histogram equalization be applied to darker datasets. With 

satellite imagery, images tend to be darker since they are farther 

away from the ground. Off-nadir images also tend to be darker 

due to their reflectance angle. Therefore, equalization could 

prove invaluable in improving damage detection from off-nadir 

satellite imagery in a disaster scenario, as it did for the S2Looking 

dataset. Histogram matching decreased the accuracies for 

S2Looking, potentially due to some after-images becoming 

darker in the matching process, making it harder to detect 

features. 

 

Histogram matching was effective at improving results for the 

Haiti dataset. One potential reason for the Haiti dataset seeing 

larger improvements than other datasets with matching was that 

the matching was performed for 512 × 512 images instead of the 

larger 2048 × 2048 image size of other datasets, leading to more 

specific colour matching. Another potential reason is that the 

before and after images had different spectral characteristics, 

particularly in the red band. 

 

Applying enhancements to the BANDON and LEVIR-CD 

datasets made little difference and, in some cases, decreased the 

achieved accuracies. LEVIR-CD and BANDON primarily 

contain Google Earth images that have already undergone 

radiometric preprocessing, which could explain why equalization 

and matching did not improve accuracy. The two datasets that did 

not undergo prior radiometric enhancements, S2Looking and 

Haiti, both saw notable improvements in accuracy. In a disaster 

scenario with raw imagery sources, applying radiometric 

enhancements could be key to detecting more damage. While 

equalization and matching improved the results in some 

situations, these enhancements should be applied on a case-by-

case basis. 

 

4.3 Limitations  

The Changer network trained on the BANDON change detection 

dataset was found to be insufficient in achieving high accuracy 

testing results for damage detection scenarios. The extent to 

which a dataset reflects damages seemed to lead to lower 

accuracies. For the Haiti dataset containing solely damages, the 

network did not classify all the pixels in each building as 

damaged and missed many damaged buildings entirely, likely 

leading to the lowest accuracies of the four datasets tested. The 

S2Looking dataset includes damages and changes and produced 

the second lowest accuracies. These results indicate that 

networks trained on change detection datasets are less accurate 
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for damage detection tasks, underscoring the need for large 

damage-specific datasets for training. 

 

One of the limitations identified with histogram equalization and 

matching is that the images need to contain somewhat similar 

information. Large differences between images can cause 

significant colour distortion during radiometric enhancements. 

Examples where images may not contain similar information 

include major seasonal or tidal differences. In these scenarios, 

histogram equalization or matching may perform worse due to 

them distorting the colours greatly to match the images. Future 

research could explore applying thresholds so that if the pixel 

values in the before image were a certain percentage of the full 

spectrum apart from pixels in the after image, histogram 

equalization and matching would not be applied. Histogram 

matching or equalization does introduce an additional step into 

the process. However, it does not add much processing time as it 

can be done for entire datasets at once in a matter of hours or on 

individual images in seconds.  

 

In the case of the LEVIR-CD dataset, applying equalization and 

matching resulted in a decrease in overall accuracy. It is thought 

that perhaps because the LEVIR-CD dataset was the only nadir 

angle dataset, the already near-perfect alignment of the images 

meant that making the spectral characteristics of both images the 

same was a hindrance to the model’s ability to detect change 

instead of an aid. This, coupled with the very limited 

improvements on the BANDON test data, which already had very 

high existing accuracies, suggests that while aligning the spectral 

characteristics of datasets is undoubtedly a useful tool to improve 

accuracies for datasets, its effectiveness does not lead to 

consistent improvements across all datasets. 

 

4.4 Recommendations and Future Research 

Subsequent research could build upon this project in many ways. 

The Haiti dataset was large enough for testing but not for training 

a network. This research outlines the need for large natural 

disaster-specific off-nadir datasets for training. The addition of 

the semantic information may not be necessary for a new dataset 

as it did not lead to improvements in this research. Applying 

radiometric enhancements to datasets and images on a case-by-

case basis can lead to higher accuracies. The radiometric 

enhancement techniques could be tested on additional network 

architectures and training datasets. Thresholds and additional 

types of radiometric enhancements could be implemented to 

optimize when to use each radiometric enhancement technique 

depending on the spectral characteristics of the images. The loss 

function could be weighted to account for the class imbalance in 

datasets. The number of iterations for training could be increased 

while balancing the potential overfitting problems that are 

common with additional training. For areas prone to natural 

disasters having up-to-date imagery of the area, trained networks 

ready, and information about what post-disaster images may look 

like, could lead to selecting an appropriate radiometric 

enhancement technique and improved disaster management. 

 

5. Conclusion 

In this study, two radiometric enhancement techniques, 

histogram matching and equalization, were employed to four 

datasets to test whether it would have an impact on detecting 

changes and damages for a leading network called Changer. 

Histogram matching and equalization applied on a case-by-case 

basis to training and testing data drastically improved accuracies 

for two of the four datasets tested. The darker S2Looking dataset 

F1-Score increased by 17 when applying histogram equalization. 

Although the Haiti dataset had low accuracies overall, the F1-

Score improved by over 20 with histogram matching. The 

potential of histogram matching and equalization is clear. 

 

Radiometric enhancements were frequently applied to images 

before the use of convolutional neural networks became popular. 

In this research, applying radiometric enhancement on off-nadir 

imagery led to considerable accuracy improvements for a change 

and damage detection neural network, indicating that radiometric 

enhancement techniques should not be abandoned despite the 

advent of advanced networks. Ideally, radiometric enhancement 

techniques would be applied on a case-by-case basis to improve 

accuracy, depending on the spectral characteristics of the 

datasets. A leading network trained in change detection showed 

poor results on earthquake data, indicating the need for extensive 

damage-specific datasets for training. Future research could 

expand this concept by optimizing when to use various 

radiometric enhancement techniques. Continuing to pursue 

radiometric enhancement techniques and building damage-

specific datasets could prove pivotal to improve accuracies to 

ultimately assist rescue, relief, and reconstruction efforts. 
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