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Abstract

The distribution of tree species within the forest holds significant importance for forest management. Since field surveys in the
forest are time-consuming and cost-expensive, automatically extracting tree species distribution maps from remote sensing imagery
becomes a trend. For tree species classification using hyperspectral imagery, many existing classification methods require a large
number of training samples to achieve high classification accuracy. However, the classification accuracy will decrease rapidly if
only a few hundred training samples are used. Given the challenges and expenses associated with collecting abundant training
samples in the forest, there is a need to explore methods that achieve good classification performance with a limited number of
training samples. In this paper, a classification scheme combining SuperPCA and Active Learning (AL) is proposed to improve the
tree species classification using a limited number of training samples. SuperPCA is employed to reduce feature dimensions and
harness spectral-spatial information within hyperspectral imagery. Active Learning is employed to select informative samples for
the training, thus reducing the requirement for training samples. Experiments on a tree species classification data set demonstrate
the effectiveness of the proposed classification scheme.

1. Introduction

Various types of remote sensing sensors, such as hyperspectral,
multispectral, and LiDAR, have been used to collect imagery
for tree species classification (Fassnacht et al., 2016). Hyper-
spectral imagery is particularly popular because it provides hun-
dreds of spectral bands, allowing for accurate discrimination
between tree species. However, the high dimensionality of hy-
perspectral data leads to issues such as increased data volume,
high correlation between bands, and reduced classification ac-
curacy and efficiency (Zhang et al., 2020). Therefore, to achieve
high tree species classification accuracy, the first challenge is to
effectively and efficiently utilize the information within the im-
agery. The requirement of sufficient training samples for the
tree species classification task is another problem. Considering
the difficulty and high time cost of collecting samples in the
complex forest environment, only a limited number of training
samples can be obtained in real applications. However, many
existing classification algorithms do not perform well with a
small number of training samples. Thus, reducing the need for
extensive training data without compromising classification ac-
curacy is the second challenge.

To optimize hyperspectal classification, some studies focus on
feature selection and feature reduction (Kumar et al., 2020).
For example, a parametric and supervised model called projec-
tion pursuit was developed to extract features from hyperspec-
tral imagery (Jimenez and Landgrebe, 1999). In (Archibald and
Fann, 2007), an embedded feature-selection algorithm cooper-
ated with support vector machines (SVMs) to perform band se-
lection and classification simultaneously. Then (Pal and Foody,
2010) investigated the effectiveness of different band selec-
tion strategies for the hyperspectral image classification task.
In (Fassnacht et al., 2014), three feature selection methods
were examined with the airborne hyperspectral data for the
tree species classification task. Recently, (Likó et al., 2022)
investigated the effectiveness of three commonly used dimen-
sion reduction methods (Principal Component Analysis (PCA),

Minimum Noise Fraction (MNF), and Independent Component
Analysis (ICA)) for identifying the tree species structure of a
floodplain forest area using a hyperspectral image. Although
feature selection and feature reduction methods can decrease
the dimensionality of the hyperspectral data, and extract the
most discriminative bands or features, it remains challenging
to find a universally applicable method for all types of hyper-
spectral data (Fassnacht et al., 2016).

Another way to optimize hyperspectral classification is to ex-
ploit spectral-spatial information within the imagery. Typically,
this information is utilized based on local regions, in which pix-
els have similar spectral characteristics (Fauvel et al., 2013).
A simple way to utilize spectral-spatial information is to op-
timize the pixel-based classification result based on local re-
gions. For instance, (Tarabalka et al., 2009) optimized the
pixel-wise classification result by conducting majority voting
within segmented local regions. Some studies also conducted
classifications based on the information in local regions. To
utilize spectral-spatial information, (Pu et al., 2014) conducted
the classification according to the similarity calculated from lo-
cal image patches, and (Chen et al., 2011) conducted the clas-
sification based on the joint sparse representation within local
image patches. More recently, a two dimensional-CNN (2D-
CNN) model was proposed to exploit spectral-spatial informa-
tion within local image patches (Yue et al., 2015). Following
this, several three dimensional-CNN (3D-CNN) models were
proposed to utilize spectral-spatial information within the 3D
hyperspectral cube (Chen et al., 2016; Li et al., 2017; Pao-
letti et al., 2018; Hamida et al., 2018). Besides fixed-size im-
age patches, shape-adaptive superpixels are also widely used
to exploit spectral-spatial information. For instance, (Fang et
al., 2015) adopted over-segmented superpixels in the classi-
fication based on sparse representation. Subsequently, (Tong
et al., 2017) and (Tong and Zhang, 2021) proposed classifica-
tion methods that consider information within both fixed-size
patches and shape-adaptive superpixels.
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In recent years, various methods have been proposed for tree
species classification using hyperspectral imagery. (Zhang et
al., 2020) introduced a 3D-CNN network to exploit the spectral-
spatial information within hyperspectral data. Trained with
2.5% of the labeled samples, the 3D-CNN model achieved a
classification accuracy of 95.74%. Following this, (Tong and
Zhang, 2022) developed a cascaded multilayer random forest
model to classify tree species in the same hyperspectral data,
achieving a 97.50% classification accuracy with 2.5% of la-
beled samples for training. Additionally, a spatial-logical ag-
gregation network with morphological transformation for tree
species classification was proposed in (Zhang et al., 2023) and
a texture-aware self-attention model was proposed in (Li et
al., 2024) for the tree species classification task. Although
these methods achieved promising classification performance,
the premise was sufficient labeled training samples. For exam-
ple, as reported by (Tong and Zhang, 2022), the classification
accuracy of 3D-CNN dropped to 75.15% when only 0.2% sam-
ples were used for training. Therefore, it is important to develop
a classification method that requires fewer training samples to
achieve satisfactory tree species classification performance.

Active learning (AL) is an effective method for reducing train-
ing samples in the classification problem. AL selects the most
informative samples that are helpful in finding separating sur-
faces for different classes (Joshi et al., 2009). As a result, the
demand for training samples is effectively reduced. In (Li et
al., 2010), the AL based on the entropy of samples was pro-
posed to improve the estimation of the class distributions for the
semi-supervised multinomial logistic regression model. Then
(Li et al., 2011) introduced a Bayesian approach utilizing the
Breaking Tie (BT) AL strategy for hyperspectral image clas-
sification. Subsequently, (Sun et al., 2015) adopted AL based
on the Markov random field (MRF) regularization to select the
most uncertain samples for hyperspectral image classification.
Recently, deep learning has been combined with AL to en-
hance hyperspectral imagery classification. For instance, (Haut
et al., 2018) combined the Bayesian-Convolutional Neural Net-
works with six AL criteria for hyperspectral image classifica-
tion. Moreover, (Cao et al., 2020) combined the CNN with the
AL based on the BT strategy to optimize the classification per-
formance with a minimal number of training samples.

Although AL is effective in reducing the demand for training
samples, few studies have applied AL to tree species classifica-
tion. In this study, we propose a classification scheme based on
AL for this task. To reduce feature dimensions and fully utilize
the imagery information, we adopt SuperPCA, which conducts
general PCA (Vidal et al., 2016) locally on segmented super-
pixels as described in (Jiang et al., 2018), to extract features for
classification. To minimize the need for training samples, we
implement an AL process using the BT strategy to select the
most informative samples. The effectiveness of the proposed
classification scheme is validated on a publicly available hyper-
spectral tree species classification dataset (Zhang et al., 2020).

2. Methodology

In this paper, a classification scheme combining SuperPCA and
Active Learning (AL) is proposed to improve the tree species
classification using a limited number of training samples. Su-
perPCA is employed to reduce feature dimensions and harness
spectral-spatial information within hyperspectral imagery. Af-
ter feature extraction, the Random Forest (RF) (Breiman, 2001)
classifier is applied to train the classification model using the

initial training set with a few samples. The trained model is
then used for predictions on the unlabeled testing set. AL with
the Breaking Tie strategy (Luo et al., 2005) is subsequently em-
ployed, leveraging the predicted class probability vector to se-
lect the most informative samples from the unlabeled testing
set. These selected samples are then labeled through expert la-
beling or field surveys and incorporated into the training set.
This updated training set undergoes another round of classifi-
cation, and this iterative process of classification and AL con-
tinues in multiple rounds to refine the classification model. The
flowchart of the proposed classification scheme is shown in Fig-
ure 1. The details about SuperPCA and AL are introduced in the
following sections.

2.1 SuperPCA

SuperPCA is a superpixel-wise PCA approach for dimension
reduction and feature extraction (Jiang et al., 2018). Rather
than conducting the general PCA approach on the entire im-
age, SuperPCA conducts PCA on every individual segmented
local superpixel to make use of the spatial context information
in the imagery. Since SuperPCA requires segmented superpix-
els, it adopts the widely used graph-based ERS segmentation
method (Liu et al., 2011) to generate homogeneous regions. In
ERS, the input image is mapped to a graphG = (V,E) initially,
where V represents the vertex set andE represents the edge set.
The segmentation task is then transformed into finding a subset
of edges A ⊆ E to divide G into multiple smaller connected
subgraphs. Since the goal of the ERS segmentation is to gener-
ate compact, homogeneous, and size-balanced superpixels, the
following objective function is adopted to determine the A:

max
A
{H(A) + αB(A)} , s.t. A ⊆ E (1)

In the objective function, H(A) represents the entropy rate, and
B(A) represents the balancing function. The coefficient α bal-
ances the contribution ofH(A) andB(A). The greed algorithm
in (Nemhauser et al., 1978) is proved to be effective for finding
the optimize solution for this objective function.

Since hyperspectral images contain hundreds of spectral bands,
which is too many for ERS segmentation, PCA is first used to
reduce the number of bands. The first PCA component, con-
taining most of the image information, is then selected as the
input for ERS segmentation. Additionally, the expected num-
ber of superpixels N must be specified. Following segmenta-
tion, PCA will be conducted based on the information within
each superpixel. For a specific superpixel Si, assuming that the
original number of features is L, the expected number of re-
duced features is D, and the number of pixels in Si is ni, after
PCA, the original feature space ni × L in Si is transformed to
ni × D. Once PCA on all superpixels is finished, the number
of features for all pixels decreases from L to the predetermined
parameter D. The subsequent classification will be conducted
based on the features extracted by SuperPCA.

2.2 Active Learning

With the extracted features from SuperPCA, an iterative classi-
fication process based on AL is conducted to reduce the number
of training samples and improve classification accuracy. As-
suming that the number of initial training samples is M and the
number of classes for the classification is C, the extracted fea-
tures for the training setM×D are fed into the commonly used
RF classifier. After training, predictions are conducted on the
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Figure 1. Flowchart of the proposed classification scheme.

testing set. Since the initial number of samples in the training
set is few, the predicted results may not be accurate. However,
the predicted results are helpful for finding the most informa-
tive samples, which are effective for improving the classifica-
tion model.

For arbitrary pixels in the testing samples, the output for the pre-
diction is the class probability vector Vi = {P 1

i , P
2
i , . . . , P

C
i }.

Then the AL based on the BT strategy (Luo et al., 2005) is
adopted to select the most informative samples from the testing
set. In the BT strategy, the uncertainty of samples in the mul-
ticlass classification problem is evaluated, with the most uncer-
tain samples considered the most informative. The uncertainty
in the BT strategy is calculated from the top two probability
values in the class probability vector. This approach ignores
classes with low probabilities, avoiding the negative influence
of these less important classes. For arbitrary class probability
vector Vi = {P 1

i , P
2
i , . . . , P

C
i }, the uncertaintyUi is calculated

as:
Ui = PA

i − PB
i (2)

where A represents the class with the greatest class probability
value in Vi, and B represents the class with the second greatest
class probability value in Vi. If the difference between PA

i and
PB
i is small, it indicates that the trained classification model

struggles to distinguish between classes A and B. Therefore,
samples in the testing set with small U values are considered as
informative. In each round of AL, K informative samples are
selected from the unlabelled testing set. Subsequently, these K
samples are annotated by expert labeling or field survey. Then
these samples are added to the training set. The updated train-
ing set is used for a new round of training with the RF classifier.
This iterative AL process repeats until the predetermined num-
ber of rounds R is reached. After R rounds of AL, K × R
samples are selected from the testing set and added to the train-
ing set. The output of the final round of training is the class
probability vector for each pixel. The final label of each pixel
in the testing set is determined by selecting the class with the
highest probability.

3. Experiments

3.1 Dataset

To verify the effectiveness of the proposed classification
scheme, experiments were conducted on a publicly available
hyperspectral tree species classification dataset (Zhang et al.,
2020). The size of the image is 572 × 906, with a spatial res-
olution of 1 m. It comprises 125 spectral bands with coverage
ranging from 400 nm to 1000 nm. The spectral resolution is 3.3
nm. Labeled samples were collected for 12 classes, comprising
9 forest vegetation classes and 3 non-forest vegetation classes.
The number of labeled samples for all classes and the corre-
sponding number of training samples utilized in the proposed
classification scheme are listed in Table 1. The hyperspectral
image and corresponding ground truth map are shown in Fig-
ure 2. The initial number of training samples for each class was
5. The entire classification process involved 10 rounds of AL
to update the training set. In each AL round, 10 unlabeled sam-
ples selected from the testing set were labeled and incorporated
into the training set. Thus, the total number of training samples
used in the proposed classification scheme was 160.

3.2 Classification Performance

Classification accuracy of each class, overall accuracy (OA),
average accuracy (AA), and Kappa coefficient were adopted to
evaluate the performance of the classification. The comparison
was conducted with the 3D-CNN model (Zhang et al., 2020) ap-
plied to the same dataset. Since 3D-CNN didn’t include the AL
process, the initial number of training samples for each class
was set to 20. The total number of training samples used in 3D-
CNN was 240. All hyperparameters for the 3D-CNN model
were either set according to (Zhang et al., 2020) or tuned for
optimal classification performance on the testing set. More-
over, to highlight the improvement introduced by SuperPCA
and AL, two additional classifications were conducted: (1) RF
+ Original Features + AL, which replaced the extracted Super-
PCA features with the original spectral features in hyperspectral
data, (2) RF + SuperPCA, which conducted a one-time classi-
fication with RF but the initial number of training samples for
each class was set as 20. For the parameters used in SuperPCA,
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Table 1. Number of samples in the tree species dataset and number of training samples used in the proposed classification scheme.

Class Names Number of Samples Initial Training Samples Training Samples Added by AL
Cunninghamia lanceolata 80743 5

10 AL rounds
(Each round adding 10 samples)

Pinus massoniana 5340 5
Pinus elliottii 4175 5

Eucalyptus grandis x urophylla 14931 5
Eucalyptus urophylla 40275 5
Castanopsis hystrix 25461 5
Mytilaria laosensis 3000 5
Camellia oleifera 8324 5

Other broadleaf forest 10741 5
Road 10472 5

Cutting blank 10170 5
Building land 68 5

Total Number 213700 60 100

Figure 2. Hyperspectral image (false color) and ground truth map.

Table 2. Classification accuracy of different classification methods.

RF + Original Features + AL RF + SuperPCA 3D-CNN Proposed
Cunninghamia lanceolata 84.61 49.28 82.16 87.17

Pinus massoniana 19.60 88.69 57.76 70.36
Pinus elliottii 5.57 84.61 61.57 62.12

Eucalyptus grandis x urophylla 47.80 93.82 66.65 91.03
Eucalyptus urophylla 70.47 66.59 56.05 91.02
Castanopsis hystrix 24.00 49.27 51.59 36.06
Mytilaria laosensis 3.13 95.96 83.67 77.03
Camellia oleifera 51.95 80.16 87.15 74.31

Other broadleaf forest 33.24 85.68 80.34 82.30
Road 88.35 65.77 92.17 52.75

Cutting blank 89.74 92.34 97.12 89.49
Building land 83.96 100 100 100

OA(%) 64.42 63.87 72.83 78.71
AA(%) 50.20 79.35 76.35 76.14

Kappa×100 53.92 57.42 67.06 72.57
Number of Training Samples 160 240 240 160

the number of superpixels was set to 100 and the number of re-
duced features was set to 30. The RF classifier used 500 trees
for training. To ensure a fair comparison with non-AL classi-
fication methods, all initial training samples used in AL meth-
ods were drawn from the 240 labeled samples used in non-AL
methods. The evaluation metrics of all classifications are tabu-
lated in Table 2. All the metrics were averaged by ten runs with
different random training samples. The classification maps for
all methods from one of the ten runs are shown in Figure 3.

As can be observed in Table 2, the proposed method achieved
the highest classification accuracy among all methods. Al-
though the proposed classification method used 80 fewer sam-

ples than 3D-CNN for training, it achieved an accuracy increase
of 5.88%. For the nine forest vegetation classes, the proposed
method outperformed the 3D-CNN in six classes. In the result
of 3D-CNN, the classification accuracy of five forest vegeta-
tion classes was lower than 70%. For the classes ”Pinus el-
liottii” and ”Castanopsis hystrix”, the accuracy of the proposed
method was lower than 70%. This low accuracy could be due to
the imbalanced distribution of samples among different classes.
Specifically, ”Cunninghamia lanceolata” and ”Eucalyptus uro-
phylla” constituted 37.78% and 18.85% of the available labeled
samples, respectively, while the remaining 10 classes shared
43.42% of the samples. The proposed classification method
achieved high classification accuracy (87.17% and 91.02% re-
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(a) RF + Original Features + AL (b) RF + SuperPCA

(c) 3D-CNN (d) Proposed

Figure 3. Tree species classification maps generated from different methods.

spectively) for these two dominant classes. Since these two
dominant classes occupy high proportions in available labeled
samples, they have a higher probability of being selected in the
AL process. Thus, for 100 extra samples selected by AL, these
two dominant classes received more training samples than other
classes. The accuracy of the proposed method was 14.29%
higher than that of the method RF + Original Features + AL,
demonstrating that features extracted using SuperPCA signifi-
cantly outperformed the original spectral features. Moreover,
compared with RF + SuperPCA, the proposed method achieved
14.84% higher classification accuracy with fewer training sam-
ples, proving that AL is beneficial for improving classification
accuracy and reducing the number of required training samples.

From the classification maps shown in Figure 3, it is evident
that the RF + Original Features + AL method produced a lot of
pepper noise due to the lack of spatial information in the clas-
sification process. In the RF + SuperPCA results, significant
misclassifications occurred in the two dominant forest vege-
tation classes, as 20 samples were insufficient for satisfactory
model performance. The 3D-CNN results showed clear con-
fusion between the classes ”Eucalyptus grandis x urophylla”
and ”Eucalyptus urophylla”. In contrast, the classification map
generated by the proposed method exhibited fewer misclassifi-
cations compared to other methods.

4. Conclusion

This paper proposes an effective classification scheme to con-
duct tree species classification using a few training samples.
Using 160 training samples, our proposed classification scheme
achieved a classification accuracy of 78.71%. Notably, the ac-
curacy of the proposed classification scheme is 5.88% higher
than that of the 3D-CNN. Moreover, compared to the other

two classifications, our scheme demonstrates a remarkable ac-
curacy increase of over 14%, highlighting the effectiveness of
SuperPCA and AL in enhancing tree species classification ac-
curacy. It’s worth mentioning that the RF classifier utilized in
our proposed scheme is interchangeable with other classifiers.
Therefore, employing a more sophisticated classifier could po-
tentially further enhance the classification performance.
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