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Abstract 

Evaluation of surface distress is an important aspect of pavement management. The most common practice to assess surface distress 

is to develop a pavement condition index (PCI), with ASTM-PCI being the most widely used in evaluating flexible pavements. 

Traditional PCI evaluation methods rely on labour-intensive, manual inspections, leading to significant time consumption. In recent 

years, real-time visualization and crowdsourcing have been explored, but their potential has yet to be fully realized. Integrating real-

time visualization through GIS technology offers immediate insights into pavement conditions, aiding prompt decision-making. 

Crowdsourcing allows a broader community to contribute to condition reporting, enhancing data accuracy and coverage. This study 

aims to develop an artificial intelligence (AI)--based method for road condition assessment from crowd-sourced images. A deep-

learning object detection model is utilized for precise crack detection and classification. The model is trained to recognize various 

distress types accurately and quantify attributes crucial for determining the PCI. The developed model is then integrated into a web-

based platform accessible through mobile phones and dash cameras, allowing real-time capture and classification of cracks. The 

study demonstrates that the automated methodology significantly enhances PCI estimation efficiency, with a high correlation 

between semi-automated and automated methods. Stakeholders can benefit from deep learning and automation in pavement distress 

detection, aiding informed decision-making through crowdsourcing data. Future work includes the detection of subclasses within 

crack types based on severity and the creation of digital twins for public assets. Overall, this study highlights the transformative 

potential of AI and crowdsourcing in improving pavement management. 

1. Introduction

Optimal road conditions are crucial in ensuring safe driving and 

smooth traffic flow. Any degradation in road conditions affects 

the quality and functionality of roads, resulting in a substantial 

decline in traffic safety. Road segments often exhibit various 

surface defects, including loss of coarse aggregates, ravelling, 

segregation, potholes, and flushing, alongside permanent 

deformations like rippling, shoving, wheel track rutting, and 

distortions. Further, cracking issues manifest in diverse forms, 

including longitudinal wheel track, centre line, pavement edge, 

traverse, longitudinal meander, mid-lane, map, and alligator 

cracks. 

Road infrastructure assessment and maintenance play an 

important role in ensuring users' secure and efficient 

transportation. A primary task within a pavement management 

system is determining the sections and roads within a network 

that necessitate preservation, maintenance, or rehabilitation 

based on their condition. The condition assessment includes 

many aspects, such as surface distress, surface roughness, 

surface friction, and structural capacity, where surface distress 

is the most used. Surface distress on road networks is assessed 

by assigning a Pavement Condition Index (PCI) as an indicator 

of the current state of the pavement section. Surface distress 

identification, severity categorization, and extent/density 

quantification are the three major inputs for PCI evaluation. 

Different methods are used to estimate the PCI values once 

these parameters are obtained. The ASTM PCI method is one 

such method that is widely used for evaluating flexible 

pavement conditions. However, the traditional approach entails 

manual PCI interpretation through field observations and 

calculations. This method is time-consuming and inherently 

subjective, susceptible to human errors. This study aims to 

develop an innovative approach using artificial intelligence (AI) 

to facilitate automated assessment of pavement surface 

conditions. The goal is to overcome the limitations of manual 

interpretation by leveraging AI technologies to streamline and 

enhance the accuracy of pavement condition assessments. 

The evolution of computer vision technologies has facilitated 

the application of diverse deep-learning methods for crack 

detection. These techniques typically fall within two broad 

categories: object detection and semantic segmentation. Recent 

research has highlighted the utilization of various deep-learning 

models in this domain. Noteworthy contributions include the 

adoption of Convolutional Neural Network (CNN), You Only 

Look Once versions 3, 4, and 5 (YOLOv3, YOLOv4, and 

YOLOv5) for object detection (Bochkovskiy et al., 2020; 

Nguyen et al., 2021; Zhu et al., 2022). Moreover, crack 

segmentation techniques have been developed leveraging 

architectures such as Recurrent Adaptive Networks, UNet, 

DMA Net, and ECSNet (Di Benedetto et al., 2023; Liu & 

Wang, 2022; Qi et al., 2023; Sun et al., 2022; Zhang et al., 

2023; Zhang et al., 2022; Zhang & Zhang, 2023). The refined 

training of these algorithms has enabled the classification of 

diverse forms of surface distress. Integrating these AI-driven 

deep learning methodologies with equation-based Pavement 

Condition Index (PCI) estimation presents a promising avenue, 

offering the prospect of devising an automated approach for 

advanced PCI estimation. This integrated approach holds 

significant potential to enhance the efficiency and accuracy of 

pavement condition assessments, substantially reducing both 

time and labour costs. 

An inherent challenge in object detection lies in the requirement 

for sophisticated technologies for data acquisition. 

Conventionally, pavement data collection necessitates aerial 

surveys conducted through Unmanned Aerial Vehicles (UAVs) 

or terrestrial surveys, methodologies that often entail substantial 

initial capital investments. However, this study proposes to 

overcome this challenge using imagery sourced from freely 
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accessible public platforms like Google Maps APIs. This 

approach enables access to crack information captured 

worldwide, leveraging the extensive coverage of locations 

available within Google Maps’ Street view images. Subsequent 

iterations aim to implement this automated model based on 

inputs from devices such as Closed-Circuit Television (CCTV) 

cameras and dashcams. This expansion in data collection 

infrastructure holds the potential to enhance the breadth of data 

input and, consequently, improve the model's accuracy. By 

diversifying the sources of data collection and integrating 

automated detection systems into commonly used devices, this 

approach seeks to expand the scope of data acquisition while 

augmenting the model's precision and scalability. 

 

This study adopts a Convolutional Neural Network (CNN)-

based object detection model employing the YOLOv5 algorithm 

to identify pavement distress and diverse distress types. The 

model integrates semi-automated and equation-based automated 

PCI estimation approaches to derive the Pavement Condition 

Index (PCI) rating within the study area. Initially, the manual 

PCI estimation method is employed as a benchmark for 

comparative analysis, serving as the foundational aspect of this 

research endeavour. This comparison aims to discern the 

efficacy of the automated model in contrast to other 

methodologies utilized and identifies avenues for enhancing the 

accuracy and reliability of the model. The developed model is 

further complemented by integration into a Geographic 

Information System (GIS) platform, enhancing visualization 

capabilities. The subsequent session discusses the study area, 

data used, methodology, and implementation specifics of the 

present study. 

 

2. Study Area 

The case study is performed on Mutual Street, between Dundas 

Street East and Queen Street East in Downtown Toronto (Figure 

1). This pavement exhibits multiple forms of deterioration, 

encompassing alligator cracks, potholes, flushing, and ravelling. 

Images portraying various distress types are acquired through 

crowd-sourcing methods utilizing Mobile Cameras. These 

images play a pivotal role in validating the object detection 

model. Figure 2 shows the diverse distress types captured via 

mobile cameras within the study area. 

 

3. Data Used 

The study employs the UAV Asphalt Pavement Distress Dataset 

(UAPD) by (Zhu et al., 2022) to construct an object detection 

model. This dataset comprises 3151 images depicting various 

pavement distress types, such as transverse, longitudinal, 

oblique cracks, alligator cracks, potholes, and repairs. The 

acquisition involves using an M600 Pro UAV and a Sony Alpha 

7R III digital camera, boasting a 3mm focal length, 7952x5304 

pixels resolution, and a frontal overlap of 75%. 

 

4. Methodology 

Several sequential steps are undertaken to establish an 

automated method for the Pavement Condition Index (PCI) 

estimation utilizing deep learning techniques. Initially, deep 

learning algorithms are employed to detect and categorize 

diverse distress types present along road sections. Subsequently, 

automated equation-based and semi-automated ASTM graph-

based techniques are utilized for PCI estimation. A manual 

method based on the SP-024 manual by the Ministry of 

Transportation (MTO) is also used. Finally, the PCI estimation 

outcomes are integrated with Geographic Information Systems 

(GIS) for visualization. The comprehensive methodology 

employed in this study is visually illustrated in Figure 4. 

 

 

 
 

Figure 1. Study area. 

(Source: Google Maps (n.d)) 

 

  

a. Raveling b. Flushing 

  

c. Rutting d. Alligator Crack 

 
 

Figure 2. Field observations. 

 

4.1 Object Detection Model 

The primary aim of this stage involves developing an object 

detection model using deep learning methodologies to 

effectively identify, categorize, and pinpoint pavement distress. 

For this purpose, the model is trained to leverage the UAPD 

dataset detailed in Section 3. Convolutional Neural Network 

(CNN) algorithm -You Only Look Once version 5 (YOLOv5), 

enables the distress detection process from the images. 

YOLOv5 incorporates a backbone that operates on either GPU 

or CPU for pre-training alongside a head responsible for 

predicting classes and bounding boxes. This head features a 

one-stage dense prediction approach and integrates a feature 

fusion network layer (Neck) between the backbone and head to 

compile feature maps. 
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Figure 3. Distress types in the UAPD dataset. 

(Source: Zhu et al., 2022) 

 

Figure 5 illustrates the model architecture for the YOLOv5 

model.  The input images from the UAPD dataset undergo 

initial processing via an input layer and are subsequently 

forwarded to the backbone for feature extraction. The backbone 

comprises multiple CBS (Conv + BatchNorm+ SiLU) modules, 

C3 modules, and a Spatial Pyramid Pooling-Fast (SPPF) 

module, augmenting the backbone's feature extraction 

capabilities. The resulting feature maps of various sizes are 

fused by the neck employing Feature Pyramid Network (FPN) 

and Path Aggregation Network (PAN) operations, thereby 

generating comprehensive feature maps. These maps enable the 

detection of small (P3), medium (P4), and large (P5) objects 

within the images. The subsequent stage involves directing 

these feature maps to the prediction head. Here, confidence 

calculations and bounding box regression occur based on preset 

prior anchor information, culminating in creating a 

multidimensional array (BBoxes). This array encompasses 

object class, class confidence, box coordinates, and width and 

height data. The final information regarding detecting distinct 

cracks is obtained through a non-maximum suppression (NMS) 

process. The model is trained to detect six types of cracks: 

transverse, longitudinal, oblique, alligator, potholes, and repairs. 

 

4.2 PCI Estimation 

The Pavement Condition Index (PCI) indicates the condition of 

a chosen road segment. This study exclusively focuses on PCI 

derived for surface distress conditions in flexible pavement. The 

assessment encompasses semi-automated and automatic PCI 

estimation methods that utilize road pavement's distress data 

obtained through the object detection model. The following 

sections describe each process in detail. 

 

4.2.1 Semi-automated method 

 

In the Semi-Automated method, distress manifestation analysis 

relies on the object detection model developed in Section 4.1. 

utilizing Google Street View images. This method aligns with 

procedures outlined in the ASTM standard. Calculating the PCI 

value necessitates three key parameters: distress type, severity, 

and density. The distress type parameter is derived from the 

object detection model introduced in Section 4.1. The density 

value is the ratio of the area of the bounding box of the detected 

crack to the total area of the image. The severity value 

estimation requires manual interpretation, relying on visual 

crack examination from the crack image. The PCI value is 

estimated based on crack type, density, and severity based on 

ASTM standards.  Employing the deduct value graph for each 

distress based on the ASTM method, the algorithm yields the 

deduct value once the severity is provided. Upon assessing the 

seriousness of each crack in the considered segment, the model 

offers a Corrected Deduct Value (CDV) and the Total Deduct 

Value (TDV) of the road segment. The PCI value is 

subsequently calculated based on the CDV against TDV, 

determined by the CDV versus TDV graph of the ASTM 

method. 

 

 
 

Figure 4. General Methodology. 

 

4.2.2 Automated equation-based method. 

 

The automated method is based on the Adjusted Urban 

Pavement Condition Equation for flexible pavements 

established by Osorio et al. (2014). In Equation 1, several 

variables are outlined. FC denotes the percentage of Fatigue 

cracking, TRC represents the combined value of transversal and 

reflection cracking, DP signifies the deteriorated patch, R stands 

for rutting (mm) derived as the average rutting across segments 

in the sample unit, and P indicates the percentage of Potholes. 

All variables used in the equation are acquired through the 
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object detection model. Subsequently, the algorithm 

autonomously computes the PCI value for each section along 

the road segment. 

 

UPCI = 10-0.038 FC-0.040 TRC-0.046DP-0.059R-0.237P   (1) 

 

 

 
 

Figure 5. YOLOv5 model architecture. 

(Source: Liu et al., 2022) 

 

4.2.3 Manual Method 

 

A manual method is also performed based on the guidelines 

outlined in the SP-024 manual by the Ministry of Transportation 

(MTO). This evaluation operates on a scale ranging from 0 to 

100. The traditional manual process for Pavement Condition 

Index (PCI) estimation, following SPC-024 (Manual-Condition-

Rating-Flexible-Pavements, n.d.), involves several specific 

steps. Firstly, a visual inspection is conducted by driving 

through the pavement to evaluate its overall surface condition. 

Subsequently, the Ride Condition Rating (RCR) is obtained to 

assess the pavement's functional condition. Once the RCR is 

determined, a slow drive over the pavement is undertaken to 

examine the type and severity of distress present manually. This 

information is then recorded in the Pavement Condition Rating 

Form, encompassing the RCR and all observed distress 

manifestations. Finally, the Pavement Condition Rating (PCR) 

is assigned according to the guidelines outlined in Table B-1 of 

the SP-024 manual for estimating pavement condition rating for 

Flexible Pavements. 

 

4.3 GIS Integration 

Geotagged image coordinates sourced from crowd contributions 

are extracted and systematically stored within a spatial 

geodatabase. The road section's shapefile is segmented based on 

geocoding principles within a GIS platform. The PCI derived 

from the methodology above, specific to each road segment 

captured in these images, is linked as an attribute within the 

geodatabase corresponding to these spatial coordinates. 

Subsequently, the PCI values are visually represented for each 

of these segments. Finally, a GIS dashboard is created to display 

the PCI estimation results. 

 

5. Results and Discussions 

This section delves into the outcomes derived from the 

preceding case study. Constructed using the UAPD dataset, the 

object detection model is tested using Google Street View 

images. Subsequent sections will intricately detail the results. 

 

5.1 Pavement Distress Detection Modelling 

The pavement distress detection's object detection model is 

developed on the Google Colab Cloud Server, employing a 

Python-based algorithm. The UAPD dataset is partitioned into 

70% for training, 20% for testing, and 10% for validation. The 

training graphs of the model are depicted in Figure 6. Figure 7 

illustrates a model test output demonstrating the detection of a 

transverse crack from an image. 

 

Evaluating the overall model performance relies on the 

confidence curve. Analysis of the crack classification model 

highlights the importance of balancing precision and recall for 

optimal performance. The F-score reaches an optimal point, 

indicating a trade-off between minimizing false positives and 

negatives. This suggests the need for model refinement and 

careful calibration of the confidence threshold. The highest F1 

score pertains to Repairs, implying that the model has a clearer 

distinction for identifying 'Repair' cracks compared to other 

classifications. The evaluation of the crack classification model 

reveals a trade-off between the model's ability to identify true 

positives (precision) and its capacity to capture all relevant 

cracks (recall). This suggests that the model could benefit from 

further enhancements to improve its classification accuracy. The 

analysis also highlights the importance of balancing recall and 

the model's confidence threshold. This balance is crucial for 

optimizing the model's performance in classifying pavement 

distress effectively. 

 

 

 
 

Figure 6. Training graphs. 
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Figure 7. The output of the object detection model. 

 

5.2 Crack identification  

The model created is employed for distress analysis within the 

study area. Utilizing Google Street View images specific to the 

study region, the model accurately identifies various types of 

cracks within the region and computes the Pavement Condition 

Index (PCI) for individual road segments. Figure 8 shows the 

model's proficiency in detecting and classifying different crack 

types within the imagery, demonstrating its capability. 

Moreover, Figure 8. c details the total density and count of 

classes identified within the provided image. 

The model could be used with crowdsourced images like 

dashcam videos and phone photographs. This aspect requires 

further investigation. 

 

 

  

a. Input image b. Crack identification 

 

c. Class-Count-Density 

 

   

a. Input image b. Crack identification 

 

c. Class-Count-Density 

 
 

 

Figure 8. Crack detection and classification by the model. 

 

5.3 PCI Estimation 

The PCI estimation is conducted independently using manual, 

automatic, and semi-automatic methods, aligning with the 

methodology outlined in Section 4. The manual evaluation 

involves completing the flexible pavement condition assessment 

form by inspecting the road segment and determining the 

pavement condition rating. According to the manual 

assessment, the designated area exhibits a PCI value between 20 

and 30, indicating poor pavement condition. The evaluation 

highlights moderate alligator cracking alongside extensive, 

severe cracking and dishing. 

 

Table 1 outlines the PCI values attributed to various road 

segments derived from each image based on the semi-automated 

ASTM-based method and the automated equation-based 

method. Additionally, Figure 9 depicts the correlation between 

these two methodologies, revealing a notably strong correlation. 

This suggests that the UPCI method could replace both manual 

and semi-automated approaches, offering substantial time-

saving benefits. 

 

Additionally, Figure 10 presents the GIS-based visual 

representations generated utilizing the standard PCI rating scale. 

ArcGIS Pro serves as the tool for executing the GIS 

visualization process. The integration of GIS visualization plays 

a pivotal role in identifying specific road sections necessitating 

urgent maintenance and repair interventions. Furthermore, the 

results of the PCI index are displayed in a GIS Dashboard, as 

shown in Figure 11. 

 

Image 

Name 

PCI_ASTM  

(Semi-Automated) 

UPCI  

(Automated) 

Image_0 96 95.9 

Image_1 92 97.8 

Image_2 82 75.1 

Image_3 78 86.7 

Image_4 95 99 

Image_5 50 62 

Image_6 84 92.7 

Image_7 46 73.14 

Image_8 60 51.63 

Image_9 75 72.1 

 

Table 1. PCI Values for Semi-automated and automated 

methods. 

 

 
 

Figure 9. Correlation plot between UPCI and PCI-ASTM 

method. 
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a. PCI_ASTM b. ASTM rating scale 

 

 

c. UPCI  

  
Figure 10. Results of PCI estimation. 

 

 
 

Figure 11. GIS Dashboard. 

 

6. Discussions and Conclusion 

The degradation of asphalt concrete pavement significantly 

affects roadway functionality. Pavement distress amplifies 

notably, especially under increased traffic loads and over the 

pavement's service life. Consequently, transportation authorities 

are facing the ongoing necessity of diligently assessing 

pavement conditions and formulating appropriate maintenance 

strategies. A critical metric employed for this assessment is the 

Pavement Condition Index (PCI), graded on a scale from 0 to 

100, where 0 signifies the poorest condition and 100 is the 

optimal. 

 

Traditionally, PCI determination relies on field assessments 

entailing manual observation and interpretation. However, this 

study aims to reform this process by automating it. It involves 

developing a comprehensive system incorporating a deep 

learning-based object detection algorithm for pavement distress 

identification, equation-based PCI estimation, and Geographic 

Information System (GIS) visualization. As part of this 

initiative, the study executes manual, semi-automatic, and 

automated PCI detection specifically for Mutual Street.  

 

The manual method effectively serves targeted data collection 

without relying on sophisticated technologies. It offers 

immediate local insights through direct observation. However, 

its drawback lies in being time-consuming and labour-intensive, 

thus incurring higher costs. Moreover, subjectivity in 

interpreting distress types and severity introduces potential 

inconsistencies and errors. Data collected through this method 

tends to be less comprehensive and challenging to analyse on a 

larger scale. 

 

Contrarily, AI-based technology demonstrates efficiency in 

terms of time and cost by swiftly assessing extensive areas. It 

presents greater consistency by mitigating human biases and, 

through appropriate training, holds promise in forecasting future 

road conditions. However, the initial setup cost involves 

investing in technology, as classification accuracy hinges on 

effective model training and substantial initial data collection. 

Moreover, the model's performance heavily relies on data 

quality and may overlook subtle details perceivable by a human 

inspector. Continuous updates and maintenance also form 

crucial requisites for sustained model accuracy and 

functionality.  

 

The model was trained on UAV images, yet it remains effective 

on Google Streetview images for two main reasons. First, the 

robustness of the CNN algorithm enables it to learn edges, 

textures, and patterns across diverse views and perspectives, 

effectively accommodating the differences between UAV and 

ground images. Second, the appearance of crack patterns is 

similar between the two types of images; both are represented in 

3-channel RGB format and look nearly identical despite their 

differing viewpoints. 

 

The results from both the equation-based and semi-supervised 

AI methods display a notable correlation, revealing a fair to 

poor road condition along the specified stretch. However, the 

model devised in this study encounters reduced classification 

accuracy due to diverse distress types. Improving the model's 

performance entails expanding the array of classes and honing 

its accuracy through training enriched with crowd-sourced 

images. Another limitation of the model lies in utilizing 

bounding boxes for distress density calculation. Introducing 

image segmentation coupled with distress classification proves 

advantageous in delineating distress areas and precisely 
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identifying their density. This integration facilitates a more 

accurate understanding of distress distribution and density 

across the pavement surface. 

 

Future work encompasses the integration of a crowd-sourcing 

platform to collect additional road condition data for real-time 

updates. While the current study leveraged GIS solely for 

visualization, future endeavours aim to delve deeper into GIS 

potentialities. This involves exploring spatial dependencies, 

such as the impact of traffic flow, business activities, and other 

pertinent parameters, to uncover further insights into pavement 

conditions. 
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