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Abstract

This research focused on mapping vegetation growth patterns in non-irrigated fields using five early season (2019-2023) Normalized
Difference Vegetation Index (NDVI) derived from Landsat imagery. As part of this study, we compared the outputs generated by two
unsupervised machine learning algorithms with a conventional image clustering technique. NDVI data were screened for outliers
using the interquartile range method. Gaussian Mixture Models (GMM), Affinity Propagation (AP) and a traditional rule-based
classification were used for clustering the pixels in the five NDVI images. GMM assigns data points probabilistically, assuming
data are generated from a mixture of Gaussian distributions, while AP identifies clusters by finding representative exemplars without
needing a predefined number of clusters. To evaluate the performance of these clustering algorithms, we assigned the clusters into
six classes based on vegetation growth patterns observed over the five-year period. Class 1 represents five years of good vegetation
growth, class 2 represents four years, etc. We used Intersection over Union (IoU) score to measure how well the classes represented
in the final products compared to each other. When compared to rule-based classification product, AP generated product had an
aggregate IoU score of 0.63, while GMM generated product had 0.59. GMM and AP detected finer NDVI variations that the rule-
based method missed. AP’s exemplar-based approach provided a better understanding of vegetation pattern compared to GMM and
rule-based method. This study highlights the importance of using advanced clustering techniques over traditional approaches for
vegetation analysis, contributing to improved environmental monitoring and management decisions.

1. Introduction

Monitoring vegetation growth is crucial for understanding en-
vironmental changes and promoting sustainable land manage-
ment. In recent years, many studies have explored the use of
advanced machine learning techniques, such as Random Forest
(RF), Classification and Regression Trees (CART), and Support
Vector Machines (SVM), for classifying vegetation. These ap-
proaches have proven effective, but most research has focused
on areas with accessible land-use data, such as urban or well-
studied regions, leaving significant gaps in our understanding
of underrepresented areas (Ouchra et al., 2023; Li et al., 2021).
Addressing these gaps is essential to advancing our global un-
derstanding of land use and vegetation dynamics.

This study aims to fill one such gap by focusing on non-irrigated
pastures—regions where vegetation growth is solely influenced
by natural environmental factors, without the influence of irrig-
ation. By examining growth patterns in these areas, we aim to
gain insights into how vegetation responds to natural conditions
and better understand these ecosystems.

The primary goal of this study is to map vegetation growth in
non-irrigated pastures using early-season NDVI images from
Landsat satellites, collected between 2019 and 2023. Satellite
image classification plays a key role in categorizing land cover
types, which helps extract valuable spatial patterns and insights,
enabling further applications such as vegetation analysis (A. K.
et al., 2023). NDVI, a widely used vegetation health indicator,

is calculated as the difference between the near-infrared (NIR)
and red spectral bands, normalized by their sum (Radhakrish-
nan et al., 2022).

This study compares advanced machine learning clustering tech-
niques (GMM and AP) with traditional rule-based classifica-
tion methods to assess their effectiveness in vegetation map-
ping. Traditional methods often involve manual feature extrac-
tion by domain experts, a time-consuming and complex process
(Reddy et al., 2023). By evaluating these approaches, the study
aims to identify the most effective method for detecting veget-
ation patterns and support improvements in land management
for non-irrigated regions.

1.1 Clustering

Clustering is an unsupervised technique that groups data based
on similarities without prior knowledge. Unsupervised classi-
fication is commonly used in vegetation mapping due to its sim-
plicity and wide availability in image processing tools (Langley
et al., 2001). In this study, we applied GMM and AP to ana-
lyze stacked NDVI images from 2019-2023. These methods,
which do not rely on prior knowledge of the phenomena, auto-
matically extract patterns from raw data, provided classification
accuracy is high (Hsu et al., 2012).

1.2 Overview of Gaussian Mixture Model

The GMM is a probabilistic clustering method that assumes
data points come from multiple Gaussian distributions, each
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with its own parameters. It effectively models complex cluster
shapes and provides probabilistic assignments, allowing data
points to belong to multiple clusters with certain probabilities.
This makes GMM useful for handling overlapping clusters.

Figure 1. Workflow of GMM

The GMM process begins with the initialization of the paramet-
ers. First, the desired number of clusters, denoted as K, is de-
termined, typically through prior knowledge or model selection
criteria such as the Bayesian Information Criterion (BIC). Next,
initial values for the cluster parameters are randomly chosen.

These parameters include the mean (µk), representing the cen-
ter of each cluster, the covariance (Σk), representing the shape
or spread of each cluster, and the mixing coefficient (πk), in-
dicating the relative contribution of each cluster to the total
model. The core of the GMM fitting process is the Expectation-
Maximization (EM) algorithm, an iterative optimization tech-
nique that alternates between the Expectation (E-Step) and Max-
imization (M-Step) until convergence.

E-Step

In the E-Step, the algorithm calculates the ”responsibility” γik,
which is the probability that a given data point xi belongs to
each cluster k, based on the current estimates of the parameters.
This responsibility is computed using the formula:

γik =
πkN (xi | µk,Σk)∑K
j=1 πjN (xi | µj ,Σj)

(1)

where N (xi | µk,Σk) represents the Gaussian probability dens-
ity function for cluster k, evaluated at data point xi, and πk

denotes the mixing coefficient for cluster k.

M-Step

In the M-Step, the parameters are updated to maximize the like-
lihood of the data given the responsibilities calculated in the E-
Step. The parameters updated include the mixing coefficients,
means, and covariances for each cluster as follows.

The mixing coefficient πk is updated to reflect the proportion of
data points assigned to each cluster:

πk =
1

N

N∑
i=1

γik (2)

where N is the total number of data points.

The mean µk is updated to represent the weighted average of
the data points assigned to cluster k:

µk =

∑N
i=1 γikxi∑N
i=1 γik

(3)

The covariance matrix Σk is adjusted to capture the variance of
data points in cluster k:

Σk =

∑N
i=1 γik(xi − µk)(xi − µk)

T∑N
i=1 γik

(4)

The E-Step and M-Step are repeated iteratively until the change
in parameter values falls below a specified threshold, signifying
that the model has converged and reached an optimal configura-
tion. At this point, the Gaussian Mixture Model is fully trained
and can be applied to predict the cluster membership of new
data points based on their likelihood under each Gaussian com-
ponent.

1.3 Overview of Affinity Propagation

AP is a clustering algorithm that groups data points by identi-
fying representative exemplars, or cluster centers, from the data
itself rather than requiring a predetermined number of clusters.
Unlike other clustering methods that rely on iterative updates
of cluster centroids, AP operates through a unique message-
passing mechanism where data points exchange messages re-
garding their suitability as potential exemplars. This method is
advantageous in scenarios where the optimal number of clusters
is unknown, as it automatically determines both the number of
clusters and their structure.

Figure 2. Workflow of Affinity Propagation
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Similarity Calculation

The similarity between two data points x(i) and x(k) quantifies
their closeness, which can be expressed as the negative squared
Euclidean distance between them. This similarity score, S(i, k),
forms the basis for determining if one point can serve as an ex-
emplar for the other:

S(i, k) = −∥x(i)− x(k)∥2 (5)

where ∥x(i)−x(k)∥2 is the squared Euclidean distance between
points x(i) and x(k). Here, a lower distance (and thus higher
similarity) implies a greater likelihood for one point to serve as
the exemplar for the other.

Responsibility Update

The responsibility r(i, k) reflects the suitability of point k to be
the exemplar for point i. This value is calculated by considering
the similarity s(i, k) between points i and k and subtracting the
influence of alternative exemplars for point i. Mathematically,
the responsibility is updated as:

r(i, k) = s(i, k)−max
k′ ̸=k

{a(i, k′) + s(i, k′)} (6)

Here, s(i, k) is the similarity between points i and k, while the
term maxk′ ̸=k{a(i, k′) + s(i, k′)} represents the highest com-
bined availability and similarity score for alternative exemplars
k′. By subtracting this maximum value, the algorithm ensures
that r(i, k) is high only if k is a strong candidate compared to
other potential exemplars for i.

Availability Update

The availability a(i, k) indicates how appropriate point k is as
an exemplar, given the responsibilities of other points. Availab-
ility is influenced by both the self-responsibility of k (indicat-
ing whether k prefers itself as an exemplar) and the aggregate
responsibility from other points toward k. The availability is
calculated as:

a(i, k) = min

0, r(k, k) +
∑
i′ ̸=i

max(0, r(i′, k))

 (7)

In this formula, r(k, k) denotes the self-responsibility of point
k, showing how strongly k considers itself an exemplar. The
term

∑
i′ ̸=i

max(0, r(i′, k)) adds the positive responsibilities
of all other data points i′ toward k. By taking the minimum
of this sum with zero, the algorithm ensures that the availability
remains constrained and non-positive, emphasizing cases where
k is truly a suitable exemplar for i.

Convergence and Cluster Assignment

The iterative updates of responsibilities and availabilities con-
tinue until the algorithm stabilizes, or converges, meaning that
the changes in these values across iterations become minimal.
Upon convergence, exemplar points (i.e., cluster centers) are
identified based on the final values of the responsibility and

availability matrices. Cluster assignments are then determined
by linking each data point to its corresponding exemplar, result-
ing in the final cluster structure without requiring the number of
clusters as a predefined parameter.

2. Experiments and Methods

2.1 Study Area and Data Acquisition:

Non-irrigated pastures located in Albany County (Wyoming)
were selected for this study. Winter precipitation in the form
of snow was the primary source of moisture for these fields.
Cloud-free satellite imagery from Landsat 8 and Landsat 9, cov-
ering two fields over a five-year period (2019–2023) during the
early growing season in July, was acquired for analysis. The
spatial resolution of the images is 30 m by 30 m. Quality as-
surance and quality control measures were implemented during
the acquisition process to ensure the reliability and accuracy of
the data.

The Landsat imagery underwent visual inspection to identify
and mitigate potential artifacts, such as cloud cover, atmospheric
distortion, and sensor anomalies. Cloud-free scenes were prior-
itized to minimize data contamination and ensure the integrity
of the dataset. From this Landsat dataset, NDVI data covering
the same five-year period was derived for both fields and was
used for further research. NDVI serves as a pivotal indicator
of vegetation health and density, offering valuable insights into
temporal changes in vegetation dynamics.

2.2 Preprocessing and outlier removal

The NDVI images spanning the years 2019-2023 of two fields
underwent preprocessing and outlier removal to ensure data qual-
ity and consistency for subsequent analysis. NDVI values were
scaled down by dividing each pixel value by 10,000, standardiz-
ing the data for comparability across different images and data-
sets. Pixels with invalid or unreliable NDVI values, such as
those affected by non vegetation, sensor noise or atmospheric
interference, were masked. NDVI values below 0 were replaced
with a null value (None) to denote missing or invalid data.

To identify outliers in the NDVI data, a robust statistical method
based on the interquartile range (IQR) was applied. Outliers
were defined as pixel values falling outside the range (Figure 4):

Lower bound = Q1− 1.5× IQR (8)

Upper bound = Q3 + 1.5× IQR (9)

where Q1 and Q3 represent the first (25th percentile) and third
(75th percentile) quartiles, respectively, and IQR is the interquart-
ile range.

For each year’s NDVI image, the 25th percentile (Q1) and 75th
percentile (Q3) values were calculated. These values were then
averaged across all five years to establish consistent threshold
values. Specifically:

IQR = Q3avg −Q1avg (10)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-5-2024 
ASPRS 2024 Annual Conference at Geo Week, 11–13 February 2024, Denver, Colorado, USA and 21–24 October 2024 (virtual)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-5-2024-87-2025 | © Author(s) 2025. CC BY 4.0 License.

 
89



where Q1avg represents the average of the 25th percentile values
and Q3avg represents the average of the 75th percentile values.
Subsequently, the average lower and upper outlier thresholds
were calculated using the following formulas:

Average lower threshold = Q1avg − 1.5× IQR (11)

Average upper threshold = Q3avg + 1.5× IQR (12)

This method removes extreme values, focusing on the middle
50% of the data to ensure an accurate representation of cent-
ral tendency. The IQR approach is particularly robust against
skewed distributions (Figure 3), offering more reliable bound-
aries for identifying outliers compared to methods based solely
on the mean and standard deviation.

This preprocessing step was crucial for cleaning and normaliz-
ing the NDVI data, significantly enhancing the reliability and
validity of the clustering analysis that followed.

Figure 3. Histogram of NDVI values (2019-2023), showing
noticeable skewness.

Figure 4. Box plot showing NDVI distribution (2019-2023),
highlighting outliers beyond the whiskers (IQR) and they are

removed to maintain dataset integrity for analysis.

2.3 Calculation of Mean NDVI Over Five Years

After preprocessing, the mean NDVI value was calculated for
each NDVI image in the dataset. This involved computing the
average NDVI value across all pixels within each image, provid-
ing an overall representation of vegetation health for each tem-
poral period. Using the calculated mean NDVI values for each

image, five binary maps were generated to visualize vegetation
health. The five NDVI images were stacked to create a com-
posite image encompassing the entire study period (Figure 5).
Subsequently, the mean NDVI value for each pixel across the
five years was computed, providing insights into vegetation dy-
namics over the entire time span. Finally, a binary map was
generated based on the stacked average NDVI value (Figure 6).

Figure 5. NDVI pixel values across the study period
(2019-2023). Green pixels highlight areas with more vegetation

and brown pixels indicate less vegetation or barren land.

Figure 6. Stacked NDVI values (2019-2023) show green for
areas with consistently high vegetation and brown for areas with

lower vegetation health over time.

2.4 Gaussian Mixture Models

A key aspect of the GMM algorithm is the requirement to spe-
cify the number of clusters beforehand. In our study, the num-
ber of components was determined using the Bayesian Inform-
ation Criterion (BIC). BIC balances model fit and complexity,
aiding in the selection of an optimal number of clusters. After
extensive experimentation and evaluation, the GMM was con-
figured with 68 components. This number was chosen because
it provided a good balance between capturing the complexity of
the data and avoiding overfitting. Additionally, to ensure repro-
ducibility, the model was initialized with a random state of 42,
a commonly used value that provides a consistent starting point
for random number generation, ensuring that the results can be
replicated across different runs.

The fitting process involves the Expectation-Maximization (EM)
algorithm, which iteratively updates the parameters of the Gaus-
sian distributions to maximize the likelihood of the observed
data. After fitting the model, each pixel in the NDVI image
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was assigned a cluster label based on the highest probability of
cluster membership. This process segments the NDVI image
into 68 distinct regions, each representing a unique cluster with
specific vegetation characteristics. This allowed for a detailed
and nuanced clustering of the NDVI data, capturing the variab-
ility in vegetation patterns.

2.5 Affinity Propagation

A key aspect of the AP algorithm is the preference parameter,
which influences the number of exemplars chosen by the al-
gorithm. A higher preference value results in more clusters,
while a lower value results in fewer clusters. Additionally, the
damping factor helps stabilize the algorithm by controlling the
update rate of responsibilities and availabilities during the clus-
tering process. In our study, a damping factor of 0.5 was used.

The implementation process involved normalizing the stacked
NDVI data using StandardScaler to facilitate the convergence
of the AP algorithm, applying AP with a preference parameter
of -10, and then assigning cluster labels to each pixel in the
NDVI image based on the identified exemplars. This approach
enabled the identification of clusters without prior knowledge
of their number, leveraging the algorithm’s ability to adapt to
the data’s intrinsic structure.

2.6 Comparison of GMM and AP

In our analysis, we used both Gaussian Mixture Model (GMM)
and Affinity Propagation (AP) to assign cluster labels to pixels
in the stacked NDVI image, facilitating a detailed examination
of spatial vegetation patterns. Each algorithm offers distinct
advantages based on data characteristics.

GMM works best when the number of clusters is known before-
hand and when data follows a Gaussian distribution. It models
clusters as overlapping Gaussian components, making it ideal
for NDVI imagery with regular patterns and slight overlaps, al-
lowing for precise classification.

On the other hand, AP determines the number of clusters auto-
matically by analyzing the data’s structure. It identifies cluster
centers, or exemplars, through an iterative process, making it
well-suited for NDVI datasets with irregular or complex pat-
terns.

2.7 Cluster Analysis

In this section, we delve deeper into the analysis of the clusters
formed by GMM and AP. The cluster labels assigned to each
pixel allowed us to segment the NDVI data spatially and tem-
porally, providing insights into vegetation dynamics over the
study period. The statistical metrics calculated for each cluster,
including Mean (Figure 7, Figure 8) of NDVI values, were cru-
cial for characterizing the health and variability of vegetation
within each cluster.

The clusters identified by GMM and AP captured subtle vari-
ations in NDVI values that were not evident in the binary clas-
sification, highlighting the importance of using advanced clus-
tering techniques for vegetation analysis.

Figure 7. The plot uses five lines to show yearly mean values
(2019-2023) for individual clusters calculated by AP, with a

dashed black line marking the overall average of 0.2151.

Figure 8. The plot uses five lines to show yearly mean values
(2019-2023) for individual clusters calculated by GMM, with

a dashed black line marking the overall average of 0.2154.

Using the AP clustering method, the mean NDVI values for
each cluster were tracked annually. The data reveals intriguing
trends, particularly the variations in cluster behavior between
2019 and subsequent years.

As shown in Figure 7 , the mean NDVI values are represen-
ted as distinct lines for each year, with a dashed black line in-
dicating the cutoff value of 0.2151. The red line, representing
2019, displays significant fluctuations, with pronounced peaks
and valleys that mostly remain above the cutoff. This suggests
that 2019 experienced higher variability in vegetation health or
environmental conditions. From 2020 onward, however, the
trends smooth out, indicating a more stable pattern of vegeta-
tion dynamics, likely influenced by consistent climatic or land
management factors.

Similarly, GMM clustering method provides another perspect-
ive on these dynamics. The mean NDVI values for 2019–2023,
grouped using GMM, are illustrated in Figure 8 . Here, the
cutoff value is slightly higher at 0.2154, derived from the al-
gorithm’s calculations. Again, 2019 shows the greatest vari-
ability, with its mean NDVI values fluctuating significantly yet
largely staying above the cutoff. From 2020 to 2023, the trends
become steadier, with minimal variability, reinforcing the ob-
servations from the AP analysis.

These findings, consistent across both clustering methods, high-
light how vegetation clusters have changed over time. The vari-
ability observed in 2019 may reflect external factors such as
extreme weather events or land-use changes, while the stability
in later years could indicate improved environmental or man-
agement practices.

2.8 Tools and Libraries

The analysis was performed using Python, with key libraries
including OpenCV for image processing, NumPy for numer-
ical operations, scikit-learn for clustering algorithms, and Mat-
plotlib and Seaborn for visualization. These tools provided a
comprehensive environment for data analysis and visualization,
ensuring reproducibility and accuracy.
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3. Results and Discussion

3.1 Affinity Propagation

Figure 9. Binary Map generated using AP. Cluster averages
using AP were calculated, and their overall average was used as

a cutoff to divide clusters into high (green) and low (brown)
classes.

Figure 10. Map generated using AP. Light green shows pixels
above the cutoff for all five years, dark green for one year above,
and red for all years below, with other colors following the same

pattern.

Using a threshold of 0.215, the analysis identified six clusters
with varying pixel counts and areas (Figure 10). Class 1 cov-
ers 1,306,800 m² (322.92 acres) with 1452 pixels, Class 2 spans
2,324,700 m² (574.45 acres) with 2583 pixels, and Class 3 totals
1,342,800 m² (331.81 acres) with 1492 pixels. Class 4 occu-
pies 444,600 m² (109.86 acres) with 494 pixels, Class 5 cov-
ers 594,000 m² (146.78 acres) with 660 pixels, and the largest,
Class 6, spans 5,114,700 m² (1263.87 acres) with 5683 pixels.

Class Pixel
Count

Area
(square
meters)

Area
(acres)

1 1452 1,306,800 322.92

2 2583 2,324,700 574.45

3 1492 1,342,800 331.81

4 494 444,600 109.86

5 660 594,000 146.78

6 5683 5,114,700 1263.87

Table 1. Class-wise pixel count, area in square meters, and area
in acres

3.2 Gaussian Mixture Model

Figure 11. Binary Map generated using GMM. Cluster averages
using GMM were calculated, and their overall average was used
as a cutoff to divide clusters into high (green) and low (brown)

classes.

Figure 12. Map generated using GMM. Light green shows
pixels above the cutoff for all five years, dark green for one year
above, and red for all years below, with other colors following

the same pattern.

With a threshold of 0.215, the analysis of the imagery reveals
a total of 12,364 pixels classified across six categories (Fig-
ure 12). Class 1 occupies 1,375 pixels, totaling 1,237,500 m²
(305.79 acres). Class 2 encompasses 3,179 pixels, covering
2,861,100 m² (706.99 acres). Class 3 spans 679 pixels, cor-
responding to 611,100 m² (151.01 acres). Class 4 covers 811
pixels, with an area of 729,900 m² (180.36 acres). Class 5 con-
sists of 197 pixels, totaling 177,300 m² (43.81 acres). Finally,
Class 6 is represented by 6,123 pixels, equating to 5,510,700 m²
(1,361.72 acres). All of these values are summarized in Table 2.

Class Pixel
Count

Area
(square
meters)

Area
(acres)

1 1375 1237500 305.79

2 3179 2861100 706.99

3 679 611100 151.01

4 811 729900 180.36

5 197 177300 43.81

6 6123 5510700 1361.72

Table 2. Class-wise pixel count, area in square meters, and area
in acres
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3.3 Rule Based

Figure 13. Binary Map generated using rule-based method, with
the cutoff determined by the overall mean of pixel averages
across five years, classifying them into high (green) and low

(brown) classes.

Figure 14. Map generated using rule-based method, with the
cutoff based on the average of yearly pixel means. Light green
shows pixels above the cutoff for all five years, dark green for
one year above, and red for all years below, with other colors

following the same pattern.

In the analysis of the imagery with a threshold of 0.224, the
classification results indicate significant areas for each class
(Figure 14): Class 1 covers 1,906 pixels, totaling 1,715,400 m²
(423.88 acres). Class 2 comprises 2,775 pixels, corresponding
to 2,497,500 m² (617.15 acres). Class 3 occupies 1,309 pixels,
equating to 1,178,100 m² (291.11 acres). Class 4 encompasses
763 pixels, with an area of 686,700 m² (169.69 acres). Class 5
spans 753 pixels, covering 677,700 m² (167.46 acres). Finally,
Class 6 is the largest with 4,858 pixels, covering 4,372,200 m²
(1,080.39 acres). All of these values are summarized in Table 3.

Class Pixel
Count

Area
(square
meters)

Area
(acres)

1 1906 1715400 423.88

2 2775 2497500 617.15

3 1309 1178100 291.11

4 763 686700 169.69

5 753 677700 167.46

6 4858 4372200 1080.39

Table 3. Class-wise pixel count, area in square meters, and area
in acres

3.4 Rule-Based Classification vs. Clustering Methods

The rule-based classification approach offered a straightforward
and interpretable method for classifying NDVI values into high
and low categories. It relied on a predefined threshold (0.22423
mean of stacked image) and did not involve iterative clustering
processes. This method was efficient and easy to implement but
lacked the ability to capture complex patterns and interactions
within the data.

In comparison, both GMM and Affinity Propagation provided
more sophisticated clustering results, capturing the underlying
structure of the NDVI data. GMM’s probabilistic framework
and Affinity Propagation’s exemplar-based approach offered de-
tailed insights into vegetation health, surpassing the binary clas-
sification of the rule-based method.

3.5 Model Evaluation Using IOU :

Label IOU
1 0.78
2 0.03
3 0.16
4 0.32
5 0.66
6 0.66

Aggregate IOU: 0.59

Table 4. IoU scores were obtained by comparing the Rulebased
and GMM classified images.

Label IOU
1 0.85
2 0.18
3 0.15
4 0.43
5 0.65
6 0.76

Aggregate IOU: 0.64

Table 5. IoU scores were obtained by comparing the RuleBased
and AP classified images.

Label IOU
1 0.87
2 0.06
3 0.19
4 0.32
5 0.67
6 0.73

Aggregate IOU: 0.65

Table 6. IoU scores were obtained by comparing the AP and
GMM classified images.

Intersection over Union calculates the overlap between the pre-
dicted areas with the actual areas to assess the degree of their
similarity(S. Aswin et al., 2021) [1]. This helps us compare
advanced algorithms with traditional methods to see which one
is best for analyzing non-irrigated fields. We calculated IoU
scores for each label (1-6) across three comparisons: RuleBased
vs. GMM (Table 4), RuleBased vs. AP (Table 5), and AP vs.
GMM (Table 6), along with the aggregate IoU scores. The res-
ults showed that label 1 and 6 had consistently high IoU scores
across all three comparisons. For RuleBased vs GMM(Table 4),
the highest IoU score is 0.78 for label 1, followed by label 6
with a score of 0.66, which has remained below the cutoff. For
RuleBased vs. AP(Table 5), the highest match is 0.85 for label
1, followed by 0.76 for label 6. In the AP vs. GMM compar-
ison(Table 6), label 1 again has the highest match at 0.87, with
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label 6 at 0.73. These results suggest that areas with maximum
vegetation (above the cutoff) over the past five years were ef-
fectively detected by the algorithms, with the second highest
also performing well. The highest aggregate IoU score, 0.65, is
between AP and GMM

3.6 Conclusion

In conclusion, our study provided valuable insights into vegeta-
tion growth patterns in non-irrigated fields using Landsat NDVI
imagery. While Rule-Based Classification and Gaussian Mix-
ture Models each offered useful perspectives, Affinity Propaga-
tion stood out as the most effective method.

The results indicate that advanced clustering techniques can be
more beneficial than traditional methods, as they are more ef-
fective and easier to implement on new datasets. The cluster
maps produced in this study can assist landowners in identify-
ing areas of good growth and less fertile regions. This allows
them to focus resources on more productive areas and reduce
operational costs in less fertile zones. Ultimately, our study
offered valuable insights into vegetation dynamics and suppor-
ted better land management practices.
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