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Abstract 

Tailings, a byproduct of mining, consist of fine sediment particles suspended in water that are stored in tailings storage facilities 

(TSFs). The discharge of untreated TSF water into the environment is typically prohibited due to its contact with mine tailings and 

processing chemicals. TSF failures have caused damage to communities and the environment, prompting calls for better management 

practices and advanced monitoring tools. For operational mine water management, boat-based bathymetric surveys have been used. 

However, these technologies have limitations, especially when the surveying of large facilities is required. Advances in remote 

sensing, particularly satellite-based earth observation (SBEO), offer cost-effective solutions for monitoring TSFs. This study 

explores the use of machine learning models, including XGBoost and Convolutional Neural Networks (CNNs), applied to Sentinel-2 

and Landsat-8/9 data to estimate TSF bathymetry. Surveyed bathymetry datasets were used for model training, testing, and results 

validation. The results of the experiments revealed that high-accuracy bathymetric estimates could be obtained with mean absolute 

errors between 6 and 12 cm depending on the source of the data (i.e. Sentinel-2 or Landsat-8/9) and the model used (XGBoost vs 

CNN). Limitations include mixed pixel effects on the pond-beach interface and lower accuracies obtained in shallow areas, notably 

when XGBoost is used. This research underscores the potential of using satellite data and machine learning for TSF bathymetric 

monitoring, with implications for enhancing environmental and safety standards in mining operations. 

* Corresponding (presenting) author 

1. Introduction

Tailings are a common by-product of the mining process and 

are created when mined ore is crushed, ground, and processed to 

extract the valuable minerals. Tailings usually consist of a slurry 

of fine particles of sediment suspended in water and are stored 

in specially designed, fit-for-purpose impoundments called 

tailings storage facilities (TSFs). The water in TSFs has been in 

contact with mine tailings and chemicals used in mineral 

processing. Consequently, discharge into the environment 

without prior treatment is typically not permitted and where 

treatment is not a viable option, the water must be stored. While 

TSFs around the world are typically well managed, 257 failures 

have been recorded between 1915 and 2020 resulting in 2,650 

fatalities and the release of over 250 million m3 of contaminated 

mine waste materials into the environment (Piciullo et al., 

2022). Materials released due to TSF failures can travel 

hundreds of kilometres, contaminating rivers, lakes, and the 

surrounding land. With between 6,810 and 20,230 TSFs 

globally and an estimated cumulative failure rate of between 

1.2% and 4.4% (Rana et al., 2022), the potential impacts of TSF 

failures are significant. Since TSF failures have had catastrophic 

impacts on lives, communities, local economies, and the 

environment (Cacciuttolo and Cano, 2023; Navarro et al., 

2019), these incidents have led regulators, communities and 

mining investors to demand improved tailings management 

practices, increased safety standards and improved monitoring 

tools (Cacciuttolo and Cano, 2023). 

1.1 TSF water management and the need for 

bathymetric data 

An operational TSF is highly dynamic with a tailings surface 

that constantly changes as new tailings are deposited, or water 

removed for mining operations. The water depth of the 

supernatant pond in the TSF fluctuates due to water losses (as 

process water is reclaimed or from evaporation and seepage) 

and water input (with water as a component of slurry as it is 

deposited or from precipitation and surface runoff). The 

presence of large volumes of water exceeding the capacity of 

the TSF has been a contributor to most recent TSF failures with 

internal and external erosion of the TSF, seepage and 

overtopping being the main causes of failures (Lumbroso et al., 

2021). Inadequate control of the volumes of water in a TSF can 

lead to an increased risk of failure and the consequences 

thereof. Additionally, since the main pathway for contaminants 

into the environment is by water, the effective management of 

TSFs is primarily a water management problem and starts with 

knowledge of the volume of water in the TSF at any given time. 

A means to assess the volume of water in the supernatant pond 

is by periodic bathymetric surveys. Due to the importance of the 

bathymetric data in operational TSF management plans, 

bathymetric surveys are typically performed annually, quarterly, 

or even monthly. Historically, bathymetric surveys were 

conducted using crewed boats equipped with echo sounders. 

However, occupational health and safety concerns associated 

with boating accidents and exposure to potentially hazardous 

tailings, combined with the inability of large boats to survey 
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shallow ponds have led to the increased adoption of unmanned 

surface vehicles equipped with bathymetric survey gear. These 

systems have the advantage of being operated remotely 

although they tend to get trapped in viscous sediments or mud. 

The main limitation of bathymetric surveying approaches is the 

inability to produce detailed surveys of very large TSFs in a 

reasonable amount of time. Therefore, bathymetric survey 

approaches frequently rely on the surveying of transects and 

interpolating between the gaps, which leads to uncertainties in 

the depth estimates. While bathymetric surveys provide a means 

of estimating the pond volume, due to the time-consuming 

nature of the surveys, bathymetry surfaces are usually produced 

at monthly, quarterly, or seasonal intervals, limiting the 

potential for use in operational mine water management 

settings. 

 

1.2 The role of SBEO for bathymetric 

measurement 

Advances in satellite and sensor technology to capture data 

from remote sensing systems mean that cost-effective tools are 

being developed for the monitoring of water bodies in mining 

projects. The main advantage of satellite-based Earth 

observation (SBEO) is that it allows for the remote monitoring 

of hazardous or inaccessible areas. To further develop tools for 

effective water management, satellite data have been applied to 

detect the depth of water in lakes, rivers, oceans, and 

supernatant ponds of TSFs (Navarro et al., 2019).  

 

For water depth measurement, remote sensing data (including 

airborne hyperspectral, satellite multispectral and bathymetric 

lidar data) have become viable tools for mapping water depth 

(Legleiter and Harrison, 2019). A variety of algorithms have 

been developed for remote sensing of river bathymetry, which 

relies on establishing a relationship between measured remote 

sensing image reflectance and water depth using empirical, 

physical or machine learning models. The physical foundation 

for estimating water depth from various kinds of remotely 

sensed data is the attenuation of electromagnetic waves with 

distance travelled through the water column. The attenuation 

and absorption of different wavelengths as a function of water 

depth have been investigated (Legleiter and Harrison, 2019) and 

suggest that shorter blue wavelengths were affected more by 

attenuation and absorption compared to green and red 

wavelengths. This was attributed to chlorophyll, and organic 

matter dissolved in the water column. Attenuation also 

increased significantly in the longer wavelength (beyond 700 

nm - near infrared).  

 

The simplest bathymetry estimation algorithms use regression 

to establish a relationship between the measured image 

reflectance to co-located depth measurements (obtained by in-

situ measurements or bathymetric surveys). The main 

limitations of regression models are that the relationships are 

affected by the reflectance from the stream bed, but also by the 

optical properties of the water column, reflection from the water 

surface and atmospheric contamination (Legleiter & Harrison, 

2019). To overcome these limitations, alternative approaches 

have evaluated band ratios as potential predictors of water 

depth. The optimal band ratio analysis (OBRA) approach 

considers all possible satellite image band combinations and 

seeks to identify the pair of wavelengths that provides the 

strongest relationship between measured reflectance and water 

depth (Legleiter and Harrison, 2019; Niroumand-Jadidi and 

Vitti, 2016). The OBRA technique was used in bathymetric 

estimates of a fluvial system in California, USA. The results 

demonstrated that OBRA yields reliable depth estimates in the 

presence of variable substrates, water column characteristics, 

and water surface textures (Legleiter and Harrison, 2019). 

Furthermore, the outcomes of applying the algorithms to data at 

different stages of radiometric calibration suggested that 

atmospheric correction of data did not appreciably improve 

depth retrieval. Similarly, using OBRA techniques on a small, 

shallow alpine river (Niroumand-Jadidi & Vitti, 2016) in Italy 

revealed that the red-edge and near-infrared bands yielded 

optimal results when used as denominators, while using the 

coastal blue, blue, green and yellow bands as numerators, 

yielded high correlations. Despite these successful 

demonstrations, the optical properties of the water column, 

influenced by suspended and dissolved constituents such as 

sediment and organic matter, were found to be the primary 

factor determining the feasibility of mapping river bathymetry 

via remote sensing. 

 

To address the potential limitations imposed by OBRA 

techniques, the K-nearest neighbours (KNN) machine learning 

approach was applied for water depth estimation due to its 

ability to be applied across a broader range of environmental 

conditions. KNN provided a high level of depth retrieval 

performance superior to the OBRA models, implying that this 

machine-learning approach could facilitate depth retrieval, 

particularly for multispectral satellite images (Legleiter and 

Harrison, 2019). Citing the recent advancements in the 

radiometric resolution of satellite sensors resulting in a greater 

sensitivity to small variations in water-leaving radiance, an 

improved ability to retrieve river bathymetry from satellite data 

was demonstrated (Niroumand-Jadidi et al., 2022). The 

analytical approach leveraged neural networks (NN) to retrieve 

bathymetry by analysing the complex, non-linear relationships 

between the spectral response of satellite data and measured 

water depth. The NN-based retrievals were compared with 

retrievals from OBRA techniques with NN-models 

outperforming the OBRA techniques in all experiments 

(Niroumand-Jadidi et al., 2022). The results of the investigation 

demonstrated the ability to retrieve bathymetry from Landsat-9 

data with high accuracy (i.e. that model predictions align more 

closely with ground truth data), at depths of up to 20 m.  

 

Although experiments on satellite-bathymetry retrievals for TSF 

bathymetry are more limited, the use of Sentinel-2 to retrieve 

TSF bathymetry in Peru has been demonstrated (Navarro et al., 

2019). The approach analysed the difference in reflected 

radiation from the water surface and from the depth by 

analysing the differential absorption of different wavelengths as 

the depth of the water increases (Navarro et al., 2019). The 

study compared bathymetry estimates from Sentinel-2 data with 

bathymetry data obtained from sonar equipment. The 

experiments demonstrated the ability to estimate the TSF 

bathymetry from Sentinel-2 with an average error of <10 % 

when compared to sonar-based bathymetric measurements. The 

main limitations were identified to be related to the turbidity of 

the water at the time of satellite image capture (Navarro et al., 

2019). The results of these investigations demonstrated that 

SBEO has the potential to be applied, operationally, for the 

retrieval of TSF bathymetry for the management of TSF water 

balance. 

 

The potential advantages of using satellite-derived bathymetry 

for mine water management include a reduction in the 

operational risks since human presence is not required, together 

with the ability to extract spatially continuous bathymetric 

surfaces even for shallow tailings beaches (Navarro et al., 

2019). Satellites also provide daily, weekly, bi-weekly, or 

monthly revisit potential, improving the frequency of 
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bathymetry estimates for operational decision-making. 

Additionally, since satellites have been imaging the Earth for 

many decades, the ability to estimate bathymetry from satellite 

data will allow for the assessment of historical deposition rates 

and spatial and temporal patterns of these depositions. 

 

2. Site characteristics, bathymetric and satellite data 

preparation 

To test the potential and limitations of SBEO bathymetry 

retrieval algorithms, the first phase of the project was dedicated 

to selecting an appropriate site for algorithm development and 

results validation. Two main considerations for site selection 

included that: i) several epochs of bathymetric surveys have 

been conducted and data is accessible and ii) water turbidity 

conditions are favourable. Sites with longer records of 

bathymetric surveys and lower turbidity were prioritized. 

Ultimately, the site selected for the experiments is an 

operational gold and copper mine in Northern British Columbia, 

Canada, with TSF dimensions of 2 km x 0.8 km. The site was 

selected since, during construction, one of the main 

considerations was the protection of natural drainages. 

Therefore, all water that is used or moves across the surface of 

the site is collected and directed to the TSF. This water is 

recycled from the TSF and reused in the mill. This makes the 

mine TSF a very dynamic surface, with pond volumes 

fluctuating constantly due to water collection, storage, and 

reuse.  

Given the importance of tailings pond volume for mine water 

management, regular boat-based bathymetric surveys are also 

conducted at the mine. These surveys are conducted at roughly 

monthly intervals during the summer months. No bathymetric 

surveys are conducted in the winter when ice is present on the 

water surface. For this investigation, 26 bathymetric survey 

datasets, collected between July 2021 and October 2023 were 

made available. These data were organized and pre-processed 

(including gridding and re-projection to common coordinate 

reference systems). 

 

Since TSFs are highly dynamic with new materials 

continuously being added or removed, satellite data acquisition 

dates were filtered to dates matching, within two days, the dates 

of the bathymetric surveys. The experiments focused on 

Sentinel-2 and Landsat8/9 atmospherically corrected surface 

reflectance data obtained from the Copernicus Browser and the 

USGS Earth Explorer respectively. Scenes with cloud cover 

affecting the TSF were discarded. A summary of the remaining 

datasets that were used for further analysis is provided in Table 

1. 

 

Bathymetric 

survey date 

Sentinel-2  Landsat 8/9 

June 23, 2023 June 21, 2023 June 21, 2023 

October 17, 2022 NA October 10, 2022 

September 26, 

2022 

September 24, 

2022 

NA 

August 23, 2022 August 23, 2022 August 21, 2022 

July 26, 2022 July 26, 2022 July 27, 2022 

July 4, 2022 NA July 4, 2022 

October 2, 2021 October 2, 2021 NA 

Table 1. TSF bathymetric data and corresponding satellite 

datasets. 

 

 

3. Model implementation and accuracy assessment 

Empirical models are models based on observations rather than 

on a pre-defined physical model or mathematical formula. 

Examples of empirical models include linear regression models, 

decision trees or neural networks. Mathematically, a model can 

be denoted as a function (f) that takes as input a matrix (X) with 

size MxN in which M is the number of training samples and N 

is the number of imagery bands. The goal of the model is to 
generate the vector  with predicted depths that minimize a 

chosen cost (or loss) function. This relationship can be written 

as: 

     (1) 

In this study, a decision tree ensemble model, eXtreme Gradient 

Boosting (XGBoost) (Chen and Guestrin, 2016), as well as 

convolutional neural networks (CNN) were tested for their 

ability to estimate TSF bathymetry. 

 

XGBoost uses a collection of decision trees to predict a target 

variable based on several input features. Each tree in the forest 

is built from a sample drawn with replacement from the training 

set and can be thought of as a flowchart-like structure in which 

each internal node represents a “test” on an attribute (e.g., 

whether reflectance of Band 1 is greater than 0.4), the branch 

represents the outcome of the test (true or false), and each leaf 

node represents a predicted depth ( ). The paths from root to 

leaf represent classification rules. 

 

Convolutional neural networks (CNNs) are more complex to 

create and train when compared traditional machine learning 

models as they take into consideration the two-dimensional 

aspect of the input data. CNNs, however, tend to produce better 

depth estimations (Peng et al., 2022). The CNN approach 

attempted in this project will follow the methods proposed by 

(Annan and Wan, 2022) and (Lumban-Gaol et al., 2021). A 

sliding window of size S is applied to the satellite image and 

sub-images of size SxS are created. Each sub-image is mapped 

to measured bathymetric values. Next, the data is organized into 

input (X) and output (y) matrices of size ( ) where  is 

the number of training samples and  is the number of spectral 

bands. As with the empirical models, the predicted depth is 
given by , albeit with more complex inputs and 

outputs. In this work, each sliding window has a 4-pixel overlap 

with the previous windows in both ( ) directions. The 

overlapping windows will result in overlapping bathymetric 

predictions, which are then interpolated to a predefined grid 

using linear interpolation to smooth the prediction results. 

 

The architecture selected for the CNN is based on the VGG-16 

model (Simonyan and Zisserman, 2014). VGG-16 uses 

convolutional layers to gradually extract information from the 

input images and is, in this case, four layers deep, uses 3x3 

convolution windows and has no data normalization between 

layers. The input image size to the model is 32x32 pixels. The 
loss function for training is the root mean square error ( ) 

and the models are set to train for 1000 epochs (i.e., time step 

iterations) but may stop training earlier if the validation dataset 

loss does not change by more than a set value for more than 10 

epochs.  

 

To implement the models, we extracted the reflectance values 

for each band of each satellite image, as well as the 

corresponding measured bathymetry values. The data was 

organized into two tables, one with reflectance band values (X) 

and another with the measured bathymetry values (y). The data 

was split into 3 datasets: training, validation, and testing. The 
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training dataset was used for model training, meaning that the 

model learns from this data. The validation dataset is a subset of 

the data that is used to fine-tune model parameters (e.g., the 

learning rate in a neural network or the depth in a decision tree) 

and to prevent overfitting. Finally, the test dataset is subset of 

data that was not used for training or validation. The test data 

are used to evaluate the final performance of the model, 

theoretically providing an unbiased assessment of how the 

model will perform on unseen data. For the XGBoost models, 

the data splits are 25% training data, 25% validation data and 

50% test data. For Sentinel-2, there are 86,000 training, 86,001 

validation, and 172,002 testing samples, and for Landsat-8/9, 

there were 113,716 training, 113,716 validation, and 227,432 

testing samples. For the CNN model, the data splits are 56% 

training data, 25% test data and 19% validation data, meaning 

that across all dates, the Sentinel-2 dataset has 12406 training, 

5514 test and 4136 validation samples and Landsat-8/9 dataset 

has 16576 training, 7368 test and 5526 validation samples. 

 

After applying the models to the satellite data, the performance 

of all models to predict the tailings bathymetry can be evaluated 

using three metrics (Niroumand-Jadidi et al., 2022). These 

metrics are: 

i) Pearson’s correlation coefficient which is 

expressed as: 

 

,   (1) 

ii) the root mean square error ( ) expressed 

as: 

 ,   (2) 

iii) the mean absolute error (MAE) expressed as: 

   (3) 

 

where  is the sample size,  is the observed bathymetry,  is 

the predicted bathymetry, and  are sample means ( ). In 

general, models with higher  and lower  and  are 

better performing models. 

 

 

4. Results 

The results of implementing the respective models are 

summarised in Table 2. The results of the XGBoost suggest 

that, for both Sentinel-2 and Landsat-8/9 data, high accuracy 

bathymetric estimates could be retrieved, with the Sentinel-2 

test dataset achieving accuracies of = 0.98,  = 0.12 m 

and  = 0.08 m. The Landsat-8/9 results scored slightly 

lower with  = 0.14 m. As part of the XGBoost results, an 

assessment of feature importance for Sentinel-2 and Landsat-8/9 

was provided as shown in Figure 1. The results suggest that, for 

both the Landsat-8/9 and Sentinel-2 datasets, the coastal aerosol 

(ultra blue) bands (Band 1 (B01) in both datasets) have the 

highest importance. In Landsat-8/9, this is followed by green 

(B03) and red (B04) bands. For Sentinel-2, the SWIR band 

(B09) appears to be of higher importance than the visible bands 

(B02, B03, B05 and B04), likely due to the improved ability to 

separate the land/water interface. 

 

The TSF bathymetry prediction obtained by XGBoost for the 

Sentinel-2 and Landsat-8/9 scenes captured on August 23, 2023, 

are shown in Figure 2. It is observed that the difference between 

the measured bathymetry and the predicted bathymetry is 

greater towards the edges of the TSF. Further investigation is 

required to find a cause for lower prediction accuracies in these 

areas, but the low resolution of the satellite data, leading to 

mixed pixel effects on the edges of the TSF may be a potential 

cause for these effects. Furthermore, the differential attenuation 

depending on the wavelength of the data used may have reduced 

impact in areas where the water is shallow, leading to lower 

accuracy bathymetric measurements. 

 

Data Model Dataset rxy 
 RMSE 

(m) 

MAE 

(m) 

Sentinel-2 XGBoost Train 0.98 0.1 0.07 

Test 0.98 0.12 0.08 

Validation 0.98 0.12 0.08 

Landsat-

8/9 

XGBoost Train 0.98 0.13 0.08 

Test 0.98 0.14 0.08 

Validation 0.98 0.14 0.08 

Sentinel-2 CNN Train 0.99 0.01 0.01 

Test 0.98 0.09 0.06 

Validation 0.99 0.07 0.05 

Landsat-

8/9 

CNN Train 0.99 0.03 0.01 

Test 0.93 0.17 0.12 

Validation 0.98 0.11 0.12 

Table 2. Evaluation metrics for the models applied to Sentinel-2 

and Landsat-8/9 data, calculated using all available satellite 

image dates 

 

Figure 1. XGBoost feature importance for Sentinel-2 (top) and 

Landsat-8/9 (bottom). 
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Figure 2. Results of the XGBoost model for bathymetry and 

Sentinel-2 data (top row) and Landsat-8/9 (bottom tow), 

collected on August 23, 2024. The colour scale in all plots is in 

meters. Contours are displayed in 1 m intervals. 

 

In applying the CNN models, the learning curves for the VGG-

16 models were derived to evaluate the goodness of fit. These 

plots are shown in Figure 3. The plots indicate a good fit with 

both the Sentinel-2 and Landsat-8/9 training and validation loss 

decreasing to a point of stability and exhibiting a small gap 

between the training and validation loss. The comparisons 

between predicted and survey bathymetry and model evaluation 

metrics using the test datasets across all dates are shown in 

Figure 4. Considering the test dataset, for Sentinel-2 data, the 

CNN model is the best-performing model, with  = 0.09 

and  = 0.06 compared to XGBoost (  = 0.12 and  

 = 0.08). For Landsat data, the XGBoost model proved to 

be superior, with  = 0.14 m and  = 0.08 m compared 

to the CNN with  = 0.17 and  = 0.12.   

 

Figure 5 shows the CNN prediction for the Sentinel-2 and 

Landsat-8/9 data captured on August 23, 2023. The predicted 

bathymetry agrees well with the survey bathymetry although for 

the Landsat data, the poor model performance on the edges of 

the TSF is more prominent than on the Sentinel-2 data. It is also 

observed that the predicted bathymetry from Landsat-8/9 

appears to be smoothed compared to the pixelated appearance 

of the predicted bathymetry using XGBoost due to the low 

resolution of the Landsat-8/9 data. This is a direct consequence 

of using the sliding window and interpolation approach which is 

an additional benefit of working with CNN on the coarse 

resolution data. The Landsat data also reveals errors in the 

prediction where vegetation on the edges of the TSF is mistaken 

for water and a depth estimate is provided in these areas. These 

artefacts are not present in the Sentinel-2 CNN, likely because 

the higher number of spectral bands are used by the CNN to 

better distinguish between water and land. 

 

 

 
Figure 3. Training curves for the CNN trained on the Sentinel-2 

data (top row) and for the Landsat-8/9 data (bottom row). These 

curves show how the model evolves over training time steps 

(epochs) 

 

 

 
Figure 4. CNN Model performance assessment using the test 

dataset using data from all dates for Sentinel-2 (top) and 

Landsat-8/9 (bottom). 
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Figure 5. Results of the CNN model for bathymetry and 

Sentinel-2 data (top) and Landsat-8/9 (bottom), collected on 

August 23, 2024. The colour scale in all plots is in meters. 

Contours are displayed in 1 m intervals. 

 

5. Conclusions and future work 

To further explore the potential of using satellite data for 

monitoring TSF bathymetry, we tested the performance of the 

XGBoost and CNN models in estimating TSF bathymetry from 

publicly available data and validated the results against 

surveyed bathymetric measurements obtained at an operational 

mine. The current work allowed us to test the operational 

limitations and opportunities of using satellite data for 

bathymetric measurements for operational mine water 

monitoring applications. The results revealed that high-accuracy 

bathymetric estimates could be obtained with mean absolute 

errors between 6 and 12 cm depending on the source of the data 

(i.e. Sentinel-2 or Landsat-8/9) and the model used (XGBoost 

vs CNN). The accuracies obtained from the Sentinel-2 data 

were higher than the accuracies obtained from Landsat-8/9. This 

is likely due to the coarser resolution of the Landsat-8/9 data 

(30 m) compared to Sentinel-2 (10 m for the visible bands and 

60 m for the coastal blue). The higher resolution data enable 

bathymetric estimates with greater detail, leading to higher 

accuracy results. The results for both Sentinel-2 and Landsat-

8/9 suggest that, when using XGBoost, lower accuracy 

measurements could be obtained in shallow water 

environments. However, when using CNN on Sentinel-1 data, 

the accuracies in the shallow water environments were 

improved. Lower accuracies on the edge of the TSF remained 

present in all datasets, suggesting that mixed pixel effects due to 

the low resolution of the data would affect the results. However, 

these effects were less prominent in the Sentinel-2 data than in 

Landsat-8/9 due to higher spatial resolution. 

 

Given the improvements provided by higher spatial resolution 

data, future research would aim to augment the lower resolution 

publicly available satellite data with high-resolution data to 

improve the accuracy of the bathymetric retrievals in shallow 

TSFs. While satellites such as SPOT-6/7 at 6 m resolution can 

provide improved resolution compared to Landsat-8/9 and 

Sentinel-2, SPOT-6/7 has a lower spectral resolution, notably 

missing the coastal blue and SWIR bands that were the 

wavelengths of highest feature importance according to the 

results from XGBoost. Additional investigations are needed to 

determine the impact of spatial resolution vs. spectral resolution 

on the accuracy of bathymetric estimates to determine if SPOT-

6/7 would be a suitable alternative to lower-resolution 

retrievals. Very high-resolution data obtained by satellites such 

as Worldview-3 likely provide the greatest opportunity for 

operational TSF bathymetry retrieval from high-resolution 

sensors. Not only does the sensor provide data with a spatial 

resolution of between 1.2 and 3.7 m, but the imaged 

wavelengths include the coastal blue, visible, NIR and several 

SWIR bands. The improvements in both spatial and spectral 

resolution provided by sensors such as Worldview-3 will likely 

lead to improvements in the accuracy of the bathymetric 

estimates and are recommended for investigation in the future. 

 

Although our initial results are promising, the main limitation of 

this work is that the ability to measure TSF bathymetry from 

satellite data was only tested at a single mine site and using a 

limited training dataset. Since different mines are expected to be 

highly diverse, with different bottom substrate composition, 

water chemistry and water-depth variations depending on the 

site, it is unlikely that models trained at one mine and over a 

limited temporal range would be directly transferable to 

different mines, in different geographic locations and different 

conditions. Therefore, to demonstrate that satellite bathymetric 

data are robust and reliable alternatives to conventional boat-

based surveys, additional work is needed to develop, train and 

implement the models for TSF bathymetric measurement on 

different mines. It should also be noted that, although the 

bathymetric survey data was used in these experiments as a 

measure of true bathymetry, the bathymetric surfaces produced 

from surveys are known to be prone to errors and data noise. 

Therefore, future research should also validate the results 

against alternative measures such as the results of water balance 

equations and hydrological models. The main opportunity 

identified in this work is the ability to retrieve TSF bathymetric 

estimates from satellite data over large TSFs using a single 

image, effectively reducing the time associated with 

bathymetric surveys. Coupled with the ability to collect data 

every 5 to 10 days (or more often if multiple satellites or 

satellite constellations can be used), the end products will 

provide more regular bathymetric measurements for improved 

insights into TSF water management. 
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