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Abstract 

Understanding the distribution of aboveground biomass (AGB) is vital for evaluating carbon stocks & ecosystem dynamics, 

especially in regions with diverse landscapes like Indian subcontinent. This study evaluates three machine learning models—

Random Forest (RF), Gradient Tree Boosting (GTB), & Classification and Regression Trees (CART)—for predicting AGB across 

the subcontinent. Independent variable in these models is AGB, while dependent variables include a range of vegetation & 

topographic layers: Normalized Difference Vegetation Index, Enhanced Vegetation Index, Leaf Area Index, Fraction of 

Photosynthetically Active Radiation, land cover, elevation, aspect, slope, & hillshade. These predictors are essential for capturing 

ecological & topographical characteristics that influence biomass distribution. The models were evaluated using coefficient of 

determination (R²) & Pearson's correlation coefficient (r) to assess predictive accuracy. RF emerged as most accurate, with an R² 

value of 0.834 & r value of 0.913, effectively capturing the spatial variability in AGB across subcontinent’s diverse ecosystems, 

which was then used to predict AGB for 2023. The predictions reveal significant spatial variation in biomass density, reflecting 

region's diverse ecological zones & land-use patterns. In India, high biomass densities are found in Himalayan foothills, northeastern 

states, & Western Ghats, while arid regions like Rajasthan & Gujarat have lower values. Pakistan generally exhibits low biomass 

densities, with higher values near the northern border with India. Nepal & Bhutan show high densities in their forested regions, 

particularly in the mid-hills, high mountains, & Eastern Himalaya. Bangladesh has moderate to low biomass densities. In Sri Lanka, 

central highlands & southwestern rainforests have highest biomass densities, while the more arid northern & eastern regions exhibit 

lower values. This study highlights the importance of using robust machine learning models like RF to accurately capture spatial 

patterns of biomass distribution, which is crucial for forest management, carbon accounting, & biodiversity conservation in the 

Indian subcontinent. 

1. INTRODUCTION

Aboveground biomass (AGB) is considered to be one of the 

important predictors in the estimation of carbon stocks, 

ecosystem dynamics, and sustainable forest management 

(Saatchi et. al., 2007). In the climate change scenario, 

forests play a significant role not only as a potential carbon 

sequestration site but also in maintaining biodiversity and 

managing water cycles (Malla et. al., 2023). AGB quantifies 

the total above-ground mass of living plant material, which 

includes trees, shrubs, and other vegetation, that reflects the 

carbon storage potential of forest ecosystems (Das et. al., 

2021). Hence, estimating accurate biomass is a crucial 

concern in forest management, climate change mitigation 

strategies, and biodiversity conservation. 

The diversity of landscape, from the Himalaya to the arid 

plains of Rajasthan, or from the tropical rainforests of the 

Western Ghats to the coastal mangroves of Sundarbans, 

make the Indian subcontinent an unlike challenge and 

opportunity for AGB estimation (Das et. al., 2024). These 

variabilities in geography result in a diversity of ecological 

zones with varied types of vegetation and biomass 

densities. The traditional methods of estimation of biomass, 

based on ground surveys, are tedious and extensive, 

especially in such heterogeneous landscapes. Remote 

sensing combined with machine learning techniques offers 

a powerful alternative for generating spatially continuous 

biomass estimates (Vorster et. al., 2020). 

Machine learning models have gained prominence in 

ecological applications due to their ability to handle large 

datasets with complex interactions (Vorster et. al., 2020, 

Nguyen et. al., 2020; Fararoda et. al., 2021). Three of the 

widely used machine learning models, namely Random 

Forest (RF), Gradient Tree Boosting (GTB), and 

Classification and Regression Trees (CART) have been 

applied to predict AGB for Indian subcontinent, so that the 

difference in the approaches towards tree-based decision-

making can be compared from all of these methods: 

ensemble learning in RF, boosting methods in GTB, and a 

much simpler and more interpretable method in CART. A 

comparison of these models will bring out the most robust 

tool for biomass estimation across the varied ecosystems of 

this subcontinent (Fararoda et. al., 2021). 

The commonly used predictors of AGB in various machine 

learning models are the vegetation indices, with 

Normalized Difference Vegetation Index (NDVI), 

Enhanced Vegetation Index (EVI), Leaf Area Index (LAI), 

and Fraction of Photosynthetically Active Radiation 

(FPAR) constituting some of them (Hofhansl et. al., 2020). 

These indices provide information on vegetation greenness, 

canopy structure, and photosynthetic activity, which are 

critical proxies for biomass. Additionally, elevation, aspect, 

slope, and hillshade are some of the topographic factors 

that may significantly influence biomass distribution 

through changing local microclimates, moisture 

availability, and characteristics of the soil. 

In this study, machine learning models including RF, GTB, 

and CART models have been used for predicting the AGB 

over six countries in the Indian subcontinent, namely, 

India, Pakistan, Nepal, Bhutan, Bangladesh, and Sri Lanka, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-5-2024 
ASPRS 2024 Annual Conference at Geo Week, 11–13 February 2024, Denver, Colorado, USA and 21–24 October 2024 (virtual)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-5-2024-109-2025 | © Author(s) 2025. CC BY 4.0 License.

 
109



 

using both vegetation indices and topographic variables. 

This performance is assessed by the coefficient of 

determination (R²), and Pearson's correlation coefficient for 

identification of the most accurate and reliable model for 

biomass estimation in this diversified region. 

 

 

2. STUDY AREA 

 

The Indian subcontinent ranges from India, Pakistan, Nepal, 

Bhutan, Bangladesh, and Sri Lanka (Figure 1). These regions 

showcase vast ecological and climatic variations, mainly due 

to differences in topography, latitude, and monsoon-driven 

precipitation patterns (Roy, 2014). The subcontinent can 

broadly be divided into the following geographic regions: 

 

• Himalayan Region: The northern boundary of the 

subcontinent is defined by the Himalaya, the tallest mountain 

range in the world. This region includes the countries of 

Nepal, Bhutan, and parts of northern India. The Himalaya 

contain vast tracts of forest, primarily temperate and 

subalpine, which are significant carbon sinks. 

 

• Western Ghats: Along the western coast of India, lies 

Western Ghats. It consists of tropical and subtropical 

rainforests that constitute a biodiversity hotspot. High 

biomass density is found in this region, especially in montane 

forests. 

 

• Eastern Ghats and Deccan Plateau: The Eastern Ghats 

run parallel to the Bay of Bengal on the eastern coast of 

India. Vegetation types range from dry deciduous to moist 

deciduous forests. Dry forests and scrublands dominate the 

very large Deccan Plateau, which covers much of southern 

India. 

 

• Thar Desert and Arid Regions: The Thar Desert in 

western India and southeastern Pakistan is characterized by 

low biomass density due to its arid conditions. Low 

biomasses, in turn, are indicative of low precipitation and 

sparse vegetation, showing region's relatively low carbon 

sequestration potential. 

 

• Sundarbans: The Sundarbans mangrove forest constitutes 

one of the largest mangrove ecosystems on the India-

Bangladesh border. It provides vital ecosystem services, 

including coastal protection and carbon sequestration, even 

though it has relatively low biomass compared with most 

terrestrial forests. 

 

• Sri Lanka: This island nation encompasses varied 

ecosystems ranging from the central highlands' tropical 

rainforests to the dry zone forests found in the northern and 

eastern regions. 

 

These distinct ecological zones offer both new opportunities 

and challenges to biomass estimation as these ranges from 

various climatic conditions, topography, to vegetation cover. 

AGB prediction across various landscapes is crucial in 

understanding regional carbon stocks for guiding 

conservation strategy inputs. 

 

 
Figure 1. Study area map- Indian Subcontinent 

 

 

3. DATA USED 

 

In this study, satellite derived vegetation and topographic 

information have been utilized to predict AGB in the Indian 

subcontinent (Table 1). The datasets could be broadly 

categorized into two types: vegetation indices and 

topographic variables. 

 

3.1 Global Aboveground and Belowground Biomass 

Carbon Density Maps 

 

Global Aboveground and Belowground Biomass Carbon 

Density Map for the year 2010 has been used for providing 

the training inputs and testing data for the machine learning 

models (Figure 2). This dataset provides temporally 

consistent and harmonized global maps of aboveground and 

belowground biomass carbon density at a 300-m spatial 

resolution. 

 
Figure 2. Aboveground Biomass Carbon Density Map-2010  

 

3.2 Vegetation Indices 

 

• Normalized Difference Vegetation Index (NDVI): NDVI 

is a widely used proxy for vegetation greenness and biomass. 

In this study MODIS NDVI product has been used. NDVI 

measures the difference between near-infrared and red 
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reflectance, which gives information on the health and 

density of vegetation (Huete et. al., 1997). 

 

• Enhanced Vegetation Index (EVI): Also derived from 

MODIS, EVI improves upon NDVI by reducing sensitivity 

to atmospheric conditions and saturation in dense vegetation. 

It provides additional information on canopy structure 

(Tucker et. al., 1986). 

 

• Leaf Area Index (LAI): LAI is a measure of the leaf area 

per unit ground area and gives information regarding canopy 

density and amount of cover of the vegetation. It is another 

essential variable for estimating AGB (Chen et. al., 1996). 

 

• Fraction of Photosynthetically Active Radiation 

(FPAR): FPAR measures the fraction of incoming solar 

radiation absorbed by vegetation for photosynthesis. The 

variable is strongly correlated with vegetation productivity 

and biomass (Di Bella et. al., 2004). 

 

3.3 Topographic Variables 

 

• Elevation: Elevation data were obtained from the Shuttle 

Radar Topography Mission (SRTM). Elevation conditions 

affect the temperature and precipitation profile and soil-

related properties, which, in turn, affect the distribution of 

vegetation. 

 

• Slope and Aspect: Slope and aspect were derived from the 

elevation data. Slope affects soil moisture retention and 

erosion, while aspect affects exposure to solar radiation. 

 

• Hillshade: Hillshade, derived from elevation, accounts for 

the shading effects of the terrain. It gives information about 

potential changes in microclimate due to topography. 

 

These datasets were preprocessed using standard techniques 

to ensure consistency and accuracy. The spatial resolution of 

the data ranged from 250 meters for MODIS-derived 

variables to 90 meters for topographic variables.  

 

 

Table 1. Details of the datasets used in the study 

S. 

no. 
Variable Name 

Spatial 

resolution 

(m) 

Temporal 

resolution 
Source Link 

1 
Global Aboveground and 

Belowground Biomass 

Carbon Density Maps 

300 
static 

(2010) 
NASA 

https://developers.google.com/earth-

engine/datasets/catalog/NASA_ORNL_biomass_carbon_d

ensity_v1  

2 NDVI 250 
16-day 

composite 
MODIS 

https://developers.google.com/earth-

engine/datasets/catalog/MODIS_061_MOD13Q 

3 EVI 250 
16-day 

composite 
MODIS 

https://developers.google.com/earth-

engine/datasets/catalog/MODIS_061_MOD13Q1  

4 
Fraction of 

Photosynthetically Active 

Radiation 

500 
8-day 

composite 
MODIS 

https://developers.google.com/earth-

engine/datasets/catalog/MODIS_061_MOD15A2H  

5 Leaf Area Index 500 
8-day 

composite 
MODIS 

https://developers.google.com/earth-

engine/datasets/catalog/MODIS_061_MOD15A2H  

6 Land Cover Type 500 yearly MODIS 
https://developers.google.com/earth-

engine/datasets/catalog/MODIS_061_MCD12Q1  

7 Elevation 90 -- SRTM 
https://developers.google.com/earth-

engine/datasets/catalog/CGIAR_SRTM90_V4 

8 Slope 90 -- SRTM 
https://developers.google.com/earth-

engine/datasets/catalog/CGIAR_SRTM90_V4 

9 Aspect 90 -- SRTM 
https://developers.google.com/earth-

engine/datasets/catalog/CGIAR_SRTM90_V4 

10 Hillshade 90 -- SRTM 
https://developers.google.com/earth-

engine/datasets/catalog/CGIAR_SRTM90_V4 

 

 

 

 

4. METHODOLOGY 

 

4.1 Overview of Machine Learning Models 

 

Three machine learning models- RF, GTB and CART were 

used in this study to predict AGB over the Indian 

subcontinent (Figure 3). The application of all these models 

can be associated with a tree-based method but differ in its 

approach to decision-making and prediction. 

 

4.1.1 Random Forest (RF) 

 

RF is an ensemble learning method which builds a set of 

decision trees during the training process (Breiman, 2001). 

Each tree is trained on a random subset of the data, and the 

final prediction is made by averaging the predictions of all 

trees. RF greatly reduces the possibility of overfitting, which 

makes it a more robust model for complex ecological data. 

 

4.1.2 Gradient Tree Boosting (GTB) 

 

GTB is yet another ensemble technique that develops trees 

sequentially (Friedman, 2001). In this respect, the focus of 

the model at every iteration is on rectifying the mistakes 

made by the previously developed trees. Finally, the best 

model is an additive combination of these trees weighted 

with the accuracy of each tree while predicting AGB. This 

technique of CART is particularly efficient for complex 

nonlinear relationships among the variables 

 

4.1.3 Classification and Regression Trees (CART) 
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CART is a single decision tree model that splits the data 

based on the most informative variables (Quinlan, 1986). It is 

a far simpler and interpretable model compared to RF and 

GTB but tends to overfit the complex data. CART is useful 

for identifying the most important variables in predicting 

AGB but may struggle with large, heterogeneous datasets 

like those used in this study. 

 

 

 

 

 
Figure 3. Methodology flow chart for the study 

  

 

4.2 Model Training and Evaluation 

 

The entire dataset was split into training (70%) and testing 

(30%) subsets. Every model was trained on the training set, 

and hyperparameters were optimized using cross-validation 

for the model. The hyperparameters included the number of 

trees, depth of trees, and the learning rate (for GTB). Two 

different metrics applied to evaluate the performance of 

every model: 

 

• Coefficient of Determination (R²): R² measures the 

proportion of variance in the dependent variable (AGB) 

explained by the model. A higher R² indicates better 

predictive accuracy (Tjur, 2009). 

• Pearson's Correlation Coefficient: This metric assesses the 

linear correlation between predicted and actual AGB values. 

A higher Pearson's correlation coefficient indicates a stronger 

agreement between the model's predictions and the true 

values (Cohen et. al., 2009). 

 

The model with the highest R² and Pearson’s correlation 

coefficient was selected as the best model for predicting 

AGB across the subcontinent. 

 

 

5. RESULTS 

 

The performances of different machine learning models were 

evaluated in terms of their ability to predict AGB across the 

Indian subcontinent. 

 

5.1 Random Forest (RF) 

 

The RF model achieved the highest accuracy among the 

three models, with an R² of 0.834 and a Pearson correlation 

coefficient of 0.913. The model was particularly effective in 

regions with high biomass densities, such as the Western 

Ghats and northeastern India. However, it slightly 

underestimated biomass in the Himalayan region, likely due 

to the complex terrain and variation in vegetation types 

(Figure 4).  

 
Figure 4. Predicted Aboveground Biomass Carbon Density 

Map-2010 using Random Forest  

 

The spatial distribution of predicted AGB closely matched 

known patterns of biomass distribution, with high AGB 

values in forested regions and low values in arid zones. 

 

5.2 Gradient Tree Boosting (GTB) 

 

While GTB captured the overall patterns of biomass 

distribution, it struggled in regions with extreme variability, 

such as the transition zones between the Western Ghats and 

the Deccan Plateau (Figure 5). In these regions, GTB tended 

to overestimate biomass, particularly in areas with sparse 

vegetation cover. The R² values for the GTB model were 

0.783, and its Pearson correlation coefficient was 0.885. 
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Figure 5. Predicted Aboveground Biomass Carbon Density 

Map-2010 using GTB  

 

Despite these limitations, GTB showed good predictive 

performance in regions with moderate to high biomass 

density, such as the tropical forests of Sri Lanka and the 

Sundarbans mangrove forests. 

 

5.3 Classification and Regression Trees (CART) 

 

The CART model was the least accurate, with an R² of 0.646 

and a Pearson correlation coefficient of 0.803. CART’s 

simplicity resulted in a model that was unable to capture the 

complexity of the relationships between the vegetation 

indices, topographic variables, and AGB. The model tended 

to overfit the training data, leading to poor generalization on 

the test set. 

 

 
Figure 6. Predicted Aboveground Biomass Carbon Density 

Map-2010 using CART 

 

CART’s predictions were particularly inaccurate in the 

Himalayan region, where it failed to account for the 

influence of elevation and aspect on vegetation distribution 

(Figure 6). However, CART performed reasonably well in 

flat, homogenous regions, such as the Thar Desert and the 

Indo-Gangetic plains. 

 

Table 1. Accuracy assessment of machine learning models 

for AGB estimation 

Machine learning model 
R-square 

value 
Pearson's 

correlation 

Random Forest 0.834 0.913 

GTB (Gradient Tree 

Boost) 
0.783 0.885 

CART (Classification and 

Regression Trees) 
0.646 0.803 

 

5.4 Comparison with existing dataset 

 

Visual comparison of RF predicted AGB has also been done 

by prediction of AGB Carbon density for the 2020 and 

comparing it with already available ESA CCI AGB data for 

the same year (Figure 7). The comparison shows that the RF 

predicted AGB carbon density is better able to account for 

the spatial heterogeneity of AGB distribution in the Indian 

Subcontinent especially in the regions of low biomass 

density such as arid regions of Rajasthan, central India and 

parts of Pakistan.  

 

 
Figure 7. ESA CCI Aboveground Biomass Carbon Density 

(Mg/ha) for 2020 

 

5.5 AGB prediction for 2023 

 

AGB has been predicted for the recent year i.e. 2023 which 

shows high biomass density (60 - 349 Mg/ha) in the 

Himalayan foothills, northeastern India, and the Western 

Ghats, having dense forest cover with high rainfall. While 

moderate biomass density (30 - 60 Mg/ha) is found in central 

India and Sri Lanka's highlands with mixed forests and 

plantations. Low biomass density (<10 Mg/ha) present in 

arid regions like Rajasthan, Gujarat, and parts of Pakistan, 
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showing sparse vegetation or grasslands and agricultural 

regions. 

 

 

 
Figure 8. Predicted Aboveground Biomass Carbon Density 

Map-2023 using Random Forest  

 

 

6. DISCUSSION 

 

The results of this study indicate that RF is the most robust 

model for predicting AGB across the Indian subcontinent. 

The ensemble learning approach used by RF allowed it to 

capture the complex relationships between vegetation 

indices, topographic variables, and biomass. In contrast, 

GTB and CART, while useful in certain contexts, struggled 

with the region’s ecological variability. 

 

6.1 Model Comparison 

 

RF outperformed both GTB and CART in terms of predictive 

accuracy, particularly in regions with high biomass density. 

The ability of RF to handle large datasets and complex 

interactions between variables makes it well-suited for 

biomass prediction in heterogeneous landscapes. GTB, while 

effective in capturing moderate-to-high biomass regions, 

tended to overestimate biomass in transition zones, 

suggesting that it may require further tuning for such regions. 

CART, on the other hand, was too simplistic to handle the 

complexity of biomass distribution in the subcontinent, 

particularly in mountainous regions. 

 

6.2 Ecological Insights 

 

The spatial patterns of predicted AGB provide valuable 

insights into the ecological dynamics of the Indian 

subcontinent. The high biomass densities in the Western 

Ghats, northeastern India, and the Sundarbans are consistent 

with the known carbon sequestration potential of these 

regions (Ramachandra & Bharath, 2020; Rodda et. al., 2022; 

Manoj et. al., 2024). Conversely, the low biomass densities 

in the Thar Desert and the Indo-Gangetic plains highlight the 

challenges of biomass accumulation in arid and agriculturally 

dominated landscapes (Rani & Paul, 2023). 

 

The underestimation of biomass in the Himalayan region by 

all three models suggests that further research is needed to 

account for the complex interactions between elevation, 

aspect, and vegetation types in mountainous ecosystems 

(Anees et. al., 2024). Incorporating additional variables, such 

as soil moisture and temperature, may improve the accuracy 

of AGB predictions in these regions (Ahirwal et. al., 2021). 

 

6.3 Implications for Conservation and Policy 

 

Accurate AGB estimation is critical for informing 

conservation strategies and carbon management policies 

(Law et. al., 2015). The findings of this study highlight the 

potential of RF to provide reliable biomass estimates across 

diverse landscapes, which can be used to prioritize 

conservation efforts in high-biomass regions. In addition, the 

ability to predict AGB in arid and semi-arid regions, where 

biomass is low but ecologically significant, is essential for 

understanding the subcontinent’s carbon dynamics. 

 

 

7. CONCLUSION 

 

This study evaluated the performance of three machine 

learning models—Random Forest, Gradient Tree Boosting, 

and Classification and Regression Trees—in predicting 

aboveground biomass across the Indian subcontinent. The 

results indicate that RF is the most accurate and reliable 

model for biomass estimation, followed by GTB and CART. 

The spatial patterns of predicted AGB are consistent with 

known ecological dynamics, with high biomass densities in 

forested regions and low biomass densities in arid zones. The 

findings of this study have important implications for forest 

management, carbon sequestration strategies, and 

biodiversity conservation in the Indian subcontinent. By 

providing accurate, spatially continuous biomass estimates, 

machine learning models like RF can inform policy decisions 

aimed at mitigating climate change and preserving the 

region’s ecological integrity. 

 

 

DATA AVAILABILITY 

 

The study utilizes publicly available satellite derived 

products which are available at Google Earth Engine 

platform. The links are provided in Table 1 for accessing 

each product.  
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