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Abstract 

 

3D Building modeling is crucial for urban planning, helping stakeholders make informed decisions on critical issues such as flood 

risk assessment, urban heat island effect, and sustainable infrastructure development. In this research, we use RandLA-Net, a cutting-

edge deep learning algorithm to classify LiDAR point cloud data to distinguish building structures. This identification of building 

points is essential for the subsequent creation of reliable 3D Building LOD models. To enhance the classification accuracy, this 

research utilizes building footprint vector data as a reference layer, which aids in refining the detection of building points and ensures 

validation of the results. Once the building points are classified and improvised with Building Footprint vector layer, they are utilized 

to reconstruct detailed 3D geometric models. This study employs the Open3D library to generate Levels of Detail (LOD) models for 

buildings. By combining advanced LiDAR point cloud classification with Building Footprint Extraction and 3D Building modeling 

techniques, this approach maximizes the utility of publicly accessible LiDAR point cloud data, delivering detailed 3D models that 

support a wide range of spatial decision-making processes. 

 

 

1. Introduction 

LiDAR has become a robust technology for capturing highly 

detailed 3D representations of the Earth's surface. LiDAR 

sensors collect 3D points that define the geometry of objects 

and surfaces, making it indispensable for applications like urban 

planning, infrastructure development, disaster management, and 

environmental monitoring (Edson & Wing, 2011).  

  

LiDAR data significantly differs from traditional satellite 

imagery in several ways. While multispectral satellite imagery 

typically captures surface reflectance, providing a two-

dimensional view, LiDAR offers three-dimensional spatial 

information with specifications like coordinates, intensity and 

return number. (Urbazaev et al., 2018). This capability allows 

for more detailed modelling of building architecture, vegetation 

canopy structure, and terrain features, which are often difficult 

to detect from 2D imagery alone. Furthermore, integrating 

LiDAR point cloud data with multispectral imagery enhances 

the understanding of complex environments (Parmehr et al., 

2016). However, this fusion is with challenges, such as 

misalignment between LiDAR point cloud and multispectral 

satellite imagery caused by relief displacement in tall buildings 

(Gopalakrishnan et al., 2020).  

 

Some of the key outputs of LiDAR point cloud data includes 

Digital Terrain Models (DTMs), Digital Elevation Models 

(DEMs), Canopy Height models (CHMs), and building 

footprints, all of which are crucial for a broad field of 

applications (Sharma et al., 2021). Despite the utility of these 

outputs, extracting useful information from LiDAR data 

requires effective classification and extraction techniques.  

 

Traditional classification methods, such as Random Forest 

classifiers, have been used to categorize buildings into rooftops, 

walls, ground, and high outliers (Park & Guldmann, 2019). 

However, these methods often rely on manual feature extraction 

and extensive preprocessing, limiting their efficiency. Methods 

like region growing, clustering, and surface fitting have 

provided the foundation for LiDAR point cloud classification, 

but they struggle with the complexity and irregularity of the 

points. 

 

In contrast, deep learning models like RandLA-Net offer 

significant advantages by providing better automation, 

flexibility, and performance (Sarker et al., 2024). Additionally, 

the integration of building footprint vector data, which are from 

local cadastral offices and sources like Microsoft's building 

footprint, has been shown to enhance classification accuracy. 

By overlaying building boundaries, detection and classification 

of building points is improved. (Park & Guldmann, 2019) 

(Lloyd et al., 2020) (Esch et al., 2020). 

 

Recent progress in deep learning has enhanced the LiDAR point 

cloud classification (Garcia-Garcia et al., 2017).  While early 

deep learning models focused primarily on multispectral 

imagery (Zhao et al., 2019) (Hoeser & Kuenzer, 2020). The 

advancements in deep learning for 2D imagery has prompted its 

application to point cloud data, which is gaining increasing 

attention (Jiang et al., 2021). The availability of publicly 

accessible benchmark datasets for point cloud data, such as 

ISPRS Vaihingen 3-D dataset (Li et al., 2020; Wen et al., 2020), 

Toronto 3D (Tan et al., n.d.), Semantic3D (Hackel et al., 2017) 

and the SemanticKITTI benchmark dataset (Behley et al., n.d.), 

has contributed to growth in the LiDAR data classification 

research. 

 

Deep learning models for LiDAR data classification fall into 

three main categories: projection-based, point-based, and 

hybrid-based methods. Projection-based techniques apply 2D 

convolutional networks to extract features by converting the 

data into 2D space, while point-based models like PointNet, 
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PointNet++, RandLA-Net and DGCNN directly process raw 

point cloud data without transformation. Hybrid methods 

combine both approaches to improve performance (Liu et al., 

2019). 

 

Among the deep learning models, RandLA-Net stands out due 

to its efficient random sampling technique, which allows it to 

handle large-scale point clouds effectively than many of the 

other deep learning models (Hu et al., n.d., 2022). It mitigates 

the loss of essential features caused by random sampling by 

employing a local feature aggregation module and performs 

competitively and even surpasses other leading models such as 

PointNet++, DGCNN, and KPConv on benchmark datasets like 

S3DIS, Semantic3D, and SemanticKITTI (Hu et al., n.d.).  

 

For the analysis, processing, and visualization of LiDAR data, 

Open3D library plays a major role in the research, offering 

essential functionalities. It also facilitates implementing 

advanced algorithms, such as DBSCAN enabling clustering of 

urban structures (Zhou et al., 2018). DBSCAN clustering 

method is effective in segmenting LiDAR data, particularly in 

identifying clusters within noisy datasets (Wang et al., 2019). 

Combining DBSCAN with advanced deep learning models like 

RandLA-Net could offer a comprehensive approach to 3D 

modeling from LiDAR data (Zeng & Gevers, n.d.). 

 

In summary, this research addresses the use of LiDAR data for 

urban planning, such as the integration of building footprint 

vector data with LiDAR point cloud classification. By 

combining this method with the 3D building modeling, this 

research emphasizes an integrated approach that produces 

detailed Levels of Detail (LOD) 3D models for urban planning. 

  

2. Data  

LiDAR data for the research was sourced from the U.S. 

Geological Survey (USGS) and it is publicly accessible. The 

region of interest for this research is a small portion of the 

residential area in the Boca Raton, Florida.  

 

 
 

Figure 1. Region of study – A small portion of Residential Area 

in Boca Raton, Florida. (Source: NAIP Imagery) 

 

The data collection took place between May 8, 2021, and 

October 29, 2021, and was later published on March 3, 2022. 

The data is available in LAS format, compressed as LAZ. This 

LiDAR dataset has a Quality Level 2 (QL2) classification, 

which indicates a moderate resolution. 

 

3. Methodology 

The methodology for this research includes five main steps, 

LiDAR Data Preprocessing, LiDAR point cloud classification, 

Building Footprint extraction, Cross validation and 

improvement and 3D Building (LOD- Level 1) Model 

Extraction, and each of them are explained detailly below. 

 

 
 

Figure 2. Overall Methodology – Flow Chart  

 

 

3.1 LiDAR Data Preprocessing and Classification 

The raw LiDAR data, sourced from the U.S. Geological Survey 

(USGS), was pre-processed to remove high outliers, which 

could interfere with the classification further. 

 

The classification of the LiDAR point cloud data was performed 

using the RandLA-Net algorithm, a deep learning model for 

large-scale 3D point cloud classification. RandLA-Net was 

chosen for its better accuracy and its effectiveness in handling 

the large-scale point cloud data. The classification process 

began with the preparation of 70% of training and 30% of 

validation datasets and the RandLA-Net model was trained over 

10 epochs, with 100 iterations per epoch, ensuring that the 

model sufficiently learned to distinguish the features of building 

points.  

 

 
 

Figure 3. The classified Building points using RandLA-Net 

Algorithm (Building points are visualised in red colour) 
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Once the building points were classified, the DBSCAN 

clustering technique was used to cluster the building points into 

distinct segments, each representing a different building 

segment. The clustering parameters, such as epsilon and 

minimum cluster points, were fine-tuned to identify the building 

clusters. Specifically, an epsilon value of 10 and a minimum of 

200 points per cluster were set, resulting in the identification of 

227 unique building clusters. 

 

 
 

Figure 4. 227 Building clusters that were obtained by using 

DBSCAN clustering technique over the classified building 

points. 

 

 

3.2 Building Footprint Extraction and Cross-Validation 

Building footprints represent the precise outlines of buildings, 

capturing the spatial boundaries of building segments within a 

given area. The building footprint vector layer was extracted 

from NAIP imagery, using the pre-trained model ArcGIS 

Living Atlas – Building Footprints USA to detect buildings 

within the region of interest. The Mask R-CNN architecture was 

employed for segmentation, enabling the detection of individual 

buildings. Post-processing steps includes building footprint 

regularization to correct the distortions and unwanted artifacts, 

ensuring accuracy in the building geometries. 

 

 
 

 

Figure 5.  226 Buildings were detected using Building Footprint 

Extraction from NAIP imagery.   

 

As a part of the next step, cross-validation was done between 

the extracted building footprints and the classified LiDAR point 

cloud data. In the cross-validation and improvement method, the 

building footprint vector layer was overlaid onto the classified 

LiDAR point cloud data to enhance the accuracy of the building 

detection process. This overlay facilitated the alignment and 

validation of classified building points against known building 

footprints, enabling the identification and rectification of any 

misclassified areas. The comparison between the detected 

building points and the building footprint vector layer provided 

a reference for confirming the presence and boundaries of 

buildings. 

 

3.3 3D Building LOD Model Extraction 

After the refinement of LiDAR building points with the 

building footprint vector layer, the next step is to derive Levels 

of Detail (LOD) building models from the classified points. The 

initial step of this LOD model extraction involves extracting the 

base outline from the LiDAR point cloud data, for every 

building cluster. 

 

Additionally, 3D building model requires the heights of their 

respective buildings to form the extrusion for the LOD Level 1 

Building. To estimate the extrusion height, the minimum height 

values of nearby ground points were identified using a KD-Tree 

search algorithm. This query located the 100 nearest ground 

points around the building segment, to establish the local 

ground level. After the nearby ground points were extracted, the 

true building height was calculated by determining the 

difference between the rooftop points and the identified ground 

level.  

 

 
Figure 6. Side view of the point cloud of a single segment and 

vector layer generated after the simplification process. 

 

The process of generating a 3D building model includes 

creating the top, bottom and the middle layers from the base 

outline. This outline serves as a foundation for generating the 

3D model. To construct the top, bottom and middle layers, the 

base outline will define the boundaries at different heights 

corresponding to the rooftop and ground level. These layers are 

then stacked to form the building's vertical structure. By 

defining these layers, a closed volume is created, representing 

the 3D LOD Level 1 of the building. 

 

 
 

Figure 7. Top, middle and bottom base and vertices layer with 

the height extrusion. 

 

The visualization above indicates the distinction between the 

top, middle and bottom layers, showing how the building’s 

vertical extents are defined. This layered approach ensures that 

the 3D building model is constructed, capturing the height 

differences. Following the clustering process, all the clustered 

building segments after going through the process of extraction 

of top, bottom and middle layers, points within the boundary 
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layer were then interpolated to fill gaps in the original sparse 

point cloud, by creating additional points within the bounding 

box of the layers. Mesh generation was conducted using alpha 

shape method to achieve a detailed and precise fit that captures 

structural nuances of buildings. The result is a Level of Detail 

(LOD-1) 3D mesh, effectively representing the building’s 

geometry. 

 

 

 
 

Figure 8. Mesh Model Generation from the top and bottom 

layers. 

 

4. Results and Discussion 

The classification of the LiDAR point cloud data was performed 

using the RandLA-Net algorithm, achieving an accuracy of 

96.9%. This trained model was applied to classify the LiDAR 

point cloud data for the region of interest. 

 

 

 
 

Figure 9. Training and Validation loss curves of the model over 

processed batches 

 

Initially, both the training and validation losses start at high 

ranges, with a steep decline as the model processes more 

batches. This rapid decrease suggests that the model quickly 

learns essential features in the initial stages. After about 200 

batches, the training loss stabilizes and continues to decrease 

slowly, indicating that the model is learning and improving its 

accuracy with small changes to the loss. The validation loss also 

shows a consistent decline initially and stabilizes at a lower loss 

value, which suggests that the model is generalizing well to the 

validation data. 

 

 
 

Figure 10. A summary of model’s performance metrics across 

10 epochs. 

 

This table summarizes the model's performance over 10 epochs, 

showing steady improvements in key metrics. The training and 

validation losses stabilize around 0.08 and 0.11, indicating low 

error. Accuracy reaches 97%, with precision and recall 

stabilizing around 97% and 91%, respectively, with an F1 score 

of 93%. These metrics demonstrate the model's reliability in 

classifying LiDAR point cloud data, with a balance between 

precision and recall metrics. 

 

 
 

Figure 11. Cross-validation between the Building Footprints 

vector data and building clusters. 

 

 

The building footprint extraction process from NAIP imagery, 

identified 226 buildings out of the 227 known structures within 

the region. In contrast, the LiDAR point cloud classification 

using RandLA-Net and DBSCAN clustering detected all 227 

buildings. This discrepancy reveals that one building was 

missed in the NAIP-derived footprint extraction. This is due to 

the limitation of the model to detect the building, when it was 

overcrowded by the trees around. Consequently, the missing 

building boundary was added to the building footprint vector 

layer. This layer was then overlaid on the classified LiDAR 

point cloud data to enhance classification accuracy, allowing 

outliers to be filtered out. 

 

 
 

Figure 12. The improvised building points classification 

overlaid with the building footprint vector layer. 

 

 

The 3D Level of Detail (LOD) building model was generated 

for each of the 227 clusters. These models closely resemble the 
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LOD Level 1 models produced by the LAS Building Multipatch 

tool in ArcGIS Pro. The mesh creation, performed using 

Open3D library’s alpha shape mesh modeling, provided a 

detailed representation of each building capturing their spatial 

geometry. 

 

 
 

Figure 13. 3D LOD Level-1 Mesh models 

 

 

 

5.  Conclusion 

5.1 Conclusion  

This study demonstrates the use of publicly accessible, 

moderate-resolution LiDAR point cloud data to produce low-

cost 3D Level of Detail (LOD) models for urban planning and 

development. Using the RandLA-Net model for building 

classification achieved a high accuracy of 96.9%, and the 

resulting LOD Level 1 mesh models closely resembled those 

generated by the LAS Building Multipatch Tool in ArcGIS Pro, 

However, some of the generated building models provided 

sparse areas for the mesh representation of certain buildings, 

indicating a limitation in mesh completeness this may impact 

applications requiring highly detailed LOD Level 1 models. 

While this method was applied to buildings in a residential 

environment, it can be adapted to other urban environments, 

though the level of detail may vary with different building types 

and areas. 

 

A key contribution of this research is the integration of 

the building footprint vector layer with LiDAR point cloud 

classification, providing an improvement to the classification 

and as a cross-validation step to refine building segment 

detection.  

 

5.2 Future Research 

Future research will focus on implementing the extraction 

workflow with higher-resolution LiDAR point cloud data to 

yield more detailed results. This enhancement is expected to 

improve mesh completeness and reduce sparse areas within 

building mesh models, addressing limitations. Additionally, 

future work could also expand to generate more detailed 

building models, such as LOD3 and LOD4 to capture even finer 

details of the building. 
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