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Abstract 

 

LoD2 building models can be used in different digital twin-related applications such as urban planning, disaster management, 

optimizing green energy efficiency, and solar panel recommendation. Existing technology for 3D modelling of buildings still relies 

on a large amount of manual work due to the irregular geometries of different roof types. Wireframes have shown to be an effective 

representation for 3D building especially in LoD2 format. Due to the complexity and diversity of roof types in urban areas, 3D 

building modeling remains a challenging task. In this paper, we propose a new framework for generating 3D wireframes to model 

different roof types. While high-resolution airborne images can be utilized to exploit the fine details of the roofs, they have 

difficulties in areas with poor contrast or shadows. The proposed framework incorporates the Digital Surface Model (DSM) as an 

auxiliary data source to address this limitation.  In this work, we focus on the extraction of roof geometrical components including 

lines and planes of individual buildings to achieve a consistent LoD-2 building reconstruction. The proposed methodology is divided 

into two phases: (1) jointly predicting building lines and roof planes from the RGB imagery and DSM and (2) generating 3D 

wireframes of buildings using the extracted roof planes and lines. Subsequently, height values from the point clouds are used to 

derive 3D wireframes.  Experiments with 1,620 buildings from Fredericton, the capital of New Brunswick in eastern Canada, 

demonstrate an IoU of 0.9337, an F1-score of 0.939, and an F2-score of 0.9378 for the roof geometrical components detection phase, 

as well as an RMSE of around 0.2-0.8 meter for the final 3D building model compared to the original LiDAR data was achieved.  
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1. Introduction 

In today's world, there is an increasing demand for accurate and 

precise 3D city models to support the sustainable management 

of the growing urban population. These models provide a 

comprehensive understanding of a city's layout and 

infrastructure, empowering urban planners and decision-makers 

with a detailed view of the city's current state. This holistic 

perspective supports decisions that align with long-term goals 

and objectives. Beyond urban planning, 3D building modeling 

enables informed decisions in sustainable development, land-

use planning, transportation analysis, flood risk assessment, 

green energy optimization, climate change mitigation, disaster 

preparedness, and real estate development (Biljecki et al., 2015; 

Doulamis & Preka, 2016; Peters et al., 2021). 

The existence of a large amount of information on urban areas 

and the diversity of building roof types makes 3D modelling of 

roofs and further LoD2 3D modelling of buildings an active 

research area in photogrammetry, remote sensing, and computer 

vision.  

To accurately reconstruct 3D models of building wireframes, it 

is necessary to identify building geometrical components, which 

can be achieved using deep learning, particularly through 

segmentation networks. The goal of semantic segmentation 

using deep learning in our work is to classify each pixel in 

images into specific categories that represent different roof 

geometric components, such as roof lines and planes. With the 

advent of multi-object segmentation, these models are gaining 

more attention due to their shared backbone that extracts key 

features, which are then used in various objects within the 

model. Multi-object segmentation not only boosts training 

speed by consuming less memory and computational power 

compared to using separate architectures for each object, but 

also can learn a generalized representation of data features that 

benefit multiple objects, potentially leading to better 

performance on each (Benjamin Bischke et al., 2019; 

Crawshaw, 2020).  

Semantic segmentation often struggles to distinguish objects in 

areas with poor contrast and shadows in RGB images. 
Using digital elevation models is an effective way to overcome 

this limitation since building planes, out-lines, and in-lines 

differ in height from the pixels of the background. Therefore, 

point clouds can be used as an independent source of 

information for building geometrical component extractions 

(Soleimani Vostikolaei & Jabari, 2023). 

Although several studies have performed LoD2 3D modeling of 

building from aerial sensor data, only a few of them use deep 

learning segmentation and to the best of our knowledge there 

are no studies in the literature which can detect the roof 

geometrical components including footprints, lines, and planes 

of each roof by fusing the RGB and DSM features. Hence, in 

this work, we propose a bimodal multi-object network that 

combines deep RGB and height features of each building. Our 

proposed method aims to increase the accuracy of LoD2 3D 

modeling of building wireframes by improving the overall 

accuracy of roof geometrical components detection. 

The presented methodology consists of two phases. The first 

phase focuses on segmenting roof geometrical components.  

The second phase of this work focuses on 3D modeling of 

building wireframes using a data-driven approach. This part can 

be divided into three steps: (1) vectorizing the roof planes and 

lines, (2) simplifying them with the Douglas Peucker algorithm, 

and (3) deriving 3D wireframes by using height values from 

LiDAR point clouds.  
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In summary, this paper contributes to the literature by 

introducing a novel framework for 3D city modeling and 

focusing on creating 3D wireframe models of buildings from 

bimodal data sources. 

2. Related Works 

2.1 Semantic Segmentation 

Building footprint detection using satellite or aerial images with 

Deep Convolutional Neural Networks (DCNN), is mostly 

assumed as image semantic segmentation. Deep convolutional 

neural networks have attracted great attention in recent research 

due to their exceptional performance in image segmentation. 

DCCNs can detect, segment, or classify objects, including 

buildings, roads, trees, or building roof types 

(Buyukdemircioglu et al., 2021). Here, we summarize the latest 

studies on DCNN, focussing on fully convolutional networks 

(FCN), a branch of CNN. 

Fully convolutional networks are recognized as a seminal 

approach to semantic segmentation. Liu et al. (2019), developed 

a new FCN with a spatial residual inception (SRI) module. The 

SRI model is proposed to capture and aggregate multi-scale 

contexts for semantic understanding by successively combining 

multi-level features. Sang & Minh (2018) also, utilized FCN 

neural networks based on the backbone ResNet101 with 

additional up-sampling skip connections to preserve spatial 

resolution, improve gradient flow. They achieved an overall 

accuracy of 91% for building detection. The common loss 

functions for image segmentation purposes are cross-entropy 

loss, dice loss, and focal loss Jadon (2020). To address 

multitask learning, class imbalance, or specific task 

requirements, custom loss functions need to be defined.  

Benjamin Bischke et al. (2019) developed a novel multi-task 

FCN loss to preserve semantic segmentation boundaries in 

high-resolution satellite imagery. In the new loss, the network is 

biased to focus more on pixels near boundaries using multiple 

output representations of the segmentation mask. 

Similarly, U+-Net-based semantic segmentation models have 

mostly been used in recent research due to their exceptional 

performance.  Guo et al. (2020) and Robinson et al. (2022), 

developed U-Net architecture to extract building footprints from 

multispectral imagery. Similarly, in the (Robinson et al., 2022) 

study, an open-source web-based tool is developed for 

collecting polygon labels over a given imagery scene, and a 

framework is designed by integrating mobile-U-Net, with a 

generative adversarial network (GAN). In a CNN-based 

comprehensive study, Jewell et al. (2019) compared U-Net, U-

Net++, FCN, and DeepLabv3 performance in extracting 

building footprint extraction in satellite imagery. The results 

show that DeepLabv3 with Resnet-101 backbone has a better 

accuracy compared to the   other state-of-art networks. Besides, 

using a pre-trained model can improve the accuracy of building 

footprint detection. Li et al. (2019) and Schuegraf et al. (2024) 

used U-Net network to fuse satellite images with other 

datasources such as OpenStreetMap, Google Maps, and 

MapWorld to detect building footprints using the U-Net 

network. Their network achieved a total F1-score of 0.704. 

2.2 LoD2 Reconstruction 

Conventional methods of 3D city model generation can be 

divided into three categories: model-driven, data-driven, and 

hybrid techniques.  

(1) Model-driven approaches, which are also known as top-

down approaches, excel in accurately modeling buildings that 

exist in their predefined library. These approaches select the 

model that best fits the building data from a library of models 

(Krafczek & Jabari, 2022). The studies of (Lafarge et al., 2010) 

and (H. Huang et al., 2013) proposed a method to reconstruct 

buildings from a digital surface model (DSM). This process 

involved breaking the building footprints down into components 

either manually or automatically and then utilizing a Gibbs 

model to fit the 3D block models onto the building footprints. A 

Bayesian decision was taken to find the most appropriate roof 

primitives from the pre-defined library that would represent the 

point clouds by utilizing a Markov Chain Monte Carlo sampler 

and original proposition kernels. 

To model the buildings outside the predefined library, data-

driven approaches come into play. 

(2) Data-driven techniques are used to detect the roof planes and 

extrude roof shapes based on geometrical components such as 

lines, edges, and points (Park & Guldmann, 2019; Schuegraf et 

al., 2024). There are various methods for segmenting the 

LiDAR point clouds and determining roof planes, such as edge-

based methods (Jiang & Bunke, 1994), region-growing methods 

(Alharthy & Bethel, 2004), random sample consensus 

(RANSAC) methods (Hartley & Zisserman, 2002), and 

clustering methods (Shan & Toth, 2009), or the combination of 

two or more algorithms (Dorninger & Pfeifer, 2008). (H. Huang 

et al., 2011) proposed generative modeling of building roofs 

with an assembly of primitives allowing overlapping using the 

Reversible Jump Markov Chain Monte Carlo algorithm. (J. 

Huang et al., 2022) presented a methodology for reconstructing 

3D models of buildings from airborne LiDAR point clouds 

using a data-driven approach. In both works, they segmented 

point clouds into planar patches. Then, a 3D optimization is 

used to create a topologically consistent 3D building model 

from its compositional primitives. 

(3) Due to the limitations of model-driven approaches and the 

complexity of data-driven approaches, hybrid methods have 

been developed. (Pepe et al., 2021) and (Tripodi et al., 2020) 

used stereo satellite imagery to build a digital surface model and 

extract the height of each object using the DSM. The latter used 

Deep Learning to extract the contour polygons of the buildings 

and the digital train model. (Zhao et al., 2021) proposed the 

reconstruction framework to reconstruct a 3D model containing 

a complete shape and accurate scale from a single image. The 

proposed method involves using two convolutional neural 

networks to create watertight mesh models and optimizing them 

using another CNN network. (Krafczek & Jabari, 2022) 

proposed a decision-tree-based methodology for generating 

LoD2 3D city models. They decomposed the building footprints 

into building primitives to have a better estimation of height for 

each building's parts. Some works create 3D city models 

directly from 3D point clouds. These methods are based on 

using Terrestrial Laser Scanners (Akmalia et al., 2014) to 

generate dense point clouds from it and then perform 

segmentation to detect building façade and features. (Kada, 

2022) extracted the geometrical features from buildings 

utilizing a deep learning network.  

To model all types of building roofs, even complex types, we 

investigate data-driven approaches in this research. 

3. Methodology 

As shown in 

Figure 1, the proposed method is divided into two phases. Phase 

1 focuses on the segmenting of roof geometric components, i.e. 

roof planes and lines. Phase 2 of this work involves the 

reconstruction of a wireframe for the LoD2 model of buildings. 

The following subsections provide details about each phase. 
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Figure 1. The overall workflow of the proposed network 

includes: (a) data preparation, (b) building geometrical 

components segmentation by fusing optical and height 

information of each building (c) roof lines and planes detection 

(d) 3D walls modelling, and (e) 3D wireframe reconstruction.  

 

3.1 Phase 1: Roof Geometrical Components Segmentation 

Using a Semantic U-Net Based Network 

For the task of building line and roof plane segmentation, U-Net 

architecture with ResNet-50 blocks has been utilised. U-Net has 

an encoder-decoder structure, in which the contracting path 

represents the encoder, and the expanding path represents the 

decoder. As a result of this design, the information is encoded in 

a compressed form and then decoded to reconstruct the original 

format which is crucial for the accuracy of image segmentation 

(H. Huang et al., 2020).  

Our approach involves the following detailed steps: 

3.1.1. Data Preparation: 

The roofline and roof plane masks were concatenated to create a 

single combined mask for each image. This can be represented 

as: 

Maskcombined = concat (Maskroof_lines, Maskroof_planes) 

where concat (X, Y) denotes the concatenation of tensors X and 

Y along the specified axis. 

3.1.2. Network Architecture: 

RGB Network: The RGB images and concatenated masks were 

input into a U-Net network with ResNet-50 serving as the 

encoder backbone.  

DSM Network: Similarly, the DSM images and concatenated 

masks were input into another U-Net network with the same 

ResNet-50 backbone. 

3.1.3. Feature Fusion: 

The encoder outputs from the RGB and DSM networks were 

concatenated to combine optical and height features. This 

operation is expressed as: 

Ffused= concat (FRGB, FDSM) 

where FRGBF and FDSM represent the feature maps from the RGB 

and DSM networks, respectively. The fused feature map Ffused 

was then processed through a Fully Convolutional Layer (FCL) 

and trained. 

3.1.4. Segmentation Output: 

The FCL output was passed to multiple segmentation heads, 

each responsible for generating masks for roof lines and roof 

planes which can be used for 3D building modelings.  

The architecture of a shared backbone is shown in Figure 2. 

 
Figure 2. Shared backbone architecture 

3.2 Phase 2: LoD2 3D Wireframe Reconstruction 

The methodology for 3D wireframe reconstruction of buildings 

involves several key steps, which are outlined below: 

3.2.1. Conversion to Vector Format: 

The raster planes and lines are first converted to polygons 

required for LoD2 reconstruction. This involves identifying 

pixels with a value of 1 and converting them into the LineString 

format. 

3.2.2. Simplification Using Douglas-Peucker Algorithm: 

The converted vector files are simplified using the Douglas-

Peucker algorithm. This algorithm works by recursively 

dividing a polyline into segments and retaining points that 

significantly deviate from a straight line connecting the 

endpoints, thereby reducing complexity while preserving 

essential geometrical features (Douglas and Peucker, 1973). 

3.2.3. Transformation to Polygonal Structure: 

The modified roof lines are transformed into a polygonal 

structure, where the boundaries of the polygons represent the 

roof eaves. The height of the roof eave line segments is 

determined using LiDAR point cloud data. By assigning zero 

elevation to the roof eave, the building footprints are 

established. 

3.2.4. 3D Wireframe Modeling: 

The edges of the eave and footprint are identified and 

corresponding edges sharing the same x and y coordinates are 

connected. This process forms the structural basis for 3D wall 

modeling (Figure 1, section e). Using accurate height 

measurements of each line segment derived from the LiDAR 

data, the 3D frames of the buildings are reconstructed. This 

ensures that each segment accurately represents the building's 

height, contributing to the overall precision of the 3D model. 
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4. Experiments 

In this study, we used the first returns of LiDAR point clouds 

with a point density of six to create a digital surface model and 

also high-resolution orthoimages with spatial resolution of 72 

mm. The orthoimages were manually digitized, modified to 

extract optical datasets from each building. Then, roof 

geometrical component masks including line and plane masks 

were created using optical and DSM datasets of 1624 buildings. 

70% of the data was used for training and validation purposes 

while 30% of data were used for testing the network. The details 

of the input data are provided in Table 1. 

First, we designed a unimodal line segmentation network to 

extract line masks from orthoimages as a baseline network. 

Then, in order to improve the line segmentation network, we 

used DSM as a secondary data source and converted the unified 

network to a multi-object segmentation network with a shared 

backbone between objects. To extract meaningful optical and 

height features of each building in our proposed network, we 

separately fed the optical images and DSM data in addition to 

the concatenated lines and plane masks to the two ResNet-50 

encoder and decoder layers in our backbone. Next, we extracted 

two sets of descriptors from these two encoder-decoder layers. 

These descriptors are concatenated together using the proposed 

bimodal feature fusion network.  
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Table 1. Specification of the data used in this study 

 

The descriptor or boosted feature map is followed by two 

segmentation heads which are related to each object resulting in 

roof line and plane masks. 

Traditionally, ResNets are initialized with random weight 

parameters, requiring substantial computational resources and 

extensive training data. To reduce these demands and avoid 

overfitting, we used a pre-trained ResNet on the ImageNet 

dataset. This model is then fine-tuned using transfer learning 

principles to adapt to our specific task of roof geometrical 

components segmentation (Bengio, 2012; Donahue et al., 2013). 

To find an optimal learning rate, we trained the network with a 

range of learning rates, including 0.1, 0.01, 0.001, 0.0001, 

0.00001, and 0.000001, each for just four epochs. The learning 

rate that results in the minimum loss function is selected as the 

starting point, and then we fine-tune the learning rate by 

exploring three decimal places below and above the chosen 

value. The one that has the minimum lost function is chosen as 

an optimal learning rate. The network was trained for 100 

epochs. To quantify the performance of the proposed 

segmentation network for building geometrical components 

detection, we used three metrics, namely Intersection over 

Union (IoU), Dice Coefficient (F1-Score), and F2-Score. 

 

  

 
Where:  

Area of Overlap is the pixel area common to both the predicted 

segmentation and the ground truth (correctly predicted building 

line and plane areas). 

 

The Area of Union includes all areas predicted as building line 

and plane plus all ground truth building geometrical 

components, accounting for both correctly and incorrectly 

predicted areas. 

Dice Coefficient or F1-Score, is similar to IoU but gives twice 

as much weight to the intersection part. It is defined as: 

 
 

This metric can balance the precision (how many of the 

predicted pixels for buildings are correct) and recall (how many 

of the actual building pixels were correctly predicted). Finally, 

F2-score is a variation of the F1-Score that adjusts the beta 

parameter to weight recall higher than precision. It is 

particularly useful when the cost of a false negative (failing to 

detect a part of a line or plane) is higher than that of a false 

positive (incorrectly marking non-line or non-plane areas as line 

or plane). The formula for the F2 Score is: 

 
Where: 

Precision is the proportion of positive identifications that were 

correct. 

Recall is the proportion of actual positives that were correctly 

identified. 

It is also necessary to assess whether the proposed LOD2 3D 

wireframe modelling performs properly over the semantic roof 

geometrical components segmentation task. Thus, we needed to 

assess the final 3D wireframe model of buildings. The accuracy 

of the final 3D model depends on the accuracy of the roof 

geometrical components segmentation and building 

decomposition steps. While CityGML-3 does not prescribe any 

fixed values, according to the CityGML-2 standard, the 

geometric error of 3D models should not exceed two meters.  

To evaluate the accuracy of the final 3D wireframe model, we 

used the digital surface model as the ground truth and calculated 

the root mean square error (RMSE) (Chai & Draxler, 2014) 

between each 3D building model and DSM. The formula for the 

RMSE is presented in Equation (3). 

RMSE =  

Where i is variable, N is the number of buildings,  is DSM 

value of each building and      is the 3D model of the building. 

5. Results and Discussion 

The results of this research are divided into two phases. The 

first phase is dedicated to the detection of the roof geometrical 

components, and the second phase deals with the creation of 3D 

wireframe modeling. We report the results of each phase and 

discuss them in the following sections. 
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5.1 Roof Geometrical Components Segmentation 

The raster line and plane masks resulting from the proposed 

network are shown in Figure 3. White pixels in masks represent 

objects. 

(a) Optical image (b) Plane mask (c) Line mask 

 
  

 
  

Figure 3. Plane and line masks resulting from the proposed 

network 

 

The comprehensive performance analysis of optical-based line 

segmentation network compared to the multi-object bimodal 

semantic segmentation is presented in Table 2.  

As we can see from Table 2, when the network is based solely 

on optical data, the IoU, F1, and F2 scores are 0.772, 0.7654, 

and 0.772, respectively. In contrast, using the proposed network 

Networks IoU F1-Score F2-Score 

Optical-based line 

segmentation network 

0.772 0.7654 0.7720 

Multi-object bimodal 

segmentation network 

(proposed network) 

0.937 0.9390 0.9378 

Table 2. Performance analysis of the proposed network and the 

line segmentation network 

results in improved IoU, F1, and F2 scores of 0.937, 0.939, and 

0.9378, respectively. This indicates that using the proposed 

method leads to substantial increases of 16.5%, 17.4%, and 17% 

in the IoU, F1-score, and F2-score, compared to the baseline 

unified line segmentation network that relies solely on optical 

data. As a result, combining DSM data with orthoimages and 

using a shared backbone between two objects can increase the 

performance of the segmentation model by leveraging a shared 

line and plane feature map in addition to the optical and height 

features of each building. 

5.2 LoD2 3D wireframe modeling 

The final 3D city model is generated based on roof geometrical 

components extracted using the proposed multi-object 

segmentation method. Snapshots of the LoD2 3D wireframe 

model of buildings are presented in Figure 4. 

 

  
 

Figure 4. Snapshots of 3D wireframes of buildings 

The RMSE of the 14 3D wireframe models of buildings with 

different roof structures are represented in Table 3. For the 

accuracy assessment of the final 3D wireframe, we used 

CityGML, an open standardized data model and exchange 

format for storing digital 3D models of cities and landscapes. 

Since version 3 of CityGML doesn't specify accuracy standards, 

we referred to version 2. 

Roof type RMSE 

(m) 

Roof type RMSE 

(m) 

Complex 0.77 Flat 0.16 

Cross-hip 0.36 Dutch 0.32 

Cross-gable 0.32 Gable 0.31 

Pyramid 0.29 Gambrel 0.19 

Hip 0.23   

Table 3. RMSE result of the 3D wireframe models 

According to the CityGML 2.0 standard, the accuracy of the 3D 

city model should be better than 2 meters. As shown in Table 3, 

the RMSE of the 3D wireframe models even with the complex 

roof structure is less than 1 meters. Therefore, the results 

demonstrate high accuracy for the presented model though its 

performance varies on different roof types (Table 3). 

Furthermore, for a better understanding of how the model 

correlates with the LiDAR point cloud, orthophoto, the overlay 

of the LiDAR point cloud on the 3D building model, and 3D 

wireframe are shown in Figure 5.  

   

(a) Orthoimage (b) LiDAR Point 

clouds overlay on 

wireframe  

(c) Wireframe 

 

Figure 5. Comparison of LiDAR point clouds to the 3D 

wireframe models 

6. Conclusion 

In this study, we proposed a multi-object semantic segmentation 

network to detect building roof lines and mask pixels using 

optical and DSM data and constructing a LoD2 3D wireframe of 

buildings. The methodology inputs high-resolution orthophotos, 

and LiDAR point cloud data and follows two different phases to 

create the 3D wireframes. In the first phase, a bimodal muti-

object UNet-based network is used to segment roof geometrical 

components. In this way, the line and plane features are 

extracted in a shared backbone. Then, the geometrical 

components are recognized by fusing the optical and DSM 

features through a deep multi-object segmentation network. In 

the second phase, the 3D wireframe models of buildings are 

created using the building's geometry information, such as roof 

lines and planes. As shown in this paper, our roof geometrical 

components segmentation network confirmed that utilizing the 

optical and height features of each building besides using a 

shared backbone to extract roof geometrical components can 

improve the semantic segmentation performance, thereby 

enhancing the overall accuracy of 3D wireframe reconstruction. 
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