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Abstract

We assessed the potential of Machine Learning (ML) for mapping crop growth in three flood irrigated fields. Results generated
from ML algorithms were compared to the output generated by the ISODATA algorithm. Affinity Propagation (AP) identifies the
number of clusters by considering all data points as potential exemplars and iteratively refine the set, while Gaussian Mixture Model
(GMM) algorithm treats the data as a mixture of several Gaussian distributions, allowing for flexible cluster shapes. In contrast,
ISODATA, a statistical clustering method, requires an analyst to specify the number of output clusters followed by iterative splitting
and merging of clusters based on variance and distance criteria. We acquired Landsat derived NDVI images for three flood-irrigated
fields over a span of four years. These images were collected at the start of the growing season to ensure consistency. Initially
we clustered the pixels in these images for each field using AP and determine the number of clusters. Next, we applied GMM to
identify and define the clusters. Finally, we plotted the mean value of all the pixels in each cluster for every year and assigned the
clusters into six thematic classes: the first three classes for consistent growth (good, average, or poor) across all four years, and the
other three for mixed growth patterns (e.g., good in three years and average in one). Output maps generated from these methods
were compared using IoU scores. ML methods had greater efficiency in terms of replicating the steps for other fields, whereas

ISODATA requires analyst intervention and interpretation.

1. Introduction

Monitoring crop growth in irrigated fields is critical in agri-
cultural practices and optimizing yields. One effective way to
achieve this is by analyzing the Normalized Difference Veget-
ation Index (NDVI) (Singh et al., 2020), which serves as an
indicator of vegetation health and land cover(Sasidhar et al.,
2019). In this study, we explore the efficacy of machine learn-
ing clustering algorithms—Affinity Propagation and Gaussian
Mixture Model (GMM)—in comparison with the ISODATA
method for monitoring crop growth based on NDVI values.

Affinity Propagation identifies the optimal number of clusters
by treating all data points as potential exemplars and iteratively
refining this set, providing a robust framework for cluster de-
termination. The GMM approach, on the other hand, models
the data as a mixture of several Gaussian distributions, allowing
for flexible and adaptable cluster shapes. In contrast, ISODATA
(Venkateswarlu and Raju, 1992), a statistical clustering method,
requires manual intervention, as it involves iterative splitting
and merging of clusters based on variance and distance criteria,
making it a more labor-intensive process.

To conduct our study, we collected NDVI values across three
different fields over a span of four years. Each field contains
one image per year, all taken in the same month and on nearly
the same date each year to ensure consistency. We first used
Affinity Propagation to determine the number of clusters and
then applied GMM to identify and define these clusters. Fol-
lowing the application of these machine learning methods and

* This document includes content generated with the assistance of Al
tools like ChatGPT.

ISODATA, we plotted the mean NDVI value of all pixels in
each cluster for every year.

The clusters were categorized into six classes: three classes rep-
resenting consistent growth (good, average, or bad) across all
four years, and three classes representing mixed growth patterns
(e.g., good in three years and average in one). Additionally, we
created detailed plots to monitor the number of pixels in each
cluster over time. These comprehensive plots reveal intricate
patterns in the vegetative index of the fields.

Our findings demonstrate that machine learning methods, par-
ticularly Affinity Propagation and GMM, offer greater effi-
ciency and accuracy in analyzing field patterns compared to
ISODATA, which demands more time and manual intervention.
This study highlights the potential of advanced clustering al-
gorithms to enhance the monitoring and management of crop
growth in irrigated fields.

Iterative Self-Organizing Data Analysis Technique is an unsu-
pervised clustering algorithm that iteratively groups data points
based on their similarity. It dynamically adjusts the number of
clusters by splitting or merging them during the process, and
makes it flexible for analyzing complex datasets.

Affinity Propagation (Dueck, 2009) is a widely used machine
learning algorithm and unlike other clustering methods, Affinity
Propagation autonomously identifies cluster centers and assigns
data points to clusters. This makes it particularly useful for our
dataset with unknown cluster numbers or non-spherical cluster
shapes. Affinity Propagation is based on “message-passing”
between data points to identify cluster centers, known as ex-
emplars, and assign data points to these centers. The algorithm
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aims to find the most representative exemplars to cluster data
into meaningful groups. It is particularly effective for datasets
with numerous clusters or complex, non-linear distributions.

The algorithm uses three key matrices namely, Similarity mat-
rix, responsibility matrix and the Availability matrix. Similarity
Matrix (S): Measures similarity between data points based on
features rather than visual attributes. The similarity score is the
negative squared distance between points:

S(i k) = —|lz(i) — z(k)||*

Where —||z(i) — 2(k)||? is the squared Euclidean distance.

Responsibility Matrix (R): Indicates how well-suited a data
point is to be the exemplar for another data point. It is updated
as:

r(i, k) < s(i, k) — igi)é[a(i, k' + s(i, k)]
Availability Matrix (A): Reflects the suitability of a data point
to serve as an exemplar for others. It is updated as:

a(i, k) + min (0, r(k, k) + Y max(0,r (i, k)))

Vi

The algorithm iteratively updates these matrices until conver-
gence, where the values stabilize. The final matrices determine
cluster assignments. It calculates the similarity matrix based
on a chosen metric, such as negative squared Euclidean dis-
tance. Then initialize and iteratively update the responsibility
matrix and availability matrix. The net responsibility is com-
puted by summing the responsibility and availability for each
data point. The data points with high net responsibility are iden-
tified as exemplars. Each data point is assigned to the nearest
exemplar based on similarity. After determining the number of
clusters using Affinity Propagation, we trained a Gaussian Mix-
ture Model with the identified number of clusters to refine the
clustering results.

Gaussian Mixture Model (Reynolds et al., 2009) is a probabil-
istic model that assumes all the data points are generated from a
mixture of several Gaussian distributions, each represented by
three parameters: a mean (u), a covariance (X), and a mixing
coefficient (). The mean (1) defines the center of the Gaussian
distribution. The covariance (X) defines the spread or width of
the Gaussian. The mixing coefficient (1) defines the proportion
of the population represented by each Gaussian.

The steps involved in GMM are as follows: The three paramet-
ers are initialized, and the probability of each data point belong-
ing to each cluster is calculated using the current parameters.
This involves computing the value of the Gaussian probability
density function for each data point and each cluster, then nor-
malizing these values across clusters to get probabilities. The
Gaussian probability density function is given by:

P | 13) = G o (5@ - 7S @ )

where x is a data point, D is the number of dimensions, x is
the mean, and ¥ is the covariance matrix. The parameters are

updated after calculating the probabilities which involves cal-
culating new means, covariances, and mixing coefficients that
maximize the likelihood of the observed data given these prob-
abilities. It has application in diverse fields (Menon et al., 2022,
Sinith et al., 2010, Vekkot and Gupta, 2019)

2. Methodology

2.1 Study Area

3 irrigated fields located in Albany County (Wyoming) were
selected for this study. Water from the Laramie River was the
primary source of irrigation for these fields. Winter precipita-
tion in the form for snow was the secondary source of moisture
for these fields. These fields were mostly flat with a few rel-
atively low and high spots. Water tend to accumulate in these
dips while it would not reach the high spots.

2.2 Data

Normalized Difference Vegetation Index (NDVI) images ac-
quired by Landsat 8 and 9 satellites were downloaded from
US Geological Survey (USGS). These images were acquired
as close to mid-July as possible to align with peak crop growth
stages while considering satellite temporal resolution and cloud
cover.  Acquisition dates included 7/16/2019, 7/14/2020,
7/6/2021, 7/19/2022, and 7/11/2023.

The original data was multiplied by 10000 and stored as in-
tegers. We use python for data pre-processing and analysis.
Firstly, we opened the NDVI index images using the PILLOW
library (Clark, 2015). The loaded images were converted into
Numpy arrays (Harris et al., 2020) and each pixel’s value is
divided by 10000. The images obtained for field 1 have dimen-
sions of 57 by 57 pixels, with each pixel representing an area of
900 square meters. Each field has 485 background pixels that
are denoted by the value -3.2768. These 485 pixels are substi-
tuted with None. The total area of the field is 2487600 m2 (or
615 acres). Each pixel is considered as a feature and since we
need to perform analysis across all years, the pixel values for
four years are stacked to form a feature vector. We have 2764
pixels after removing the background valued pixels.

Divide the NDVI i atten the in
values by 10000 into 1d vector

Stack the vectors

Remove all the

from each year
Nan columns

together

Figure 1. Pre-processing NDVI data: Normalised NDVI,
Substituting the garbage values in background pixels with NAN
(Not a number in numpy), Flattening and stacking the images

To identify pixels with high and low NDVI values, we con-
ducted a cluster analysis on the feature vector. Initially, Af-
finity Propagation was employed to determine the number of
clusters in the field. Subsequently, a Gaussian Mixture Model
was applied using the determined number of clusters. The over-
all workflow is shown in below in figure 1.
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Figure 2. Overview of methodology: Steps involved in
clustering using ISODATA, AP, and GMM

2.3 ISODATA

Individual NDVI images were stacked to create a multitem-
poral stack in ERDAS Imagine software (Hexagon Geospatial,
Sweden). The multitemporal stack was then classified using the
Iterative Self-Organizing Data Analysis Technique (ISODATA)
unsupervised classification algorithm, initialized from statistics
with 20 — 30 clusters, a minimum cluster size of 1% of pixels,
a maximum standard deviation of 5.0, a minimum Euclidean
distance of 4.0, and a maximum of 1.0 merges per iteration,
with 100 iterations and a convergence threshold of 0.995. Since
2021 image was acquired earlier in the season, there was relat-
ively less growth. Therefore, this image was excluded from the
multitemporal stack and subsequent analysis. Image acquired
in the next pass had cloud-cover over the study area. This en-
tailed performing the entire classification process again on a re-
vised multitemporal composite (4 images) with the parameters
specified above.

The resulting clusters were then mapped into four classes
based on the NDVI values shown in the multitemporal pro-
file: Consistent High Growth, Consistent Low Growth, Expec-
ted Medium Growth, and Unexpected Growth. Consistent High
Growth had NDVI values between 0.7 and 0.9. Consistent Low
Growth had NDVI values between 0.15 and 0.35. Expected Me-
dium Growth had NDVI values between 0.45 and 0.75, which
were higher in wet years and lower in dry years. Unexpected
Growth had NDVI values between 0.25 and 0.85, which were
higher in dry years and lower in wet years.

2.4 Affinity Propagation

Affinity Propagation is used to determine the number of clusters
for each feature set, It computes cluster assignments without
needing to pre-specify the number of clusters.

The hyperparameters have been set to its default values during
clustering, The damping factor of 0.5 ensures message updates
are balanced, preventing oscillations for stable convergence.
The preference parameter, set to the median of the similarity
matrix by default, influences the number of clusters by indir-
ectly controlling which points are chosen as exemplars. The
convergence iteration parameter of 15 ensures that AP stops
after 15 iterations without changes in cluster assignments. Sim-
ilarly, the maximum iteration is set to 200 to cap the total iter-
ations to avoid excessive computation. scikit-learn (Pedregosa
et al., 2011) is used in python to perform affinity propagation

‘We use the number of clusters derived from AP as the number
of components for GMM and perform futhur clustering.

2.5 Gaussian Mixture Model

It is used to assign cluster labels for each feature set, by us-
ing the number of clusters identified by AP. All the hyperpara-
meters of GMM are said to its delfault value during clustering.

Scikit-learn (Pedregosa et al., 2011) is used in python to per-
form GMM

After cluster assignment, the clusters are rearranged based
on their centroids, calculated as the mean of the feature val-
ues within each cluster. Clusters are evaluated against six
thresholds: all years with values above 66%, exactly one, two,
or three years above 66%, values below 33% across all years,
and values falling between 33% and 66%. These thresholds
allow for a detailed examination of changes and patterns over
time. Finally, the results are visualized using plots that high-
light how vegetative growth changes accross the 4 years.

2.6 Comparative Analysis

GMM is sensitive to initialization whereas AP and ISODATA
do not. GMM, AP and ISODATA work well on tasks that en-
tail probabilistic clustering, clustering of non convex data and
exploratory clustering respectively. These methods have been
applied to cluster vegetative cover of fields and the results are
attached below.

3. Results

3.1 ISODATA

Figure 3. Classified image generated with the ISODATA
classification showing a) Consistent high growth (green), b)
Consistent low growth (brown), ¢) Expected medium growth

(Tan), and d) Unexpected growth (Yellow) colors. Pixels

assigned to unexpected growth class had high NDVI values in
drought years but low values in wet years.

The classified multispectral image had the following class
areas: Consistent High Growth, 292 acres; Consistent Low
Growth, 10 acres; Expected Medium Growth, 273 acres; and
Unexpected Growth, 40 acres. The spatial distribution of these
classes illustrates the effects of irrigation efficiency and nat-
ural water availability. As expected, areas classified as Con-
sistent High Growth corresponded to regions with consistent
irrigation reach, demonstrating minimal variability in growth
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rates across wet and dry years. Areas classified as Expected
Medium Growth corresponded to regions with poor irrigation
reach, demonstrating variable growth rates dependent on nat-
ural water supplies. Conversely, some pixels from the Con-
sistent Low Growth class appeared along the field’s periphery,
where crop growth diminished and bare ground encroached.

3.2 Affinity Propagation Clustering Results:

(Figure 1) illustrates the clustering results obtained for Field 1
using Affinity Propagation. The mean NDVI values for 2019,
2020, 2022, and 2023 across identified clusters are presented,
revealing the temporal progression of vegetation health in the
field. Thresholds of 0.33 and 0.66 were added as reference
baselines to categorize pixels into low, medium, and high ve-
getation health clusters. The NDVI values consistently increase
across clusters for all four years, indicating improved or stabil-
ized vegetation health over time. Certain years, notably 2022,
showed more variability in cluster NDVI values. An analysis of
pixel distribution across clusters, as shown in Figure , revealed
significant fluctuations in cluster sizes.

Field 1:

Cluster affinity for feild 1

Figure 4. Average of NDVI value across 4 years for all the
clusters generated by using Affinity Propagation for field 1

Figure 5. Number of pixels per cluster for field 1 using Affinity
propagation

Field 2:

Cluster output using affinity for feild 2

Figure 6. Average of NDVI value across 4 years for all the
clusters generated by using Affinity Propagation for field 2

Figure 7. Number of pixels per cluster for field 2 using Affinity
propagation

Cluster output using affinity propagation for feild 3

074 ==~ Theeshold 9.33
== Threshold 0.66

Figure 8. Average of NDVI value across 4 years for all the
clusters generated by using Affinity Propagation for field 3

Couster e

Figure 9. Number of pixels per cluster for field 3 using Affinity
propagation

3.3 Gaussian Mixture Model Clustering Results:

After determining the cluster count from Affinity Propagation,
a Gaussian Mixture Model (GMM) was applied to refine the
clustering results further by fitting Gaussian distributions to
each identified cluster. This method provided a probabilistic
clustering approach, enabling the estimation of cluster overlap
and further insights into the distribution of NDVI values within
clusters.

The results from GMM for Field 1 are presented in (Figure 10),
displaying mean NDVI values for each cluster across the four
years. The GMM approach resulted in smoother transitions
between clusters compared to Affinity Propagation. This is be-
cause of its ability to capture sub cluster variations within the
primary clusters.

The Gaussian Mixture Model clustering for Field 1 shows
a consistent upward NDVI trend across clusters, with most
clusters in medium to high vegetation health zones. Yearly
NDVI values are stable, though 2023 shows slight improve-
ment.

This demonstrates the effectiveness of GMM in capturing finer
details of NDVI variations, providing valuable insights for pre-
cision agriculture and vegetation health monitoring.
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Figure 10. Average of NDVI value across 4 years for all the
clusters generated by using Gaussian Mixture Model for field 1

Figure 11. Number of pixels per cluster for field 1 using
Gaussian Mixture Model

Field 2:

Cluster output using gaussian mixture for feild 2

~#— Moan NDVI value for 2019
-~ Mean NOVI value for 2020
0 —= Mean NOVI value for 2022
Mean NOVI value for 2023
Threshold 0,33
Theeshald 0,66

Figure 12. Average of NDVI value across 4 years for all the
clusters generated by using Gaussian Mixture Model for field 2

Figure 13. Number of pixels per cluster for field 2 using
Gaussian Mixture Model

Field 3:

Cluster autput using gaussian mixture for feild 3

Figure 14. Average of NDVI value across 4 years for all the
clusters generated by using Gaussian Mixture Model for field 3

Figure 15. Number of pixels per cluster for field 3 using
Gaussian Mixture Model

We can infer from the above plots, the number of clusters (sor-
ted) to the number of pixels belonging to each cluster for both
the clustering methods applied on the 3 fields across 4 years of
data.

3.4 Comparitive Analysis

The Jaccard score (Ramli and Mohamad, 2009), also known as
the Jaccard index or Intersection over Union (IoU), is a metric
used to measure the similarity between two sets. It is particu-
larly useful for evaluating clustering, classification, or segment-
ation tasks.

Before calculating the Jaccard score we need to reconstruct the
image. This is due to the fact that we flattened the image before
performing clustering. Image can be easily reconstructed by us-
ing the un-processed data as reference, substituting each pixel
with the corresponding cluster number. The Jaccard score was
calculated for each field between the clusters created by GMM
and Affinity propagation. All of these values are very close
to 1 as shown in (Table 1), indicating that there is no signific-
ant difference between the output given by GMM and Affinity
propagation.

Field no. | Jaccard score
Field 1 0.9978
Field 2 0.9996
Field 3 0.9964

Table 1. Jaccard obtained when images classified with AP and
GMM methods were compared to each other

4. Discussion

The clustering results highlights temporal changes in the fields
over the course of 4 years. Unexpected patterns emerged within
the Unexpected Growth class and the remaining pixels from
the Consistent Low Growth class. These classes mapped areas
that follow the path of a river that runs through the field, which
could explain why the Unexpected growth class had such high
growth rates in dry years and low growth rates in wet years. In
dry years, the reduced river flow allowed vegetation to thrive
in the riverbed, reflecting higher amounts of infrared radiation.
In contrast, during wet years, higher water levels in the river
led to reduced vegetation growth, absorbing more infrared ra-
diation and lowering NDVI values. Similarly, pixels from
the Consistent Low Growth class clustered on elevated terrain
between river bends, where limited soil moisture further inhib-
ited growth. These results help demonstrate how crop growth
patterns are highly influenced by the relationship between irrig-
ation practices, topography, and natural water sources.

Manual unsupervised classification for analyzing crop growth
rates has many benefits and limitations. A human analyst can
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better understand the field conditions than an algorithm, grant-
ing the analyst more control over the mapping process to adjust
parameters and thresholds based on real-world field conditions,
which can enhance the relevance and interpretability of results.
However, this understanding can be tainted by biases, result-
ing in conscious or unconscious manipulation of the results.
Manual classification also requires significantly more time than
machine-learning classification. Manually removing the 2021
image from the multi-temporal stack necessitated beginning the
whole classification process over again. This can become tedi-
ous to the analyst, which can lead to more unconscious biases
towards the results.

AP and GMM have several advantages over ISODATA, partic-
ularly in terms of consistency, repeatability, and ease of use.
Both AP and GMM produce reliable and transferable results,
making them ideal for consistent crop analysis across different
fields and over multiple years. Unlike ISODATA, which can
yield varying results due to its sensitivity to initial parameters
and manual intervention, AP and GMM provide stable cluster-
ing outcomes. This stability allows new data from recent years
to be added or older data to be removed seamlessly, as the al-
gorithms can adapt to any dataset configuration.

One of the key benefits of AP is its ability to autonomously de-
termine the optimal number of clusters, while GMM then takes
these clusters and generates more flexible and adaptable shapes.
In contrast, ISODATA often requires analysts to manually ad-
just parameters for each dataset, which can also lead to slight
variations in results depending on the analyst’s choices. AP
and GMM, however, deliver identical results across different
analysts due to their automated clustering processes.

An ideal solution would be a unified network that can both
identify the optimal number of clusters and generate them
autonomously.

5. Conclusion

The class map generated by ISODATA algorithm captured the
growth classes. However, it heavily depends upon analyst’s ex-
pertise and re-initialization when there are changes to the input
dataset. The balance between analyst control and potential ana-
lyst bias underscores the need for caution when using manual
methods. AP and GMM has proven to be consistent, easy to
scale and easy to integrate with any type of data. To help re-
duce susceptibility to human error and streamline the mapping
process, automated machine-learning techniques could be in-
tegrated, with future studies exploring hybrid approaches, com-
bining the contextual awareness of manual analysis methods
with the efficiency and objectivity of automated algorithms.
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