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Abstract

With the rapid development of science and technology in the acceleration of urbanization, it is important to achieve efficient and
accurate monitoring and mapping of urban features. Traditional urban feature mapping methods often rely on a single data source,
such as optical remote sensing images or LiDAR, which often encounter many challenges in complex urban environments, such as
shading, occlusion, and land cover changes. LiDAR has relatively accurate three-dimensional spatial information, while remote
sensing image has rich spectral information. Thus, the fusion of spatial-spectral features can improve the accuracy and robustness of
automatic classification efficiency for urban feature mapping. Recently deep learning technology has achieved a profound impact on
remote sensing data processing. However, some existing deep models have not effectively fused spatial-spectral information In
addition, the lack of semantic information optimization could confuse classification, especially for some high spectral heterogeneity
areas. Hence, this study proposed a visual Transformer model to achieve automatic mapping combined with LiDAR and remote
sensing images. In addition, this study improved the global attention mechanism for adaptive enhancing spectral-spatial fusion.
Finally, it is found that the proposed algorithm is generally better than other representative methods, and the classification accuracy
using remote sensing data and LiDAR is improved. The proposed modules can improve the Kappa coefficient by 5%.

1. Introduction

Urban land mapping is crucial for urban planning,
environmental management, and disaster response (Gómez-
Chova et al. 2015). It involves the identification and
classification of various land features within a city, as shown in
Figure 1. Traditional methods of urban land mapping rely
heavily on manual interpretation of aerial photographs and
satellite images, which can be time-consuming and prone to
human error. The advent of Light Detection and Ranging
(LiDAR) technology and remote sensing images have
revolutionized the field by providing high-resolution, three-
dimensional data that can be automatically processed (Tuia et al.
2015).

Figure 1. Urban land mapping and remote sensing platform.

With the rapid advancement of urbanization and the rapid
development of remote sensing technology, the application of
aerial remote sensing images and radar data in thematic
mapping of urban land features has gradually received
widespread attention ( Yan et al. 2015). These two data sources
have different characteristics and advantages. Aerial remote
sensing images can provide rich surface information, while
radar data has stronger penetration into surface structures.
Integrating the two can obtain more accurate and
comprehensive information on urban land features, providing

important support for urban planning, urban management,
disaster monitoring, and other fields.

The popularization and expansion of remote sensing technology,
as well as the fusion of aerial remote sensing images and radar
technology, have made significant progress in the research of
urban land feature thematic mapping. Many domestic scholars
and research institutions have conducted in-depth research on
fusion algorithms, data processing, feature extraction, and other
aspects, and have achieved a series of innovative results. With
the launch of multiple high-resolution remote sensing satellites,
image fusion technology based on deep learning has rapidly
become a research hotspot. At this stage, various images such as
remote sensing images were fused using image fusion methods,
greatly improving the quality and application value of the
images. For example, YUAN et al. (2021, 2024) applied
Convolutional Neural Networks (CNN) to building extraction,
resulting in improved accuracy.

The main advantages of a Visual Transformer (ViT) over CNN
are to capture global context, higher parallelization processing
efficiency, and wider adaptability (Yuan et al. 2021). The ViT
can capture the dependency relationships between different
positions in the input sequence through its self-attention
mechanism. Regardless of the distance between two elements in
the sequence, the Transformer can directly calculate their
relationships, thus better understanding the global context.
Wang et al. (2022) used the U-Net model combined with a
visual Transformer, achieved good land use cover classification
results.

In contrast, CNN uses convolutional kernels for local perception.
Although it can expand the receptive field by increasing the
number of layers and using larger convolutional kernels, it still
tends to extract local features, making it difficult to directly
capture global contextual information from long distances (Yao
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et al. 2021). The self-attention mechanism of the Transformer
can process all elements in the input sequence in parallel, which
enables more efficient utilization of hardware resources such as
GPU and TPU during training and inference, especially when
dealing with long sequences. In contrast, although CNN's
convolution operation can be parallelized, it requires layer-by-
layer computation when processing sequential data, which may
not be as efficient as the Transformer's parallel operation in
some cases.

Transformer relies on self-attention mechanisms rather than
convolution operations, making fewer assumptions about the
structure of input data. This flexibility allows Transformer to
adapt more widely to various types of data, including text,
images, and time series. In contrast, CNN utilizes the local
perception and weight-sharing properties of convolutional
kernels to perform well in tasks with spatial local correlations,
but may not be as flexible as Transformers when dealing with
other types of data (Yuan 2024).

Aerial remote sensing images can provide rich texture and color
information, which helps identify the appearance features and

details of ground objects. However, in the presence of complex
terrain and obstructions, it may be affected, resulting in
incomplete or distorted information acquisition. As an active
remote sensing system, LiDAR can penetrate cloud layers,
provide surface physical and geometric feature information, and
accurately measure the vertical spatial height information and
horizontal spatial geometric structure information of ground
objects. Although radar data performs well in some aspects,
there may be data sparsity issues on targets with fewer textures.

Therefore, integrating aerial remote sensing images with
LiDAR data can fully utilize their complementarity and improve
the accuracy of urban land classification. The fused data can not
only provide rich texture and color information but also obtain
accurate three-dimensional spatial structure information, thus
more accurately identifying and classifying urban land features.
Specialized mapping can also provide more accurate and
comprehensive data support for urban planning and
management.

Figure 2. Network architecture.

2. Method

Remote sensing image segmentation methods based on CNN
have been widely studied, most of which are based on u-net or
its variants, and have achieved remarkable results in various
tasks Although the CNN method performs well in terms of
representation ability, due to the local nature of convolution
operation, it has some limitations in capturing global and long-
distance semantic information interaction, while ViT has made
significant improvement in this regard.

In recent years, ViT has introduced a self-attention-based
architecture to handle visual recognition tasks to better model
long dependencies. Subsequently, many transformer variants
have achieved great success in natural image recognition tasks,
such as swing transformer, diet, PVT, tit, etc With the help of
ViT 's excellent presentation ability, some researchers try to
combine it with CNN or directly replace CNN to obtain better
medical image segmentation results, such as TransUnet, Swin
UNET, COTR. All these studies show that ViT can further
improve its performance compared with CNN, and also point
out that more attention should be paid to the development of
ViT in the future However, although ViT has excellent
presentation ability, it still needs a lot of data for identification

tasks, and may even need more data than CNN Therefore, in
the task of remote sensing image analysis with limited data, the
effective fusion of CNN-ViT is important for the optimization
of model structure.

Figure 2 shows the process of the proposed method. Firstly, the
multispectral images are stacked with LiDAR data and input
into a dual branch Transformer module for feature extraction.
Then, a spectral feature encoder and a structural feature
encoder composed of lightweight convolutional neural
networks are used to extract spectral and structural features of
multispectral and LiDAR, respectively. Among them, the
spectral feature encoder adopts 3D convolution, and the
structural feature encoder adopts 2D convolution. Finally, the
features extracted by the Transformer module, spectral features
extracted by the spectral feature encoder, and texture features
extracted by the structural feature encoder are directly stacked
and input into the classifier for classification to obtain the
results.

2.1 Visual Transformer Network Model Architecture

Due to the powerful global information exchange capability of
the Transformer, a dual branch Transformer module was
developed for the interaction of spatial and channel ranges in
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multi-source remote sensing images. The internal structure of
the visual Transformer (ViT) module in this paper is shown in

Figure 3. The input of the dual branch Transformer module is a
stack of multispectral and LiDAR. After linear projection, the
encoded features can be used as features Q, K, and V for the
next step of self-attention computation. After passing through
self-attention layers and gated feedforward neural networks, it
is used for multi-source remote sensing images.

Figure 3. The structure of the ViT module.

2.2 CNN Local Feature Enhancement

Transformers tend to focus more on global information (i.e.
semantic information of the entire image) while ignoring
spectral information of multispectral images and structural
information of LiDAR data. However, multi-source remote
sensing image classification tasks often require the use of rich
spectral information and fine ground structure information to
achieve accurate classification. To address this issue, this paper
proposes a lightweight convolutional neural network that
extracts spectral information and geometric structure
information separately, namely spectral feature extractor and
structural feature extractor, which are used to extract spectral
features from hyperspectral images and geometric structure
features from LiDAR data, respectively. The former consists of
three layers of Conv3D ReLU BN, used to extract spectral and
texture features from texture-rich hyperspectral data, while the
latter consists of three layers of Conv2D ReLU BN, used to
extract height information and object geometry features from
LiDAR.

3. Experiment And Result

3.1 Data Description

The dataset is derived from USGS. The dataset is an aerial
multispectral remote sensing image data collected by imaging
sensors in urban areas. That includes 4 bands with a spectral
range of 0.363 micrometers to 1.018 micrometers and a spatial
resolution of 0.5 meters. The entire image has undergone
geometric and radiometric calibration. As shown in Figure 4.
Through investigation and visual inspection using high-
resolution color images, ground truth data of 8 categories were
collected.

The sampling technique adopts a hierarchical system sampling.
Based on hierarchical system sampling, a total of 34820 points
were created from the entire sample, including buildings,
forests, roads, cars, grasslands, sports fields, and bare land.

Figure 4. Study area overview.

3.2 Model training

In the experiment, the sample set is randomly divided into
training sets and verification sets with a ratio of 7:3. During
network training when the validation data set reaches 90%, the
ViT layer is frozen, and fine-tuning training is conducted at the
CNN layer. In the Keras framework, model compilation mainly
completes the configuration of the loss function and optimizer.
In the model compilation, the Adam algorithm is selected as the
optimization function, and the multi-class cross entropy as the
objective function is calculated for the prediction and the
ground-truth.

On the dataset, the learning rate for 2000 generations is 0.001.
Use backpropagation to minimize classification cross-entropy
loss. Use batch normalization (BN) and 50% dropout to address
overfitting issues. Accuracy indicators are used to evaluate
experimental results, including overall accuracy (OA), Kappa
coefficient, and F1 score.

3.3 Preprocessing

LiDAR data was obtained from the National Oceanic and
Atmospheric Administration (NOAA) in the United States
using LiDAR point cloud data (. las format), with acquisition
accuracy including estimated point spacing of 0.35 meters,
vertical accuracy of 0.5 meters, and horizontal accuracy of 0.36
meters, as shown in Figure 5. The LiDAR data and
orthorectified images were converted to the same coordinate
reference as the UTM area 19N, 1983 North American
reference, and NAVD88 vertical reference. Vector labels refer
to the Open Street Map and are interpreted through images and
3D point clouds.

Figure 5. LiDAR point cloud data.

This article mainly uses the low-pass filtering algorithm in
CloudCompare software to denoise point cloud data, as
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illustrated in Figure 6. The experimental area consists of
various types of features and complex scenes, such as roads,
exposed soil, vegetation, lakes, rivers, and hills, as shown in
Figure 4. Buildings present complex architectural structures
and various scenes, such as large industrial areas, rural areas,
densely populated residential areas, and suburbs of different
heights. Some ground objects and buildings have similar
textures and colors, such as floors, courtyards, sports fields,
roads, and cars. The above factors pose challenges to automatic
mapping.

(a) (b)
Figure 6. Denoising point cloud data. (a) Pre-denosie; (b) Post-
denoise.

Digital Elevation Model (DEM) is a digital model used to
represent the elevation information of the earth's surface. It
divides the surface into regular grid cells, each cell stores an
elevation value, to form a continuous elevation surface. DEM is
a virtual representation of landforms, and it can derive contour
lines, slope maps, and other related information. It can also be
superimposed with Digital Orthophoto Map ( DOM) or other
thematic data to participate in the analysis and application of
terrain, and DEM is also the basic data required for DOM
production. In engineering construction, DEM can be used for
earthwork calculation, intervisibility analysis, etc; In terms of
flood control and disaster reduction, DEM is also an important
tool for hydrological analysis. Digital Surface Model (DSM) is
a digital model used to represent the three-dimensional shape of
the earth's surface. It contains not only the elevation
information of terrain but also the information of buildings,
vegetation, and other surface objects. Therefore, DSM can be
used in urban planning, landscape design, environmental
simulation, and other fields.

As shown in Figure 7, the ENVI LiDAR software was used to
generate DSM and DEM images from denoised point cloud
data. Then, the band operation function in ENVI was used to
generate nDSM images from DSM-DEM.

Figure 7. LiDAR digital products.

3.4 Accuracy Evaluation

As reported in Table 1, the proposed method combined with
CNN and Transformer has achieved an improvement in
classification performance. The experiment fused the original

image and nDSM features to improve the Kappa coefficient by
5% compared to the support vector machine (SVM) and 4%
compared to a random forest (RF). Compared to 3DCNN, the
multi-head attention mechanism improves Kappa and F1 scores
by 6.2%. Compared to 2DCNN, the proposed method improved
the F1 score by 3.13 Kappa with 6.53%. This confirms that the
fusion of CNN and Transformer can significantly improve
prediction accuracy.

Table 1. Evaluation of Prediction Accuracy Using Different
Models.

Method
Overall
accuracy

%

Kappa
%

F1-
score
%

Precision
%

Recall
%

RF 98.11 94.23 95.56 96.23 95.32
SVM 98.57 93.36 94.63 95.12 93.17
2D-
CNN 97.21 95.24 92.34 91.36 93.21

3D-
CNN 91.23 92.17 92.47 97.24 95.34

Ours 98.65 98.37 98.87 98.56 98.15

The visualization results of the ablation experiment confirm the
effectiveness of the improved structure. The 2D-CNN model
has relatively low performance. The common classifiers of
random forest and support vector machines perform better than
2D-CNN. In contrast, the proposed residual 2D-3D CNN has
almost similar performance to random forests, support vector
machines, and random forests.

Figure 8. Prediction results using different models.

In this experiment, the accuracy of different land-cover types in
the classification results was comprehensively analyzed.
Conditional accuracy (user's accuracy) and recall (producer's
accuracy) were used as key evaluation metrics, as illustrated in
Figure 9. For building, the conditional accuracy was 79.31%
and the recall was 63.89%, indicating that there were still
misclassification results, and a considerable number of actual
building pixels were not correctly classified. Road had a
conditional accuracy of 71.43% and a recall of 89.29%,
showing that although most actual road pixels were correctly
classified, the classification results for users contained a
relatively high proportion of misjudgments. For small cars, the
conditional accuracy was 80.00% and the recall was 83.33%,
with relatively better classification accuracy. Water bodies
achieved a conditional accuracy of 96.55% and a recall of
100.00%, demonstrating excellent classification performance.
The conditional accuracy of bare land was 75.00% and the
recall was 100.00%, while forest land had a conditional
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accuracy of 100.00% and a recall of 92.31%, and grassland had
a conditional accuracy of 97.37% and a recall of 92.50%. The
classification of the stadium was perfect, with both conditional
accuracy and recall reaching 100.00%.

Figure 9. Confusion matrix for land use classification.

The differences in accuracy among various land-cover types
can be attributed to several factors. The complexity of land-
cover features is a significant factor. For instance, buildings
and roads have complex features in remote-sensing images, and
their spectral characteristics are easily affected by surrounding
environments, causing misclassification. The small-sized cars
are also easily interfered with the surrounding environment,
and their spectral features are not stable. In contrast, water
bodies have unique and stable spectral reflection features,
which are easy to distinguish. In addition, the
representativeness of sample data also affects the classification
accuracy. If the training samples are not comprehensive or
representative, the classifier's ability to identify certain land-
cover types will be limited. Moreover, the unique properties of
land-cover types themselves, such as the similarity of bare-land
spectral characteristics to those of some surrounding land-cover
types, also contribute to the accuracy differences. Stadiums, on
the other hand, have distinct and regular features, making them
easy to classify accurately.

Some data ablation experiments have been conducted to
evaluate the effectiveness of multimodal data fusion. Remote
sensing fusion images can provide feature information such as
texture and color of land features, while LiDAR point cloud
data can provide three-dimensional information such as
geometric shape and height of land features. Integrating the two
can provide a more comprehensive and accurate understanding
of the distribution, characteristics, and attributes of urban land
features. Comparing the final classification performance of the
SVM and RF, as well as the influence of the near-infrared band
on classification performance, the following conclusion can be
drawn: under the same conditions, the classification
performance of the RF classification algorithm is better than
that of SVM.

In classification results using RF, the Kappa coefficients of the
original image, original image+DSM, original image+DEM,
and original image+nDSM were increased by 0.0494, 0.0812,
0.0588, and 0.1172, respectively, compared to SVM
classification. The image classification performance in the

near-infrared band is better than that in the RGB band. The
Kappa coefficient of RGB+near-infrared+DEM classification
using SVM increased by 0.1056 compared to the Kappa
coefficient without near-infrared band, and the Kappa
coefficient of random forest classification increased by 0.0134.
The Kappa coefficient of RGB+near-infrared+nDSM
classification using SVM increased by 0.0919 compared to that
without the near-infrared band, and the Kappa coefficient of RF
classification increased by 0.009.

Compared with the classification results of single high-
resolution remote sensing data, the fusion of LiDAR and high-
resolution remote sensing data has a significant improvement
effect on urban land use classification. The classification effect
after adding point cloud data is better than that of single remote
sensing data. After adding DSM, DEM, and nDSM support
vector machine classification to the original image, the Kappa
coefficients increased by 0.0444, 0.0443, and 0.0263,
respectively, compared to single remote sensing data. After
adding DSM, DEM, and nDSM random forest classification to
the original image, the Kappa coefficients increased by 0.0762,
0.0538, and 0.0941, respectively, compared to single remote
sensing data.

4. Conclusion

The study constructs a network by combining Transformer and
CNN to harness the full potential of deep learning for urban
land mapping. The Visual Transformer Network Model
represents a significant advancement in the field of urban land
mapping, offering a powerful tool for network structure
optimization. The proposed algorithm is generally better than
other representative methods, and the classification accuracy
using remote sensing data and LiDAR is improved. In future
exploration, this study will further investigate the fusion of
LiDAR and hyperspectral image features to improve the
efficiency and predictive performance of algorithms for land
use mapping.
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