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Abstract 

 

Highly accurate manually-generated labels in aerial and satellite images are used for the training of deep learning-based segmentation 

algorithms and should be available in large numbers and cover many different scenarios to increase the accuracy and generalization 

capability of the underlying models. Existing labels can be efficiently reused by photogrammetric projections onto additional 

overlapping aerial or satellite images, enabling great variability in the appearance of the scenes based on differences in viewing angles 

and environmental conditions. In this work, we investigate whether the additionally generated training data can effectively lead to an 

increase in prediction accuracy. To this end, we collected aerial images overlapping with the already annotated Traffic Infrastructure 

and Surroundings (TIAS) dataset, taken from a large-scale historical database spanning 2011 to 2024, and generated new training data 

by means of photogrammetric projections of existing labels onto these additional images. Training a Dense-U-Net model on the whole 

TIAS dataset or a part therefore, with and without additional projected labels, showed that this technique could be beneficial to improve 

the performance of a model if only a small amount of annotations is available comparatively to a large amount of overlapping aerial 

images. 

 

 

1. Introduction 

 

Deep Learning (DL)-based semantic segmentation algorithms 

are crucial for generating thematic maps that support various 

applications such as urban planning, environmental monitoring, 

disaster management, and traffic analysis. These models rely on 

aerial images annotated with highly-accurate labels for training 

and evaluation. However, the process of manually annotating 

large-scale datasets is time-consuming and resource-intensive, 

limiting scalability and efficiency. As shown in (Zlateski et al., 

2018), the most important factor for creating adequate training 

datasets is to allocate manpower to either annotate a large amount 

of data in a coarse manner, or a small amount of data in an 

accurate manner. In the end, the total amount of effort spent on a 

labeling task directly determines the maximum performance 

obtainable from a model, indicating that scaling up a dataset even 

with imperfect labels can be beneficial. This highlights the need 

for innovative approaches to reduce manual efforts, while 

maintaining or improving annotation accuracy, ultimately 

leading to more accurate and widely applicable segmentation 

models. 

 

Several existing approaches have attempted to address the 

challenge of data generation with little to no manual labeling. 

One such approach, described in (Tian et al., 2023), involves 

projecting curbstone positions from a database onto various aerial 

images to generate training data. In (Chiciudean et al., 2024), the 

authors propose a data augmentation technique for UAV data 

where they propagate manually labeled images into a 3D mesh 

and generate images with new views. In addition, (Toker et al., 

2024) explores the use of generative image diffusion to generate 

high-quality and diverse image labels for satellite imagery, 

achieving notable improvements in semantic segmentation 

performance. 

 

In this paper, we investigate the possibility of reusing existing 

manually-generated annotations in aerial images through pro- 

Figure 1. Coverage of our aerial image database (yellow) and 

labeled image footprints (pink) over Brunswick, Germany. 

 

jections onto other overlapping aerial images from a large 

database. The main benefit is the reduction of the manual 

workload while increasing the variability in the appearance of the 

scenes. The DL-based algorithms are also expected to be able to 

train to become more accurate and robust, as the projected labels 

bring an extended diversity of visual appearance and 

environmental conditions for the individual object classes, such 

as different lighting situations, different brightness levels, surface 

conditions such as rain, resolution levels, etc. for the same scenes. 

At the same time, inaccuracies arise during the projection of the 

annotations, which can be roughly divided into geometric and 

semantic errors. Geometric errors are caused by inaccuracies in 

the georeferencing of the aerial images, by errors in the elevation 

model, and by shading. Semantic errors are mainly caused by the 

temporal distance between the aerial images and the resulting 

projected labels, which may as such no longer constitute an exact 

ground truth. 
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In the following sections, we will show ways of how to minimize 

these errors and investigate the benefits of the projected label for 

the quality of the predictions of DL-based segmentation methods 

through an experimental study. In order to do this, we will use 

the generated labels in combination with an existing dataset to 

train a neural network for the task of traffic area segmentation. 

 

2. Methodology 

 

In this section, we first provide an overview of our aerial image 

database and the Traffic Infrastructure and Surroundings (TIAS) 

dataset. Both form the basis of our study by providing a large 

amount of image data and high fidelity labels. We then discuss 

the generation of additional training data by projecting existing 

labels onto corresponding aerial images. In addition, we highlight 

the problems that arise during this process and offer solutions to 

overcome them. Finally, we present our neural network for 

segmenting traffic areas, with which we study the benefits of 

adding the images with projected labels to the training set. 

 

2.1 Aerial Image Database 

 

For the projection of existing labels onto new images, we rely on 

a unique database of 888,346 aerial images acquired between 

2011 and 2024 across Central Europe. The Ground Sampling 

Distance (GSD) of these images range from 2 cm/pix to 30 

cm/pix, covering different acquisition conditions, viewing 

angles, times of day and year, and camera settings. All images 

were captured using the 3K (Kurz et al., 2012) and 4K (Kurz et 

al., 2014) camera systems of the German Aerospace Center 

(DLR), with direct measurement of image positions and altitudes 

by a GNSS/inertial system. Figure 1 shows the image footprints 

over the city of Brunswick, overlaid with labeled aerial images. 

 

2.2 The TIAS Dataset 

 

The TIAS dataset (Merkle et al., 2024) is a novel dataset 

consisting of 57 aerial images with high-fidelity labels of traffic 

areas. This dataset accurately reflects urban scenarios from a 

transportation perspective by providing detailed, fine-grained 
labels. The dataset supports the reconstruction of traffic networks 

for motorized vehicles, bicycles, pedestrians, and rail traffic, 

enabling applications such as hazardous area identification (e.g., 

for automated vehicle and road safety analysis) and traffic area 

distribution analysis. 

 

 

 

 
Figure 3. Left: Georeferenced labels in the source image, the 

yellow frame is the target image extent; Right: Labels projected 

onto the target image. Neither image is ortho-projected. 

 

The images in the TIAS dataset were acquired over the German 

cities Berlin, Brunswick, Cologne, Garmisch-Partenkirchen, 

Hamburg, Landsberg, Kaufbeuren, Munich, Munster, 

Oldenburg, and Wolfenbuttel. Of the 57 images, 51 are from the 

aerial image database with GSD values ranging from 6–14 

cm/pix, while the remaining 6 are ortho-projected images with a 

GSD of 10 cm/pix. Individual image sizes range from 17 to 22 

Mpx. 

 

The traffic areas within TIAS are classified into nine classes: 

parking area, road, access way, footway, bikeway, railroad bed, 

keep-out area, road shoulder, and water. To preserve the 

topological nature of the transportation network, attributes 

indicate whether the areas are: (1) shared by two or more traffic 

participants, and which they are, (2) elevated like bridges, (3) 

under construction, and (4) difficult to recognize for the 

annotator. Additionally, the attribute “unsure” provides a 

confidence with which an object of a given class is annotated. 

Figure 2 shows five sample areas with the corresponding labels 

of the TIAS dataset. A “background” class is assigned to all areas 

not included in the above such as trees and buildings, and more 

generally to all areas belonging to one of the 9 classes not visible 
in the images due to occlusion. 

 
Figure 2. Example areas from the TIAS dataset with overlaid labels. Category colors are: ∎ parking area, ∎ road, ∎ access way, 

∎ footway, ∎ bikeway, ∎ railroad bed, ∎ keep-out area, ∎ road shoulder, and ∎ water. 
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For all experiments performed in this paper, we only used three 

classes of the TIAS dataset: road, access way, and parking area. 

In addition, we extended the parking area class to include all 

areas with the attribute “shared with parking area” such as roads 

shared with parking area, typically used to annotate roadside 

parking areas lacking appropriate lane markings. 

 

2.3 Photogrammetric Projection 

 

The projection of the annotations is based on photogrammetric 

principles. The annotations are projected from a source aerial 

image onto a Digital Terrain Model (DTM) and projected back 

onto a target aerial image (see Figure 3). We use a highprecision 

laser DTM for the projection, in which buildings and other 

elevations such as trees are missing. Alternatively, we could have 

used a high-definition laser surface model, however, firstly, it is 

not available across the country and, secondly, height errors can 

still occur, especially around trees and buildings. 

Using this method, the labels can be projected onto many 

overlapping aerial images from different viewing angles and 

scales. However, this also results in many errors, the 

minimization of which is described in the following sections. We 

would like to emphasize here that the proposed workflow also 

works for already ortho-projected labels. Nevertheless, for the 

sake of simplicity, we would like to limit the scope of the present 

study to projections from one non-orthoprojected image to 

another non-orthoprojected image. Thus, we excluded the 6 

already orthoprojected labeled images from the projection 

process. 

 

2.4 Projection Errors 

 

Table 1 outlines the sources of errors that occur when projecting 

labels from a source image to a target image, along with the 
improvement methods tested in this paper. The proposed 

improvements are fully automated, eliminating the need for 

timeconsuming manual correction, and are described in the 

following sections. While this list covers common errors, it is not 

complete, and not all errors can be minimized. For example, in 

cases where there are large time gaps between aerial images, 

additional errors may occur, such as the presence of parked 

vehicles. Figure 4 shows examples of the errors in Table 1. 

 

Type Error source Improvements tested 

Geometric Displacement due to 
errors in georef./DTM 

Bundle adjustment, 
use of high-res DTM 

Geometric Errors due to 
occlusions in source 

and target images 

building and tree 
segmentation and 

assignment of areas 

to background 

Table 1. Classification of the errors identified in the projected 

labels and corresponding counter-measures. 

 

A major source of error is the displacement of projected label 

boundaries, caused by geometric inaccuracies in both the 

georeferencing of the source and target images, as well as the 

terrain model. Since the database consists of aerial images with 

direct georeferencing measurements, their accuracy is often 

insufficient for pixel-accurate projection. To address this issue, 

we propose to improve the georeferencing of all aerial images 

using bundle block adjustment, as described in Section 2.5. 

 

There are two additional sources of geometric error. First, areas 

that are visible in the target image but not in the source image, 

due to occlusions such as trees and buildings, or that are outside 

the image boundary. Second, areas that are visible in the source 

image but occluded in the target image. In both cases, the labels 

in the source image are not aligned with the labels in the target 

image. 

 

 
Figure 6. Example of image pairs where it is difficult to find 

accurate tie points due to time offset, season, vehicles, shadows, 

viewing direction, and image scales. 

 
 (a) (b) (c) 

Figure 4. Visualization of different error types in the projected labels including the displacements of projected labels (a), missing 

parts due to different viewing angles and occlusions (b), and errors due to temporal offset (c). 

 

 
 (a) (b) (c) 

Figure 5. Error elimination through automatic detection using tree and building segmentation methods: (a) and (d) highlight areas 

where labels are occluded by trees and buildings, while (f) shows the labels after automatic removal of these effects. 
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In the first case, automatic correction is challenging because there 

are no source labels for these areas (see Figure 4(b)), so we treat 

them as label noise. In the second case, automatic correction is 

possible. In this work, we apply two deep learning methods (see 

Section 2.6) to detect tree and building boundaries in the target 

images and adjust the labels for the occluded areas accordingly, 

as shown in Figure 5. 

 

To simplify further evaluation and to reduce other error sources, 

we reduce the number of classes and attributes to “roads”, 

“access ways” and “parking areas”, whereby the original class 

”parking area” and the attribute ”shared with parking area” are 

combined for the latter. 

 

2.5 Reducing the Geometrical Displacement 

 

All aerial images in the database were acquired with the 3K/4k 

camera system with varying flight altitudes, focal lengths, camera 

models and installation configurations. The external orientation 

of the aerial images was always measured using a GNSS/inertial 

system, the accuracy of which, however, depends on various 

conditions, including the availability of correction signals. 

 

In order to reduce the geometric displacements of all overlapping 

aerial images at one test site as far as possible, bundle block 

adjustment is necessary. A prerequisite for an automatic process 

is the automatic generation of tie points with e.g., SIFT or 

BRISK. Furthermore, during the bundle adjustment the 

parameters of the internal orientation must also be estimated for 

each camera and day of acquisition during the process. 

 

Figure 6 shows a pair of images where it is difficult to find 

accurate tie points using standard methods. To solve the problem, 

we could in future use deep-learning based matching methods 

like superglue (Sarlin et al., 2019), but in this paper we have only 

used the conventional methods described above. We introduced 

the height of the terrain model as additional loose observations in 

the bundle adjustment, which helps to determine the focal lengths 

of the cameras and further increases the final accuracy. 

 

2.6 Reducing the Errors due to Occlusions 

 

Areas labeled in the source image and projected onto the target 

image may be assigned to trees and buildings because the height 

information is not accurate enough or is missing in terrain 

models. As described above, the label errors due to occlusion 

caused by elevated objects can be reduced e.g. by detecting trees 

and buildings in the target image. We use a deep learning 

approach to detect trees and buildings (Yuan et al., 2023) which 

is based on a Swin Transformer (Liu et al., 2021) trained on the 

ISPRS Potsdam benchmark dataset. We apply the trained model 

on all images and assign all detected tree and building areas in 

the target images to the background class (see Figure 5(c)). 

 

 
Figure 7. High-level overview of the model and training 

process. 

 

2.7 Deep Learning-Based Segmentation of Traffic Areas 

 

To extract the three traffic area classes ”roads”, ”parking areas”, 

and ”access ways” from aerial images, we used a Dense-U-

Net121 model. This architecture is based on the established U-

Net architecture as detailed in (Henry et al., 2021a) and 

incorporates the DenseNet-121 backbone in both the encoder and 

decoder, chosen for its ability to balance high accuracy with 

computational efficiency. Contrary to most other adaptations, it 

adheres closely to the original concept of U-Net, whereby the 

decoder is a mirror of the encoder with around as many layers 

and parameters. This way, it learns to extract more fine-grained 

details thanks to the low-resolution feature maps and the higher 

resolution skip-connections. Previous results showed that the 

resulting masks are generally smooth, homogeneous, and match 

object borders precisely (Henry et al., 2021b). A high-level 

overview of the model is provided in Figure 7. 

 

3. Experiment 

 

3.1 Generated Training Data 

 

In order to generate additional training data, the footprints of the 

51 non-ortho-projected labeled aerial images from the TIAS 

dataset are intersected with the images from our aerial image 

database. This resulted in 12433 aerial images, which have an 

overlap of at least 70% with the labeled TIAS images. To 

simplify matters, the number of projections was further reduced 

so that in the end five labeled images in two cities were projected 

onto 204 other overlapping images. When filtering the images, 

care was taken to ensure that the remaining images exhibit great 
variability in terms of the appearance of the individual classes, 

e.g. different days, positions of the sun, viewing directions. 

 

Figure 8. Positions of the images used for the ● training, 

● validation and ● test sets of the deep-learning algorithms. An 

extra five images are added to the training set, which are used 

for label generation via projection, shown as ●. 

 

Before filtering the images, a bundle block adjustment was 

performed for the overlapping images on the 51 TIAS positions 

in order to increase the georeferencing accuracy. As described 

above, it was not possible with standard algorithms to 

automatically generate tie points for some individual image pairs 

due to the large differences in scale, rotations and changes in 

viewing direction. Second, to further reduce processing time, a 

tree and building segmentation model was applied only on these 

images (see Section 2.5), where bundle adjustment was 

successful. The improved exterior and interior orientation was 

used together with the DTM to generate the 204 projected labels. 

Additionally, 204 segmentation maps for trees and buildings 

were generated with the algorithm from Section 2.6. 
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Experiment # TIAS Projected Average [%] Class-wise IoU [%] 
# training images labels? IoU Precision Recall Roads Parking areas Access ways 

1 45 – 72.98 84.88 82.41 80.96 61.49 56.62 
2 45 ✓ 72.02 85.94 80.37 80.80 59.95 54.76 
3 21 – 65.76 83.84 73.96 73.56 54.39 43.86 

4 21 ✓ 67.11 84.72 75.02 73.66 56.01 47.36 

Table 2. Quantitative results comparison between the models from all four experiments on the test set of the TIAS dataset. 

 

If we overlay the projected labels with the target image, we can 

qualitatively estimate the accuracy of the georeferencing. In most 

cases, the positional accuracy of the projected labels is accurate 

to within a few pixels. There are only exceptions if, for example, 

the scales between the source and target images are very different 

or the height changes due to differing road surfaces. 

 

A prediction probability threshold of 40% was applied to the tree 

and building segmentation maps. The projected labels were then 

overlaid with the tree and building classes and were set to 

”background” wherever tree or building pixels were detected. 

 

3.2 Network Training 

 

In order to investigate the influence of the projected labels on the 

accuracy of our Dense-U-Net model, we train the network on 

different extensions of the TIAS dataset, each exposing the model 

to different amounts of data and variety. Specifically, we perform 

the following experiments: 

 

 Experiment #1: Baseline training on the TIAS dataset 

without the projected labels. 

 Experiment #2: Training on the TIAS dataset with the 

projected labels for 5 chosen images. It constitutes the most 

optimistic scenarios, where a large amount of prior annotated 

data is available, with projected labels acting as convenient 

extra data. 

 Experiment #3: Training on only 50% of the TIAS dataset, 

including all 5 images with associated projected labels. This 

constitutes a less optimistic training scenario, where less 

prior annotated data is available and the projected labels can 

make a significant difference. 

 Experiment #4: Training on only 50% of the TIAS dataset, 

including all 5 images used for label projection, but without 

the projected labeled images. 

 

The TIAS dataset is composed of 57 images, split into 45 

training, 6 validation images, and 6 test images. While the 

training images span cities all across Germany, we chose 

validation and test images from clearly distinct regions in 

Germany to fairly evaluate the generalization capability of the 

models. The validation set therefore features the cities of 

Kaufbeuren, Landsberg am Lech and Cologne, and the test set 

features the cities of Oldenburg, Münster, Wolfsbüttel, Pasing-

Obermenzing and Garmisch-Partenkirchen. In addition, images 

of pure background class, mostly fields and forests, taken from 

the area of Dortmund, Germany, are added to the training set only 

to reinforce the precision of the model, together with the 

corresponding empty label images. In total, the model sees the 

following amount of valid data pixels (i.e. excluding background 

no-data values in the projected labels), expressed in Megapixels 

(MP): 

 

 Training set with Dortmund patches: 1415 MP 

 Projected images alone: 2685 MP 

 Training set with Dortmund patches and projected labels: 

4100 MP 

 Validation set: 123 MP 

 Test set: 126 MP 

 

The model is trained over 50 epochs, i.e. the entirety of the data 

in the training set, using a cross-entropy loss, an AdamW 

optimizer, and a ”reduce on plateau” learning rate schedule 

starting at 4e − 4 and decaying by a factor of 0.90 after two 

epochs without any observed improvement greater than 0.10% in 

mean IoU score between the classes road, access way and parking 

area on the validation set. The images are sliced into 512×512 px 

non-overlapping, shuffled patches during training, and into 

2528×2528 px patches during evaluation. 

 

3.3 Results & Discussion 

 

We report the results of each experiment on the test set in Table 

2 and in Figure 9. We measured the performance in terms of mean 

IoU, precision and recall across all foreground classes (i.e. 

excluding the background class), as well as the binary IoU for 

each individual class. Our first set of experiments concerns the 

baseline model (#1) and its counterpart trained with the 

additional images with projected labels (#2). The baseline model 

actually outperformed the latter by a significant margin, around 

1% mean IoU, a finding consistent across all classes, contrary to 

our initial expectations that it would be the other way around. 

This may be explained by the fact that with 45 training images, 

the TIAS dataset is already capable of providing good 

generalization capacities to other regions to a model, and that 

additional, noisy labels over the same training region leads not 

only to reduced benefits, but also to some degree of confusion. 

This is further confirmed by the increased precision score (+1%) 

at the cost of a reduced recall (-2%), showing that the noisy 

projected labels have caused the model to become more 

conservative in its predictions. 

 

To reinforce this hypothesis, we observe the reverse trend in our 

second set of experiments, where one model is trained using only 

half of the TIAS training set (#3), while the other model has 

access to the projected data as well (#4). It appears that with less 

training data at its disposal, the third model struggles to attain 

results as high as the first model, and therefore benefits more 

from extra data, in the form of the projected labels: the fourth 

model indeed achieves a 1.6% increase in mean IoU, 0.9% in 

precision and 1.0% in recall. And whereas the performance on 

roads alone barely increases (0.1% IoU), the parking areas and 

especially the access ways see a large boost to their accuracy, 

with +1.7% and +2.5% IoU, respectively. 

 

The qualitative comparison in Figure 9 confirms the quantitative 

results and shows that, overall, we achieve the best predictions 

with our baseline model #1, although model #2 achieves quite 

similar results. Each of these two models has advantages over the 

other in some areas and disadvantages in others, especially in 

terms of completeness. On the other hand, if we compare the 

results of models #3 and #4, we can see greater differences 

between the performance of the models. We can see a great 

improvement in the quality of the predictions when using the 

projected labels (#4). The road network is more complete and 

many more parking areas are also correctly classified. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-6-2025 
ISPRS, EARSeL & DGPF Joint Istanbul Workshop “Topographic Mapping from Space” dedicated to Dr. Karsten Jacobsen’s 80th Birthday 

29–31 January 2025, Istanbul, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-189-2025 | © Author(s) 2025. CC BY 4.0 License.

 
193



 
     (a) aerial image          (b) ground truth         (c) experiment #1 (d) experiment #2      (e) experiment #3        (f) experiment #4 

Figure 9. Qualitative comparison between the models from all four experiments on the test set of the TIAS dataset. Category colors 

are: ∎ parking area, ∎ road, and ∎ access way. 

 

Our observations on the second set of experiments (#3-4) indicate 

that for smaller datasets, the use of projected labels could be an 

alternative way to increase the dataset size, and thus the quality 

of the predictions, without having to manually label more images. 

Furthermore, the results for our first set of experiments (#1-2) 

show that the TIAS dataset is suitable for training generalizable 

models for segmenting roads, parking areas and access ways for 

many urbanized regions in Germany and most likely in other 

areas with similarly looking cities. 

 

4 Conclusions & Future Work 

 

In this paper, we investigated the possibility of reusing existing 

manually-generated annotations in aerial images through 

projections onto additional aerial images from a large database. 

These databases, often collected during operational scenarios, 

represent real-world conditions but are typically underutilized 

due to the challenges of manual or semi-automatic labeling. By 

training on an existing annotated dataset, completed by 

projecting existing labels onto additional aerial images, we have 

demonstrated that our label generation approach effectively 

leverages large existing databases to improve the performance of 

segmentation algorithms. Our results show that this approach 

improves performance when the labeled training dataset is 

limited, reducing the reliance on extensive manual labeling 

efforts and underscoring its potential for resource-efficient 

dataset augmentation. 

 

While the label projection method introduces some errors, many 

of these can be automatically mitigated. However, certain 

discrepancies, such as those caused by temporal inconsistencies 

such as moving vehicles, remain challenging and can be treated 

as label noise. These problems are particularly pronounced in 

sensitive classes such as parking lots, where the presence of 

moving objects can significantly distort the shape of the 

annotated regions. 

 

In addition, the increased diversity achieved by projecting labels 

onto images captured under different conditions, such as different 

sensors, times, and environments, can improve model 

regularization. This diversity can help to make the trained models 

more robust and generalizable for real-world applications. 

Compared to synthetic datasets, the extended datasets generated 

by our approach can offer advantages by avoiding the domain 

gap challenges that often arise when transferring models trained 

on synthetic data to real-world scenarios. 
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