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Abstract

Accurate 3D building reconstruction is essential for urban planning, disaster management, and environmental applications. However,
current methods often struggle to achieve geometric precision and topological consistency, particularly when when processing
satellite or aerial imagery. This paper presents a comprehensive workflow that addresses these challenges, enabling the generation of
multiple outputs—including digital surface models (DSMs), digital terrain models (DTMs), true-orthophotos, 2D building segments,
and vectorized 3D LoD-2 building models. Our approach leverages very high-resolution (VHR) imagery to derive precise DSM and
DTM data, which are used in conjunction with orthorectified imagery to accurately segment buildings and delineate roof planes. By
focusing on planar building components and employing robust vectorization techniques, our workflow ensures consistent 3D model
construction while avoiding the challenges of fine-detail extraction.Validated on diverse urban datasets, our method demonstrates
high accuracy, scalability, and potential to advance building reconstruction workflows in remote sensing, contributing significantly to
geospatial and environmental research.

1. Introduction

Building segmentation and modeling are critical for urban plan-
ning, real estate management, population estimation, disaster
response, and environmental monitoring. These tasks rely on
the accurate extraction of building information, which acts as
the foundation for critical applications such as city modeling,
infrastructure development, and emergency response planning.
The advent of high-resolution remote sensing data from space-
borne platforms like Pléiades, GeoEye-1, and WorldView, as
well as aircrafts and helicopters, has significantly enhanced the
precision and scalability of these processes.

Despite these advancements, building information extraction
from remote sensing imagery presents numerous challenges.
Variations in building size, shape, height, and function, cou-
pled with occlusions and shadow effects in complex urban en-
vironments, complicate accurate information extraction. Tradi-
tional methods for building information extraction have relied
on manual interpretations or semi-automated low-level image
processing techniques, providing initial solutions. These include
threshold-based approaches (Chen and Chen, 2009), region-
based (Karthick et al., 2014), edge-based (Canny, 1986; Chen et
al., 1987; Kanopoulos et al., 1988), classification-based methods
using feature extraction algorithms such as SIFT (Lowe, 1999),
SURF (Bay, 2006), and HOG (Dalal and Triggs, 2005). While
effective in specific contexts, these methods are time-consuming,
difficult to scale for large datasets and limited in generalizability.

In recent years, the emergence of deep learning has revolution-
ized the field of building information extraction. Convolutional
neural networks (CNNs) have set new standards by enabling
end-to-end semantic segmentation, which bypasses the need for
manual feature extraction. Multiple different neural networks
based on the fully convolutional network (FCN) (Long et al.,
2015), U-Net (Ronneberger et al., 2015), ResNet (He et al.,
2016) and DenseNet (Huang et al., 2017) architectures, as ex-
amples, demonstrated state-of-the-art performance in building
segmentation (Bittner et al., 2018; Schuegraf and Bittner, 2019;
Khan et al., 2020), leveraging high-resolution spatial features to
achieve pixel-wise classification with unprecedented accuracy.

Figure 1. 3D building model of the first (aerial imagery) test area
in Braunschweig, Tostmannplatz (Germany).

While semantic segmentation assigns class labels to each pixel,
instance segmentation goes further by distinguishing individ-
ual building structures, even in densely built areas. Mask R-
CNN (He et al., 2017) has set the standard for instance segmen-
tation, enabling precise delineation of individual buildings in re-
mote sensing imagery. Building on this, TernausNetV2 (Iglovikov
et al., 2018) proposed an encoder-decoder architecture with
skip connections, incorporating key modifications to support
both semantic and instance segmentation tasks. Building on
the foundational work of (Iglovikov et al., 2018), Schuegraf
et al. (2022) extended the concept of building instance seg-
mentation to focus on building section instance segmentation,
particularly addressing the challenges of identifying individual
roof tiles with varying heights or forms in complex structures.
This approach demonstrated that FCNs, such as SkipFuse-U-
DenseNet12, could effectively integrate RGB and digital surface
model (DSM) images to predict a three-class map comprising
background, building regions, and rooftop touching borders. To
refine these predictions, post-processing techniques like the wa-
tershed algorithm and morphological operations were employed,
bridging gaps between instances generated by neural networks
and improving segmentation accuracy. Expanding this line of
inquiry, Schuegraf et al. (2024b) explored the application of
building section instance segmentation for identifying individual
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buildings in both formal and informal settlements. Utilizing
a SkipFuse-UResNet34 model, their approach produced more
comprehensive building masks for Medellı́n, Colombia, outper-
forming conventional official data sources. Girard et al. (2021)
innovatively added a frame field learning (FFL) to the deep-
segmentation model to generate a vector field that encodes useful
boundary information alongside the corresponding segmenta-
tion mask. Zorzi and Fraundorfer (2023) propose Re:PolyWorld
that leverages both vertex features and the visual appearance of
edges. The edge-aware graph neural network (GNN) efficiently
predicts connections between vertex pairs forming rectangular
shapes for every building section instance.

In this paper, we present a workflow for extracting vectorized
models of building segments from aerial or space-borne imagery.
Our approach leverages stereo or multi-stereo imagery acquired
from very high-resolution (VHR) sensors with a ground sam-
pling distance (GSD) of 20 to 30 centimeters. From this data, a
dense DSM is derived, along with a digital terrain model (DTM)
that represents the ground surface exclusively. Using the DSM,
we generate a true-ortho-mosaic, which serves as a critical input
for further processing.

Unlike methods that rely on precise delineation of minute struc-
tural lines—which can be particularly challenging in satellite
imagery—our workflow focuses on spatial embeddings to detect
building segments and roof planes as primary components for
level of detail (LoD)-2 building models (Schuegraf et al., 2024a).
These planar elements are robustly extracted and serve as the
foundation for generating 3D building models. Furthermore, our
workflow produces multiple valuable outputs, including DSMs,
DTMs, and true-ortho-mosaics, which have wide-ranging appli-
cations in remote sensing, urban planning, and environmental
monitoring.

2. Methodology

In the first step of our workflow, a dense DSM is generated
using the semi-global matching (SGM) method developed at the
German Aerospace Center (DLR) by Krauß et al. (2013). The
process begins with multi- or stereo satellite or aerial images,
where bundle block adjustment is applied to refine the rational
polynomial coefficients (RPC), enhancing the sensor model and
enabling accurate stereo matching. Tie points across all input
images are detected using the scale-invariant feature transform
(SIFT) algorithm and refined to sub-pixel precision with local
least squares matching. Stereo pairs are processed with SGM,
and the resulting disparity maps are merged through a robust
integration method that incorporates area-based outlier filtering
to reject mismatches in occluded or unmatchable regions, such
as water bodies or cloud cover (d’Angelo and Reinartz, 2011).
Residual occluded areas are interpolated using nearby ground
height values, while larger voids caused by extensive cloud or
water coverage are filled with the Copernicus digital elevation
model (DEM) to ensure spatial completeness in the final DSM.
Fig. 2 shows the DSM derived from aerial imagery for the test-
area Braunschweig Tostmannplatz.

From the filled DSM, the DTM representing the bare ground
surface is extracted using a modified morphological filtering
approach, as outlined in Krauß et al. (2011). The normalized
digital elevation model (nDEM), which captures the height of
above-ground objects, is then obtained by subtracting the derived
DTM from the DSM. This step provides a detailed representation

Figure 2. Derived DSM for test-area Braunschweig
Tostmannplatz, 720× 630 m2.

of surface features such as vegetation canopy heights or building
structures, enabling further analyses of above-ground elements.

A true ortho mosaic is generated from the DSM using all avail-
able images of the area. Each image is orthorectified by applying
the sensor model (RPCs) to project every pixel onto the DSM.
For elevated objects, such as buildings, multiple intersections
typically occur—one on the object’s surface (e.g., the roof) and
another on the ground behind it. To address this, a visibility map
is computed to identify and exclude occluded regions in the ortho
image, such as projections onto hidden areas like roads obscured
by buildings. When multiple images are available, a median
merge is applied to combine them, leveraging the overlapping
data to fill occluded areas with content from other ortho images.
This approach also removes moving objects, provided there are
sufficient overlapping images—commonly the case with aerial
datasets—ensuring a seamless and artifact-free mosaic. As an
example the true-ortho-mosaic for the test area Braunschweig is
shown in fig. 3.

To segment buildings and identify their corresponding roof
planes, we employ advanced deep learning techniques that have
demonstrated state-of-the-art performance across a variety of
tasks. Specifically, we adopt an approach capable of simultane-
ously predicting multiple adjacent instances. One such method
is described by Neven et al. (2019), which predicts instance-
specific vectors pointing to the centers of objects, along with
seed points indicating instance centers and additional shape pa-
rameters. These outputs are processed in a shape-conditioned
clustering step to generate distinct instances of building sections
and roofs.

Fig. 4 shows the workflow of the implented method following
Schuegraf et al. (2024a) for deriving building segments from a
provided DSM and a fitting panchromatic image.

The detailled workflow of the preparation of building footprints
and seeds for the segmentation from the results of the FCN is
shown in Fig. 5.

Using these footprints, the segmentation map and the seed as
inputs for a watershed transformation gives the final building
segmentation as shown in fig. 6.
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Figure 3. True-ortho-mosaic for test-area Braunschweig
Tostmannplatz, 720× 630 m2.

Figure 4. Overview of the implemented method deriving building
segments from the DSM and the pan-image.

Figure 5. Detail of the workflow used for splitting building
segments.

Building on this, we follow the method described by Schuegraf et
al. (2023) to vectorize the obtained instances. Here, the instance
masks are transformed into polygons by tracing the edges of
each instance at the pixel level. These polygons serve as the
foundation for further analysis and processing of the building
roof planes.

In the final step, the instance polygons are simplified and rec-
tified using information from the true ortho-mosaic and the
nDEM. This refinement ensures geometric accuracy and align-

Figure 6. Final splitting of the footprints and the segmentation
map to building segments using the watershed transformation.

ment with the underlying data. Using the finalized simplified
polygons and height values extracted from the DSM, a detailed
three-dimensional vector model is generated for each building
segment. This process produces accurate and structured 3D
representations suitable for further analysis or integration into
geospatial applications.

3. Experiments

3.1 Data

During the training and validation phases, we utilize a World-
View 1 panchromatic image and a photogrammetric DSM of
Berlin, Germany, with dimensions of 30,733 × 45,999 pixels.
Publicly available data from the Berlin Senate1 serves as the
ground truth for building sections, roof planes, and building
heights.

Figure 7. DSM of a 700 m × 500 m section from the second test
area (from WorldView-3 satellite) in Lyon (France).

We use two separate datasets for evaluation, from World View 3
depicting Lyon city, France with a GSD of 0.3m and 3K aerial
data of Braunschweig city, Germany of a resolution of 0.2m.
For metric computation, we use public ground truth of both
Lyon2 and Braunschweig3 in vector format.

During training, we divide the data into non-overlapping patches,
each measuring 256 × 256 pixels. To enhance data diversity,
1 https://daten.berlin.de/tags/geodaten
2 https://data.grandlyon.com/
3 https://www.lgln.niedersachsen.de/
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Figure 8. True-Ortho-Image of the test area in Lyon (France).

random shifts of up to 256 pixels are applied horizontally and
vertically. For validation, patches of the same size are extracted
without overlap. During testing, 256 × 256 pixel patches are gen-
erated with an overlap of 128 pixels in both horizontal and verti-
cal directions. Predictions are made per patch, and a complete
map is constructed by averaging overlapping areas to ensure
smooth transitions between patches.

3.2 Implementation Details

The network parameters are initialized randomly, and the model
is trained using the Adam optimizer (Kingma and Ba, 2017)
with a learning rate of 0.0002 and momentum terms of 0.5 and
0.999. Training is performed over 300 epochs, with the learning
rate reduced by a factor of 0.1 after the 100th and 200th epochs.
A batch size is set to 8.

Figure 9. Extracted building segments of the test area in Lyon
(France).

4. Results and Discussion

We evaluate the model performance by assessing the vectorized
roof planes in 2D using the intersection over union (IoU) metric
as described by Schuegraf et al. (2024a). For each ground truth
polygon, the corresponding predicted polygon with the highest
IoU is selected, and the average IoU across all polygons is
calculated. Additionally, the accuracy of the rasterized predicted
LoD-2 model is assessed in 3D using root mean square error
(RMSE) and the median absolute deviation (MAD), which are
derived from per-pixel differences between the predicted model
and the ground truth. The results are summarized in table 1.

Figure 10. 3D building model of the test area in Lyon (France).

Table 1. Quantitative results for two test areas. The values for
Lyon city are taken from Schuegraf et al. (2024a). ↑ indicates that

higher values are superior, ↓ indicates that lower values
correspond to higher accuracy.

Test Area IoUgt
inst ↑ MAD [m] ↓ RMSE [m] ↓

Lyon 0.769 1.74 m 4.98 m
Braunschweig 0.762 0.31 m 1.64 m

Figs. 11 and 12 shows visually the results of the correctness
described by the IoU where white areas correspond to correctly
detected areas whereas green areas are false positives, i.e. de-
tected areas which are not existing in reference and red areas as
false negative, i.e. existing in referece but missing in results.

Figure 11. Results of test-area Lyon compared to OSM building
mask, 700× 500 m2 section of Lyon (see fig. 10).

5. Conclusions and Outlook

In the presented work we describe a novel method to derive
three-dimensional models of building segments directly from a
few airborne or space-borne very high resolution (multi-)stereo
images. After pre-processing and generation of a DSM, a DTM
and the true-ortho-mosaic the extraction of building segment
instances is performed using a deep-learning approach. Finally,
the results are simplified and a 3D model of these segments is
derived. Since the method is based only on at least two stereo
images it allows the modelling of urban areas from any place on
earth.
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Figure 12. Results of test-area Braunschweig compared to OSM
building mask, 720× 630 m2 section of Braunschweig (see

fig. 1).

References

Bay, H., 2006. Surf: Speeded up robust features. Computer
Vision—ECCV.

Bittner, K., Adam, F., Cui, S., Körner, M., Reinartz, P., 2018.
Building footprint extraction from VHR remote sensing images
combined with normalized DSMs using fused fully convolu-
tional networks. IEEE J. of Select. Topics in Appl. Earth Observ.s
and Remote Sens., 11(8), 2615–2629.

Canny, J., 1986. A computational approach to edge detection.
IEEE Transactions on pattern analysis and machine intelligence,
679–698.

Chen, J.-S., Huertas, A., Medioni, G., 1987. Fast convolution
with Laplacian-of-Gaussian masks. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 584–590.

Chen, Y. B., Chen, O. T., 2009. Image segmentation method
using thresholds automatically determined from picture contents.
Eurasip journal on image and video processing, 2009, 1–15.

Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for
human detection. 2005 IEEE computer society conference on
computer vision and pattern recognition (CVPR’05), 1, Ieee,
886–893.

d’Angelo, P., Reinartz, P., 2011. Semiglobal Matching Re-
sults on the ISPRS Stereo Matching Benchmark. International
Archives of Photogrammetry and Remote Sensing, XXXVIII-
4/W19, 79–84.

Girard, N., Smirnov, D., Solomon, J., Tarabalka, Y., 2021. Polyg-
onal building extraction by frame field learning. Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 5891–5900.

He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask r-cnn.
Proceedings of the IEEE international conference on computer
vision, 2961–2969.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learn-
ing for Image Recognition. CVPR, 770–778.

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K. Q., 2017.
Densely connected convolutional networks. 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
2261–2269.

Iglovikov, V., Seferbekov, S., Buslaev, A., Shvets, A., 2018.
Ternausnetv2: Fully convolutional network for instance segmen-
tation. CVPRW, 233–237.

Kanopoulos, N., Vasanthavada, N., Baker, R. L., 1988. Design
of an image edge detection filter using the Sobel operator. IEEE
Journal of solid-state circuits, 23(2), 358–367.

Karthick, S., Sathiyasekar, K., Puraneeswari, A., 2014. A survey
based on region based segmentation. International Journal of
Engineering Trends and Technology, 7(3), 143–147.

Khan, A., Sohail, A., Zahoora, U., Qureshi, A., 2020. A survey
of the recent architectures of deep convolutional neural networks.
Artificial Intell. Rev., 1 - 62.

Kingma, D., Ba, J., 2017. Adam: A Method for Stochastic
Optimization.

Krauß, T., Arefi, H., Reinartz, P., 2011. Evaluation of selected
methods for extracting digital terrain models from satellite born
digital surface models in urban areas.

Krauß, T., d’Angelo, P., Schneider, M., Gstaiger, V., 2013. The
fully automatic optical Processing System CATENA at DLR.
ISPRS Journal of Photogrammetry and Remote Sensing, 40-W1,
177–181.

Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional
networks for semantic segmentation. CVPR, 3431–3440.

Lowe, D. G., 1999. Object recognition from local scale-invariant
features. Proceedings of the seventh IEEE international confer-
ence on computer vision, 2, Ieee, 1150–1157.

Neven, D., Brabandere, B. D., Proesmans, M., Van Gool, L.,
2019. Instance segmentation by jointly optimizing spatial embed-
dings and clustering bandwidth. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 8829–8837.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolu-
tional networks for biomedical image segmentation. Medical
image computing and computer-assisted intervention–MICCAI
2015: 18th international conference, Munich, Germany, October
5-9, 2015, proceedings, part III 18, Springer, 234–241.

Schuegraf, P., Bittner, K., 2019. Automatic Building Footprint
Extraction from Multi-Resolution Remote Sensing Images Using
a Hybrid FCN. ISPRS Int. J. of Geo-Inform., 8(4).

Schuegraf, P., Gui, S., Qin, R., Fraundorfer, F., Bittner, K., 2024a.
Sat2building: Lod-2 Building Reconstruction from Satellite
Imagery using Spatial Embeddings. Submitted to ISPRS Journal
of Photogrammetry and Remote Sensing. to be appeared.

Schuegraf, P., Schnell, J., Henry, C., Bittner, K., 2022. Building
section instance segmentation with combined classical and deep
learning methods. ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 407–414.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-6-2025 
ISPRS, EARSeL & DGPF Joint Istanbul Workshop “Topographic Mapping from Space” dedicated to Dr. Karsten Jacobsen’s 80th Birthday 

29–31 January 2025, Istanbul, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-177-2025 | © Author(s) 2025. CC BY 4.0 License.

 
181



Schuegraf, P., Stiller, D., Tian, J., Stark, T., Wurm, M.,
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