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Abstract 

Object detection contributes significantly to advancing image interpretation and understanding. The advent of deep learning-based 

methods has significantly advanced this field. However, the distinctive characteristics of remote sensing images, including large 

directional variations, scale differences, and complex and cluttered backgrounds, pose considerable challenges for accurate target 

detection. In this work, we compare the detection accuracy and processing speed of several state-of-the-art models by detecting palm 

trees in optical satellite imagery. This work aims to explore how these models, adopted in many remote sensing applications, perform 

when applied to detect objects in overhead satellite images. Several models are selected from the single-stage and two-stage object 

detection families of techniques. Additionally, we use the timing results of the sliding window object detector to establish a baseline 

to compare different approaches. Our experiments demonstrate that two-stage detectors perform better in remote sensing contexts when 

detecting small, crowded objects, outperforming their single-stage counterparts. Future work includes extending this analysis to 

additional models, such as the multi-stage object detection family. 

1. Introduction

Object detection is one fundamental and challenging problem in 

computer vision for image interpretation and understanding. The 

goal of object detection is to develop computational models and 

techniques to automatically identify (what) and localize (where) 

real-world entities accurately in an image. In recent years, the 

widespread adoption of convolutional neural networks (CNN) 

and GPU-accelerated deep-learning frameworks has led to a fresh 

perspective on the development of object detection algorithms. 

Many promising object detection algorithms rely on pre-trained 

deep learning models as their backbone, leveraging large-scale 

benchmark datasets to determine the majority of the 

hyperparameters of the model. The model is then transferred to 

specific applications by re-learning just the head or a limited 

depth of the model based on the application data(Hao, 2023). 

Transportation (pedestrian detection), security (facial 

recognition), medical (tumor identification), energy (site 

monitoring), government (disaster relief), and many other 

industries have successfully applied object detection models in 

image understanding tasks (Jiao et al., 2019).  Compared to 

images in computer vision tasks that are captured from the 

ground perspective, remote sensing images (Fig. 1) collected 

from an overhead perspective by satellite or aircraft present 

unique challenges that pose issues when straight-forward 

transferring deep learning-based object detection methods. These 

challenges include different perspectives (bird view vs. ground 

view), significantly larger image sizes, and fewer details of target 

objects on remote sensing images (Li et al., 2020). 

Significant efforts in photogrammetry and remote sensing have 

been made to develop deep learning-based object detection 

models, initially designed for computer vision tasks, to detect 

features (man-made or natural) from satellite or airborne 

imagery. For example, Chen et al., 2014 significantly improved 

upon deep convolutional neural networks (DNNs) to detect 

vehicles in satellite images by splitting outputs from the highest  

feature-extracting layers and passing them through additional 

convolution and pooling layers of varying sizes. This hybrid 

approach performed well when detecting objects with high 

variance in size, which can be an issue when transferring models 

pre-trained for image classification to remote sensing tasks. To 

employ object detectors on circular oil tanks, Zhang et al., 2015 

used a hybrid approach to include contextual scene information 

(pipelines, shadows, additional oil tanks, and other oil 

infrastructure). After a line segment and elliptical arc detector 

were used to select initial object candidates, a buffered region 

around candidates was passed through a pre-trained CNN to 

improve classification. The results from CNN were used to filter 

out ellipsoids detected in non-oil tank storage areas and their 

experimental metrics demonstrated effective performance of 

detecting oil storage tanks in satellite images. Moreover, numerous 

developments have been integrated into commercial software, 

such as ArcGIS Pro, to streamline their utilization through user-

friendly graphical interfaces. Nevertheless, the optimal selection 

of a model for detecting various types of objects remains unclear.  

Figure 1. Left: Ground view (courtesy to Bill Abbot, Flickr 

CC BY-SA 2.0); Right: Overhead (bird’s eye) view 

(Google Earth). 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-5-2024 
ASPRS 2024 Annual Conference at Geo Week, 11–13 February 2024, Denver, Colorado, USA and 21–24 October 2024 (virtual)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-5-2024-201-2025 | © Author(s) 2025. CC BY 4.0 License.

 
201

https://creativecommons.org/licenses/by-sa/2.0/


 

 

In this study, we assessed four widely used deep learning-based 

object detection models accessible in ArcGIS Pro to provide 

insights into the process of selecting the most suitable model for 

different remote sensing object detection applications. The 

models under evaluation include the Single Shot Detector (Liu et 

al., 2016), You Only Look Once v3 (Redmon & Farhadi, 

2018; (Redmon et al., 2016), RetinaNet (Lin et al., 2017), and 

Faster R-CNN (Ren et al., 2015). Of these, Single Shot Detector 

(SSD), You Only Look Once v3 (YOLOv3), and RetinaNet are 

all single-stage detectors, while Faster R-CNN is a two-stage 

detector that has separate steps for identifying candidate regions 

of the image before the object detection step.  

 

The two-stage detector identifies regions of different objects in 

the image (region proposals, thus the “R” in R-CNN) at its first 

stage. A second stage follows to determine what (if any) classes 

those objects belong to using a convolutional neural network 

(CNN). In essence, the two-stage detector effectively turns the 

object detection task into image segmentation followed by image 

categorization. Various algorithms can be applied to the first task, 

generating candidate regions (Girshick et al., 2014), however, the 

need to perform two separate and distinct tasks indicates that two-

stage models would generally be slower than single-stage 

models. Faster R-CNN (Ren et al., 2015) achieves much higher 

speeds by using a neural network for detecting candidate regions 

that share convolutional layers (and their resulting feature maps) 

with the neural network performing object classification. 

 

Single-stage detectors skip the step of detecting the candidate 

regions. Instead, they start with a default set of anchor boxes and 

use bounding box regression (Girshick et al., 2014) to output 

information about how to modify the height, width, and center 

location of the boxes to capture the target objects. All three 

single-stage models assessed in this study divide the image (or 

later feature maps) into a grid and generate many default 

bounding boxes (a.k.a. anchor boxes) at each grid cell. The 

boundaries of these anchor boxes can be outside of their parent 

grid cell. In YOLO, the starting position and aspect ratio of these 

anchor boxes are determined during training, while in SSD and 

RetinaNet the starting position is always the center of the grid 

cell, and only the default aspect ratio is determined during 

training.  

 

All three single-stage models use bounding box regression to 

modify the anchor boxes' position and dimensions to capture a 

target object. In SSD, one network performs these bounding box 

regression calculations and the confidence that the box contains 

each of the target classes included in the model. In YOLO and 

RetinaNet, a separate subnetwork calculates the bounding box 

regression along with the confidence that the final box contains 

an object, while another calculates the confidence that a grid cell 

contains each of the classes included in the model. The final 

output is the bounding box location and dimensions, and the final 

confidence scores for each class are calculated by multiplying the 

confidence that the bounding box contains an object by the 

confidence scores that the bounding box belongs to each of the 

classes in the model. If the class with the highest final confidence 

score is greater than the threshold value defined when running 

the model, an object of that class is detected. To capture objects 

of different sizes relative to the image, SSD repeats its analysis 

of anchor boxes at several different scales of the starting image, 

while RetinaNet repeats its analysis of anchor boxes on 

convolutional feature maps at different levels of pooling(Lin et 

al., 2017; Liu et al., 2016; Redmon et al., 2016; Redmon 

and Farhadi, 2018). In general, single-stage object detection 

models perform better in remote sensing contexts. (Li et al., 

2020) 

 

2. Fine-tuning based Method 

We adopted the workflow proposed by Julia Lenhardt (Lenhardt, 

2023) to evaluate the aforementioned four popular deep learning-

based object detection models. Each model performs coconut 

palm trees detection from the same multispectral (red, green, and 

blue) aerial imagery of a plantation in Kolovai, Tonga 

(Giovando, 2017) using the same manually digitized training 

data. All four models are based on transfer learning techniques 

(Zhuang et al., 2021), where pre-trained models are fine-tuned on 

the object detection data for the target domain. These pre-trained 

models have been trained for tasks different from coconut palm 

tree detection. For example, the backbone model, Resnet34 (He 

et al., 2016), used in the Single Shot Detector is 34 layers deep 

and was trained on the ImageNet Dataset that has more than 1 

million images and 1000 classes. The architectures of deep 

learning models are typically structured as layers, each learning 

different features. Initial lower layers of the network learn very 

generic features, while the higher layers focus on very task-

specific features. This hierarchical architecture allows us to 

utilize the pre-trained network by excluding its final layer which 

produces the final output in the pre-trained model. Furthermore, 

we can selectively retrain specific preceding layers to fine-tune 

the model for the target task, thereby achieving better 

performance and adaptability. Using our work (Wang and 

Coulson, 2023) for oil spill detection as an example, MobileNet 
(Howard et al., 2017) was used as the backbone model to detect 

oil spills in images by retraining the last 22 layers of the 

MobileNet model on the new, task-specific data. The weights in 

all previous layers are left locked and remain unchanged during 

the training process. This fine-tune-based approach requires 

significantly fewer resources compared to training the model 

from scratch. It capitalizes on prior learning from extensive 

datasets, reducing the training required to optimize the model for 

a specific task. 

 

3. Performance Metrics 

This work utilized the similar accuracy metrics as in the COCO 

challenge (COCO Consortium, 2015) to evaluate the model 

performance for object detection. They include Precision P, 

Recall R, F1 score, and Average Precision AP, calculated from 

detection results. We adopt the same metric definitions as 

outlined in the work by Padilla et al. (2020).  

 

Three possible detection results can be found in the model output: 

 

● True positives (TP):  Correct prediction of ground truth; 

● False positives (FP): Incorrect prediction where no ground 

truth was present; 

● False negatives (FN): Undetected ground truth. 

 

To determine if a prediction is correct or not, we compare the 

bounding box (BB) of the predicted object and the BB of the 

ground truth by calculating the intersection of the two BBs over 

their union (IOU, Figure 2), which is based on the coefficient of 

similarity of two sets of data (Jaccard, 1901). An IOU of 1 

signifies a perfect agreement between the predicted BB and 

ground-truth BB. In practice, a specific threshold, t, is defined 

based on the application where an IOU < t is considered incorrect 

and an IOU ≥ t is considered correct. 
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Figure 2. Intersection over Union (IOU) derived from ground 

truth (green) and predicted (red) BB.  

 

Precision P, is a measure of how many true positives were 

identified and assesses how many detected objects are relevant. 

P is defined as:  

 

 𝑃 =
TP

TP+FP
=

TP

total detections
.                             (1) 

 

Recall R, is a measure of how well the model detects true 

positives and assesses how relevant are the detected objects. R is 

defined as: 

 

 𝑅 =
TP

TP+FN
=

TP

total ground truths
.                       (2) 

 

F1 score, the weighted average of precision and recall, is a 

composite metric commonly used to represent the model 

performance. F1 is defined as: 

 

 F1 =  
𝑃+𝑅

0.5∗(𝑃+𝑅)
.                                                 (3) 

 

A robust model would obviously need to have very high true 

positives and very low false negatives. However, a model with 

higher precision (fewer FP) may miss many positives, resulting 

in a higher FN and thus a lower recall, R. Conversely, a model 

has more positives, resulting in higher recall, but the FP may also 

increase, yielding a low precision. (Padilla et al., 2020). 

Therefore, there is a trade-off between precision and recall when 

selecting confidence values for prediction results. F1 score and 

average precision (AP) are two metrics to measure how well a 

model approaches this ideal of perfection by incorporating both 

precision and recall into a single number. Considering the curve 

generated by the precision vs recall, a good model will have a 

high area under the curve (AUC), indicating high precision and 

high recall. However, the precision-recall curve often zigzags 

which makes calculating the AUC difficult. Instead, interpolating 

is implemented to smooth out the curve by replacing the precision 

values at each recall level with the maximum precision value to 

the right of it (Figure 3). 

 

 
Figure 3. A precision-recall curve with interpolated points 

(Padilla et al., 2020) 

 

Afterwards, using all-point interpolation the AP can be defined 

according to the work of Padilla et. Al. (2020) as: 

 

 𝐴𝑃 =  ∑ (𝑅𝑛+1 − 𝑅𝑛) ∗ 𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑅𝑛+1)𝑛 ,         (4) 

 

where Pinterp (Rn+1) is the maximum precision whose recall value 

is greater than or equal to Rn+1, and n is the number of every recall 

level. A higher AP will signify a better model. Moreover, to 

evaluate the predictive validity of each model, a cross-validation 

method (Browne, 2000) is adopted by repeating the assessment 

after reversing the roles of the training and verification data sets.  

 

In addition to the above metrics, we compare the time of each 

model taken to train and detect coconut palm trees under the same 

computation environment as a simple measure for computational 

efficiency.  

 

4. Experiments and Discussion 

We employed ArcGIS Pro 3.1.1 with the deep learning 

framework libraries (3.1) installed to assess the four models for 

coconut palm tree detection. The experiments were carried out on 

a desktop PC featuring a 12th-generation Core i9 Intel  CPU, and 

one Nvidia 3050 GPU (8GB). 

 

The training data used to fine-tune the pre-trained models 

consisted of 1,198 manually identified palm trees (Fig. 4) from 

seven areas selected in the work of Lenhardt (2023) from the 

multispectral (red, green, and blue) aerial imagery of a plantation 

in Kolovai, Tonga (Giovando, 2017). These training data were 

used to create 3,088 training image chips of 448 by 448 pixels, 

with a stride length of 128 pixels, each including at least one of 

the training palms. Training image chips without any training 

palms were discarded. 

 

 

Figure 4. An example of some training data. 

 

The pre-trained models (Resnet 34 for SSD, DarkNet 53 for 

YOLOv3, Resnet50 for RetinaNet, and Resnet50 for 

FasterRCNN) were fine-tuned on the palm trees as a single class 

for 50 epochs and a batch size of 8. All other parameters, 

including learning rate, were left at the default values in the 

ArcGIS geoprocessing tool. Palm trees were detected using the 

fine-tuned models with a 0.2 confidence threshold. 

Postprocessing with the Non-maximum suppression (NMS) 

technique was applied to filter duplicate detections and select the 

most relevant detected objects. The accuracy of the results was 

assessed by comparing the outputs from each model to a test data 

set of 787 manually identified palm trees, located in the seven 

test areas adjacent to but not overlapping the areas of the training 

data (Figure 5). All detected objects in the output that intersected 

the test areas were exported and compared to the test data based 
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on performance metrics. We use 0.5 as the threshold t for IOU  to 

determine a detected object to be a correct detection (TP) of one 

of the palm trees in the test data (ground truth). 

 

Figure 5. Test data (red) from seven test areas adjacent to the 

areas of training data (yellow) 

 

Model outputs were scored based on their number of true 

positives (TP, the model identified a palm tree where there was a 

palm tree), false positives (FP, the model identified a palm tree 

where there was not a palm tree), and false negatives (FN, the 

model did not detect a palm tree where there was one). Figure 6 

illustrates that FasterRCNN outputs the highest TP and lowest 

FN among the four detectors. SSD and RetinaNet produce 

relatively high FP, indicating they identified more incorrect palm 

trees where there were no palm trees. YOLOv3, on the other 

hand, yields the lowest FP but performs less effectively in terms 

of TP and FN. Based on these scores, the precision and recall 

metrics were derived (Table 1). 

 

Figure 6. Comparison of model outputs of the four object 

detection models. 

 

As shown in Table 1, the two-stage detector FasterRCNN 

performed the best, achieving the highest recall (0.893) and 

second-highest precision (0.729). Conversely, the single-stage 

detector YOLOv3 boasted the best precision (0.825) but ranked 

third in recall (0.733). When evaluating a combination of recall 

and precision, FasterRCNN outperformed YOLOv3 overall, as 

evidenced by F1 scores (0.803 vs. 0.777) and AP values (0.754 

vs. 0.621). SSD exhibited the poorest performance across all 

metrics, with the lowest precision (0.301), recall (0.541), F1 

(0.387), and AP (0.260) among the four object detectors. 

Nonetheless, it’s worth noting that SSD boasts the fastest training 

and inference times. 

 

By swapping the roles of the training and verification data sets, 

we performed cross-validation on the four object detectors. The 

results, presented in Table 2, verified the same relative rankings 

of the four models observed in Table 1. 

 

Model P R F1 AP t1 t2 

SSD 0.301 0.541 0.387 0.260 1:18 0:15 

YOLOv3 0.825 0.733 0.777 0.621 1:45 0:15 

RetinaNet 0.384 0.781 0.515 0.494 1:30 0:20 

FasterRCNN 0.729 0.893 0.803 0.754 1:55 0:26 

Table 1. Comparison of model outputs of 4 object detection 

models using identical parameters and training data (training (t1) 

and detection(t2) are in hours and minutes). 

 

Model P R F1 AP t1 t2 

SSD 0.336 0.538 0.413 0.292 1:01 0:17 

YOLOv3 0.863 0.740 0.796 0.663 1:14 0:15 

RetinaNet 0.441 0.790 0.566 0.511 1:13 0:20 

FasterRCNN 0.742 0.866 0.799 0.778 1:33 0:27 

Table 2 Results of cross-validation on the four detectors 

(training (t1) and detection(t2) times are presented in hours and 

minutes). 

 

5. Conclusions 

The superior performance of the two-stage detector 

(FasterRCNN) in this study aligns with the findings of (Groener 

et al., 2019), who observed that two-stage object detectors, 

specifically FasterRCNN, outperformed single-stage detectors in 

detecting small, crowded objects, such as cars in their study or 

palm trees in ours. Interestingly, their research reported a much 

smaller performance gap between RetinaNet and FasterRCNN 

compared to our results. For example, they noted an AP of 0.661 

for RetinaNet and 0.685 for FasterRCNN, whereas our results 

showed values of 0.494 and 0.754, respectively. While we 

maintained consistency in most training and detection 

hyperparameters across different models in our study, this 

suggests the potential for optimizing hyperparameters tailored to 

specific models. Further research is required to define these 

optimizations, which may deviate from default settings in 

commercial software like ArcGIS Pro. We also found that 

increasing the training batch size to better take advantage of 

available hardware capacity actually decreased model 

performance, possibly due to problems with the automatic 

learning rate selection in the ArcGIS tool. 

 

In this study, we chose not to perform more post-processing on 

the output of these detectors besides non-maximum suppression. 

However, further post-processing to remove detected object 

features based on geometry or other characteristics would likely 

reduce the FP score and thus improve precision for all models. 

Even though AP is the optimal metric for the model performance, 

the relative importance between recall and precision will depend 

on the priorities of the specific application. 
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