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Abstract

The evolution of airborne mapping witnesses the introduction of hybrid lidar-camera systems to enhance data collection, i.e. to
obtain simultaneously high-density point-cloud and texture. Yet, the common adjustment of both optical data streams is a non-
trivial problem due to challenges associated with the different influences of errors affecting their mapping accuracy including
those coming from navigation sensors. Stemming from a special form of graph-based optimization, the dynamic networks allow
rigorous modeling of spatio-temporal constraints and thus provide the common framework for optimizing original observations
from inertial systems with those coming from optical sensors. In this work, we propose a cross-domain observation model that
leverages pixel-to-point correspondences as links between imagery and lidar returns. First, we describe how the existence of
such correspondences can be introduced into optimizations. Second, we employ a reference dataset to emulate a set of precise
pixel-to-point correspondences to assess its prospective impact on the common (rather than cascade) optimization. We report the
improvement in the estimated trajectory attitude error with lower quality IMU and thus the point-cloud registration. Finally, we
study whether such correspondences could be contained from freely available deep learning networks with the desired accuracy and
quality. We conclude that although the introduction of such camera-to-lidar constraints has significant potential, none of the studied
machine learning networks can fulfill the requirement on correspondence detection in terms of quality.

1. Introduction

Fusing images (2D domain) with point-clouds (3D domain) has
become beneficial in aerial applications, e.g. in monitoring and
change detection, due to the complementarity of these two mod-
alities (Pöppl et al., 2023). For precise 3D-reconstruction and
modeling, aerial photogrammetry is susceptible to vertical off-
sets, while Airborne Laser Scanning (ALS) is weaker in the
horizontal direction as a function of altitude due to direct geo-
referencing (Glennie, 2007). The evolution of airborne map-
ping witnesses the introduction of hybrid high-quality camera-
laser systems to enhance data collection either closer to the
ground with drones (Vallet et al., 2020) or from higher altitudes
with aircrafts (CityMapper - Leica Geosystems, 2024), for an
accurate, high-density and textured final point-cloud.

1.1 Image-Lidar fusion

The common adjustment of the two datasets (2D and 3D) is
an active research area due to partially the same input of nav-
igation sensors, yet traditionally separate optimizations. For
instance, many challenges associated with the inertial sensors
onboard, such as the flight geometry configuration, (e.g. cor-
ridor mapping) can impact the co-registration of lidar and im-
ages. In this context, the use of spatio-temporal constraints
in a common optimization has proven to reduce the influences
of these error sources, as shown e.g. in (Cucci et al., 2017)
with image-to-image (single-domain, 2D), in (Brun et al., 2022)
and (Pöppl et al., 2024) with lidar-to-lidar (single-domain, 3D)
and in (Mouzakidou et al., 2024) with both 2D and 3D single-
domain constraints, alongside raw inertial and GNSS data in
the Dynamic Network (DN) adjustment (Colomina et al., 2004,
Cucci and Skaloud, 2019). However, these approaches rely ex-
clusively on single-domain optical constraints either separately
or combined.

The continuous development of deep learning has shown its po-
tential to extract cross-domain image-to-lidar constraints cre-
ating links between pixels on the imagery and 3D points on
the point-cloud. This approach may unlock the new potential
of fusing active and passive optical sensors via direct pixel-to-
point correspondences, as opposed to the current cascade fusion
based on intermediate products (Glira et al., 2019, Hussnain
et al., 2021), e.g. point-clouds from dense image matching to
lidar, which is sub-optimal unless all correlations are correctly
considered. The current deep learning architectures that extract
pixel-to-point correspondences are primarily designed for re-
gistration tasks (Feng et al., 2019, Pham et al., 2020, Ren et
al., 2023, Yao et al., 2024) with certain geographic localization
nodes (Li et al., 2023a) and they are mainly tested on terrestrial
datasets. More details on this aspect are presented in Sec. 3.
We thus observe a research gap in techniques that leverage the
extracted 2D-3D correspondences for trajectory optimization,
which constitutes the key motivation of this research.

1.2 Contributions

In this work, we first describe how a new cross-domain, i.e.
pixel-to-point, observation model can be used as spatial con-
straint in a graph-based optimization algorithm, as described in
(Colomina et al., 2004), (Cucci et al., 2017), (Brun et al., 2022)
or (Pöppl et al., 2024) together with raw inertial and GNSS ob-
servations. In Sec. 2, we demonstrate how this constraint links
the original optical sensor observations, i.e. pixels on the image
plane with laser vectors from the lidar sensor. In Sec. 3, we re-
visit the current state-of-the-art (SOTA) deep learning architec-
tures for extracting direct pixel-to-point correspondences and
categorize them per type of approach and architecture used. Us-
ing emulated pixel-to-point correspondences (Sec. 4.2), we as-
sess the impact of the new type of optical constraints on traject-
ory determination and point-cloud geo-referencing (Sec. 5.1).
Finally, we evaluate on a controlled aerial dataset the SOTA
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deep learning architectures that are open source in terms of code
and pre-trained network weights (Sec. 5.2). The availability of
a ground-truth dataset with centimeter level accuracy allows us
to quantify the reliability of the extracted correspondences.

2. Pixel-to-point constraint in sensor fusion

This section describes the observation model (spatial constraint
between a pixel on the imagery and a 3D point on the point-
cloud) and its integration into the existing sensor fusion work-
flow. The model presumes that pixel-to-point correspondences
can be extracted with some uncertainty to constrain trajectory
poses (translation and rotation) and system parameters. Sub-
sequently, it is introduced as a spatial constraint in DN.

2.1 Observation model

Let us assume that a 2D-3D correspondence can be somewhat
established (e.g. via one of the techniques described in Sec. 3)
between a 2D pixel p and a 3D lidar point P . The distorted
image coordinates of pixel p in the image frame ci (here using
the symbol c-camera for simplification) captured at time ti are
ℓci(p) = [xd, yd]

T , in pixel units. The lidar point P acquired
at time tj from the lidar sensors is projected on an image and
thus expressed in the camera frame ci as pci(lj). The notation
lj corresponds to the lidar sensor pose at the given timestamp.
Given that p and P are homologous points, we can formulate
the following condition in the 2D space (Fig. 1 - element 1):

ℓci(p) − pci(lj) = 0 + vcl (1)

where vcl is a [2× 1] vector of zero mean Gaussian noise rep-
resenting the re-projection residuals in pixels. In the follow-
ing, we replace 0 with ℓcl since it comprises a so-called zero-
observation edge, or a pseudo-observation in the network ter-
minology, corresponding to no actual sensor measurement. We
also swap two sides of Eq. 1 to be consistent with the other DN-
observation models summarized in (Mouzakidou et al., 2024).

Considering the collinearity condition for the reprojected lidar
point pci(lj) and using the homogeneous coordinates formalism,
Eq. 1 can be written as (Fig. 1 - element 2):

ℓcl + vcl = ℓci(p) − Ξ

[
π
[
KΠ̃

[
Γ̃m
b(ti)

Γb
c

]T
Pm
(lj)

]]
(2)

where, function Ξ(·) models the lens distortions coefficients,
that relate distorted and undistorted image coordinates, e.g. the
Brown-Conrady distortion model (Brown, 1971), π(·) is the
projection function1, K represents the [3 × 3] camera matrix2

and Π̃ is an auxiliary matrix that handles the homogeneous
coordinates3. Term Γ̃m

b(ti)
4 refers to the pose of the body (b)

frame (usually represented by the internal axes of the inertial

1 π : R3 → R2 :

XY
Z

 → 1
Z

[
X
Y

]
2 Given the principal distance c and the principal point [ppx, ppy] ex-

pressed in pixels, K =

c 0 ppx
0 c ppy
0 0 1

.

3 Π̃ =

1 0 0 0
0 1 0 0
0 0 1 0


4 Given the [3×3] attitude matrix Rm

b(ti)
and the [3×1] position vector

system) in the mapping (m) frame at timestamp ti, while Γb
c

corresponds to the mounting matrix5, i.e. boresight matrix and
lever-arm, of the camera sensor (c) in the body frame. Finally,
Pm
(lj)

= [Xm, Y m, Zm, 1]T is the mapping frame 3D coordin-
ates in the homogeneous formalism of a point captured by the
lidar sensor (l) at time tj .

Figure 1. Visual representation of one pixel-to-point
correspondence used to constrain two trajectory poses. With

blue, we indicate the image poses and observations, while with
red the lidar poses and observations.

Point Pm
(lj)

needs to be traced back to the original lidar meas-
urement (Fig. 1 - element 3) and expressed as a function of the
corresponding 3D lidar vector as Pm

(lj)
= Γ̃m

b(tj)
Γb
l ℓ

lj
(P ), where

Γ̃m
b(tj)

4 and Γb
l

5 were described before and ℓ
lj
(P ) is the laser vec-

tor of point P captured from the lidar pose lj , expressed in
the lidar frame. Introducing this relation in Eq. 2 results in
Eq. 3 which represents the spatial constraint in DN that links
a 2D image pixel to its homologous 3D lidar point observation,
stochastically conditioning the trajectory solution (Fig. 1).

ℓcl + vcl = ℓci(p)︸︷︷︸
image

observation

− Ξ

[
π
[
KΠ̃

[
Γ̃m
b(ti)

Γb
c

]T
Γ̃m
b(tj)

Γb
l ℓ

lj
(P )

]]
︸ ︷︷ ︸

lidar observation
projected to image coordinates

(3)

2.2 Dynamic network structure

The proposed model (Eq. 3) is introduced as a spatial constraint
in the adjustment, complementary to other spatio-temporal con-
straints summarized in (Mouzakidou et al., 2024), Tab. 1. Fol-
lowing the factor graph formulation of DN described in (Cucci

Tm
b(ti)

of the body (b) frame in the mapping (m) frame at time ti,

Γ̃m
b(ti)

=

[
Rm

b(ti)
Tm
b(ti)

000 1

]
.

5 For a given sensor s, i.e. camera (c) or lidar (l), mounting information
that comprises the [3×3] boresight matrix Rb

s and the [3×1] lever-arm
vector αb

s of the sensor (s) in the body (b) frame are summarized in the

matrix Γb
s =

[
Rb

s −αb
s

000 1

]
.
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et al., 2017), the camera-to-lidar edges connect two pose nodes
and optionally, the camera and lidar boresight nodes. Hence,
the unknown parameters that are constrained are (i) camera
pose at which the image is taken (Γ̃m

b(ti)
), (ii) lidar pose at which

the laser vector is acquired (Γ̃m
b(tj)

), (iii) camera internal para-
meters (K and Ξ(·)), (iv) camera and (v) lidar mounting para-
meters (Γb

c and Γb
l respectively), i.e. boresight matrices and

lever arms.

3. Direct pixel-to-point matching

Here we review the current SOTA ”machine-learned” tech-
niques for extracting image-to-lidar correspondences. We can
distinguish between two main categories of deep learning ar-
chitectures serving this purpose: (i) detect-then-match and (ii)
detection-free architectures. We summarize them in Tab. 1 and
categorize them per type of approach and architecture used.

3.1 Detect-then-match networks

In these networks, 2D and 3D keypoints are first detected in-
dependently in the image and the point-cloud respectively, and
then matched based on their associated descriptors. The work-
flow described in Fig. 2, consists of the following steps:

1. 2D and 3D keypoints detection in the image and in the
point-cloud

2. 2D and 3D patches extraction around each keypoint

3. 2D and 3D feature descriptors extraction

4. Matching pairs of corresponding 2D and 3D features

5. Filtering of the matched 2D-3D pairs.

Figure 2. 2D-3D keypoint matching processing workflow

All networks in this category have two separate branches to
treat 2D and 3D features separately and then jointly learn the
description or matching step of the workflow. From these, only
LCD is evaluated later (see Sec. 4.3 and 5.2) as it is the only
one provided with open code and weights.

• 2D3D-MatchNet (Feng et al., 2019) is trained and eval-
uated on an outdoor street dataset. It uses SIFT (Lowe,
2004) and ISS (Zhong, 2009) to extract 2D and 3D features
respectively. The network then learns descriptors for 2D
and 3D keypoints such that matching pairs have minimal
descriptor-space distance while non-matching pairs have
maximal distance. Its architecture is based on a 2D CNN
(Convolutional Neural Network) and PointNet (Charles et
al., 2017) to learn the 2D and 3D features respectively.

• LCD (Pham et al., 2020) is trained and evaluated on two
indoor RGB-D datasets, which are used to extract the
ground-truth correspondences. It does not depend on an
explicit feature extraction method, but implies already ex-
tracted correspondences. It employs a dual auto-encoder
architecture based on a 2D CNN and PointNet to learn ro-
bust feature representations in a common latent space.

• Siam2D3D-Net (Liu et al., 2020) is trained and evaluated
on an outdoor street dataset. Similarly to 2D3D-MatchNet,
it uses SIFT and ISS to extract 2D and 3D features. Its
architecture is similar to 2D3D-MatchNet with the extra
step of a spatial transformer network to learn the image
feature representations.

• Desc-Matcher (Nadeem et al., 2023) is trained and eval-
uated on both outdoor street and indoor datasets. As op-
posed to the three previous networks, it does not require
2D and 3D descriptors to be in a common learned latent
space, but rather learns the descriptor matching step of the
workflow. As an example, the authors use SIFT for 2D
descriptors extraction and 3D-SIFT (Rusu and Cousins,
2011) and RIFT (Lazebnik et al., 2005) for 3D descriptors
extraction. This approach is similar to SuperGlue (Sarlin
et al., 2020) for 2D feature matching.

3.2 Detection-free networks

These more recent architectures adopt an end-to-end approach,
i.e. the final outputs are the registered datasets where the pixel-
to-point correspondences are only intermediate results that are
jointly optimized with other parameters. These architectures
rely on a coarse-to-fine methodology: they first establish coarse
correspondences at the level of image or point-cloud tiles and
then perform fine matching of pixels and points. The advant-
age of these methods over detection-based approaches is the
possibility to exploit global contextual information at the patch
level. However, they cannot handle local deformations in the
point-cloud, e.g. as those caused due to direct orientation with a
low-quality trajectory. In the following, we revisit the available
detection-free networks, out of which D-GLSNet and VP2P-
Match will be later evaluated given the availability of open code
and weights.

• P2-Net (Wang et al., 2021) is trained and evaluated on in-
door datasets. It employs a dual fully convolutional ar-
chitecture to map 2D and 3D inputs into a shared latent
space. The network is jointly optimized with a descriptor
and a detector loss enforcing the similarity of correspond-
ing representations as well as encouraging higher detection
scores for discriminative correspondences.

• D-GLSNet (Li et al., 2023a) matches outdoor street lidar
point clouds with satellite images. The processing meth-
odology consists of a feature extraction stage using Fea-
ture Pyramid Networks for images and KPConv for point
clouds, followed by a Transformer-based module for
coarse and fine feature matching. A dual-softmax oper-
ation is employed to handle many-to-one correspondences
due to differing resolutions.

• CorrI2P (Ren et al., 2023) is trained and evaluated on
outdoor street datasets. It employs ResNet and SO-Net
architectures to embed the image and point-cloud into
high-dimensional feature spaces, generating pixel-wise
and point-wise features respectively. A symmetric cross-
attention fusion module is introduced to detect overlapping
regions by mapping features between the 2D and 3D do-
mains.

• 2D3D-MATR (Li et al., 2023b) is trained and evaluated
on indoor datasets. It utilizes a transformer-based module
to learn global contextual constraints and cross-modality
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Model
name

Type of
ap-

proach

Type of
architecture

Training
/testing

data

Open
source
avail-
ability

2D3D-
MatchNet

(2019)

detect-
then-
match

2D CNN +
3D PointNet

outdoor
street

none

LCD
(2019)

detect-
then-
match

2D CNN +
3D PointNet

(autoen-
coders)

indoor code +
weights

Desc-
Matcher
(2023)

detect-
then-
match

Decision-Tree
based

Matcher

indoor code +
weights

Siam-
2D3D-

Net
(2023)

detect-
then-
match

2D CNN +
STN + 3D
PointNet

outdoor
+

indoor

none

P2-Net
(2020)

detection-
free

2D CNN +
3D CNN +
Keypoint
Detection

indoor code

CorrI2P
(2023)

detection-
free

2D ResNet +
3D SO-Net +
Overlapping

Region
Detection

street none

D-
GLSNet
(2023)

detection-
free

2D pyramid +
3D KPConv +
Transformer-

Based
Matching

satellite
images
+ street
point
cloud

code

2D3D-
MATR
(2023)

detection-
free

2D pyramid +
3D KPConv +
Multi-Scale
Matching

indoor none

VP2P-
Match
(2023)

detection-
free

2D CNN +
3D [voxel

CNN + point
CNN] +

Intersection
Detection +

Distance
Based

Matching

street code +
weights

CFI2P
(2024)

detection-
free

2D ResNet +
3D PointNet

+ Hybrid
Transformer
+ Optimal
Transport
Matching

outdoor
street

none

Table 1. State-of-the-art pixel-to-point matching architectures.

correlations. To address the scale ambiguity caused by per-
spective projection, a multi-scale patch matching strategy
is implemented. This approach constructs a multi-scale
pyramid for image patches, allowing the network to find
the best matching patches at appropriate resolution levels.
However, challenges such as precise fine-level matching
and handling complex scenes remain.

• VP2P-Match (Zhou et al., 2023) is trained and evaluated

on outdoor street datasets. It consists of a voxel and a
pixel CNN branch, as well as complementary point branch
to capture spatial patterns and regain lost 3D details dur-
ing voxelization. It also uses a differentiable probabilistic
Perspective-n-Point (PnP) solver to learn a cross-modality
latent space to represent pixel features and 3D features by
imposing supervision directly on the predicted pose distri-
bution.

• CFI2P (Yao et al., 2024) is trained and evaluated on out-
door street datasets. It leverages a hybrid transformer ar-
chitecture to enhance image-to-point cloud registration by
integrating quantity-aware correspondences between point
and pixel patches. This method begins with the extrac-
tion of local proxies from image patches and point patches,
capturing both global and cross-modal contexts using self-
attention and cross-attention mechanisms.

4. Experimental evaluation

In this section, we first describe the aerial dataset used for the
investigations (Sec. 4.1) and the extraction of the emulated 2D-
3D correspondences (Sec. 4.2). Then, we refer to the data pre-
paration (Sec. 4.3) to adapt our airborne dataset to the specific-
ations of each tested pre-trained network. Finally, we present
the optimization study cases (Sec. 4.4) to assess the proposed
DN observation model.

4.1 Dataset

We will employ the controlled ALS dataset presented in (Vallet
et al., 2020) to evaluate the performance of the proposed DN ob-
servation model and the pixel-to-point matching networks. It is
acquired by a helicopter carrying optical and navigation sensors
of high and lower accuracy. We focus mainly on inertial sensors
and their influence on orientation and mapping performance.
The considered images come from an IXAR180 (PhaseOne)
with 80 megapixels and a 42 mm lens with pre-calibrated in-
terior orientation. The imagery consists of 87 images with an
average Ground Sampling Distance (GSDi) of 3 cm/pix. The
point-cloud data has been captured by a medium-range VQ480
(Riegl) lidar, with a nominal density of 70 pts/m² that results
in a point-cloud GSDl between 10 to 20 cm. The three point-
clouds obtained from the three flight lines are merged into a
single point-cloud counting ≈ 35 · 106 points.

Both optical datasets are geo-referenced with the onboard
navigation-grade AIRINS (iXblue), that we consider for the
ground-truth datasets. The attitude errors of the optimal recurs-
ive smoothing are smaller than < 0.003◦ (Vallet et al., 2020),
i.e. ≈ 1.5 cm at 250 m ranges (mean flight height), so about
10× smaller than GSDl, and ≈ 0.5 pix given the GSDi. Thus,
we can safely consider this trajectory to create the ground-truth
geo-referenced dataset.

4.2 Emulated correspondences

To investigate the performance of the proposed DN observation
model, we employ the scenario of real ALS data (Sec. 4.1) but
first with emulated pixel-to-point correspondences. For their
creation, we follow the steps described below. We compute
pci(lj) from the laser vector P lj

(lj)
given the reference trajectory

and calibrated sensor information, making the correspondences
the ground-truth. In Fig. 1, this would mean that the two dots
on the image plane almost coincide (up to numerical precision)
and that vcl ≈ 0. More specifically, we follow the steps:
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1. Create 3D points in the mapping frame, from the laser vec-
tors in the lidar frame, given the reference trajectory and
the calibrated lidar mounting parameters.

2. Project these 3D points on the imagery using the collinear-
ity equation (second part of Eq. 3) and given the reference
trajectory, the camera mounting parameters and the calib-
rated camera internal orientation.

3. Relax the constraints on the generated 2D-3D correspond-
ences (1σ) to half a pixel in the optimization process.

4.3 Correspondences preparation for existing networks
evaluation

From the available direct pixel-to-point matching networks
(Sec. 3.1 and 3.2), we consider the ones with open code and
open learned weights, i.e. LCD, D-GLSNet and VP2P-Macth,
to be evaluated on the controlled ALS dataset. Each network
has different input requirements, i.e. image and point-cloud
patches or tiles, so we prepare the data accordingly as sum-
marized in Fig. 3.

Network Evaluation data preparation Evaluation method

LCD
Detect-then-
match

Correct match = 
ground truth match

D-GLSNet
Detection-free

Correct match = 
projection error < threshold

VP2P-
Match
Detection-free

Data preparation

35 2D-3D
tiles / image
(scale 1:3)

96 2D-3D
tiles / image
(scale 1:3)

480x480 pix

512x160 pix

75m ⌀

70m ⌀

64x64 pix 2m ⌀

Avg 1,8k 2D-3D 
patches / image

10328x7760 pix

Figure 3. Treatment of the dataset to match the input
characteristics of each tested network.

LCD expects 2D patches of 64×64 pixels and 3D point patches
of 1024 colorized points. The point-cloud was colorized in the
Agisoft Metashape photogrammetric software using the refer-
ence trajectory and available imagery. Each image was split into
a square grid to create non-overlapping 2D patches. All points
in the point-cloud were then projected in the image frame. The
center of each 3D patch is selected as the point whose projec-
tion is the closest to the center of a 2D patch. Finally, the 3D
patch is extracted by selecting all the points around its center, in
a sphere of diameter d = GSDi · 64 = 0.03 m · 64 = 1.92 m.
This resulted in ≈ 1800 2D-3D pairs per image. During the
evaluation, we consider a match as correct when it corresponds
to a ground-truth (reference) pair.

D-GLSNet expects (satellite) images of 480 × 480 pixels and
their corresponding 3D point-clouds. Since the studied imagery
is of much higher resolution, we downsampled the imagery by a
factor of 3, i.e. GSD

′
i = factor·GSDi = 3·0.03 = 9 cm/pix,

and sampled tiles of 480 × 480 pixels in the downsampled im-
ages to be used as the input resulting in ≈ 35 tiles per image.
This is a fair compromise between having informative tiles in
terms of texture and geometry and maintaining the high resol-
ution of the original imagery. For the 3D tiles extraction, we
keep the points that project in each image tile; the center of a
3D tile is randomly chosen among all the points that are projec-
ted in a certain radius from the respective 2D center. This ran-
domness in the 3D center selection simulates the imprecision in

the prior knowledge of the pose, in which D-GLSNet is robust
based on the authors. The radius is set to 5 meters. The 3D
tile is formed by the points inside the vertical cylinder (along Z
axis) of infinite height, passing through the 3D tile center, and
a radius r3Dtile = GSD

′
i · ( 480√

2
) + 5 (in meters). In that way,

we ensure that the 2D tile is always inside the projection of the
3D tile. During the evaluation, a correct match is defined by
the re-projection error that should be below a certain threshold,
i.e. 2 m given the GSD in our case. It is worth mentioning
that due to the voxelization of the whole point-cloud for the
treatment and search of points, the output matches do not con-
tain ground-truth lidar points (that are linked to their respective
laser vectors), but new points across the voxel grid.

VP2P expects rectangular images of 512× 160 pixels and their
corresponding 3D point-clouds. Similarly to D-GLSNet, we
use the image downsampling factor of 3 and follow the same
procedure to extract image tiles and their respective 3D tiles,
resulting in 96 tiles per image. During the evaluation, a correct
match is again defined by the re-projection error that should be
2 m given the GSD in our case. It is worth mentioning that the
default output of the network downsamples the output image
coordinates by a factor of 4. So instead of 512 × 160 the out-
put coordinates have a range of 128 × 40. This peculiarity of
the network brings a certain loss of resolution which as will be
shown later can be detrimental.

4.4 Optimization cases

Based on the type of spatial constraints used together with the
GNSS and raw inertial observations in DN, we study four tra-
jectory determination cases that we compare with the reference:

Reference trajectory: Trajectory generated with the
navigation-grade IMU which has high geo-referencing
accuracy (Sec 4.1) with attitude errors smaller than < 0.003◦

(Vallet et al., 2020). Through that, we obtain by direct
geo-referencing the reference point-cloud using the formerly
calibrated lidar boresight.

Case A - [IMU + GNSS] : Trajectory computed via the loosely
coupled integration of IMU readings with the GNSS position
solution in a recursive smoother using the software Posproc
(Applanix) with an internally designed model for the low-cost
IMU. It is used here as a baseline for comparison, to show the
impact of the DN adjustment with spatio-temporal constraints.

Case B - [IMU + GNSS] + 2D-2D + 3D-3D: DN computed
trajectory integrating GNSS and raw inertial readings together
with single-domain correspondences, i.e. image-to-image (2D)
and lidar-to-lidar (3D). This approach is extensively studied in
(Mouzakidou et al., 2022) and (Mouzakidou et al., 2024), and
is used here to compare with the proposed approach of using
cross-domain spatial constraints.

Case C - [IMU + GNSS] + 2D-3D: DN computed trajectory
following the proposed approach of integrating GNSS and raw
inertial readings with cross-domain correspondences only, i.e.
the newly introduced pixel-to-point.

Case D - [IMU + GNSS] + 2D-2D + 3D-3D + 2D-3D: DN
computed trajectory following the proposed approach of integ-
rating GNSS and raw inertial readings with all available spa-
tial constraints, i.e. cross-domain (pixel-to-point) and single-
domain (image-to-image (2D) and lidar-to-lidar (3D)) corres-
pondences.
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5. Results & analysis

The results are split into two categories assessing: (i) the impact
of the proposed DN observation model given the emulated 2D-
3D correspondences on the trajectory attitude (Sec. 5.1.1) and
the point-cloud geo-referencing error (Sec. 5.1.2) and (ii) the
extraction of 2D-3D correspondences from the existing (previ-
ously trained) networks.

5.1 Emulated correspondences

For this work, the locations of the extracted points were ran-
domly selected to be uniformly distributed in the study area.
We selected ≈ 50 pairs of 2D-3D correspondences per image,
along with ≈ 100 − 200 image tie-points (2D-2D) per image
and ≈ 4 lidar correspondences (3D-3D) every 30 m assuming a
uniform spatial distribution. The 2D-3D correspondences were
considered with sub-pixel prior uncertainty.

5.1.1 Impact on trajectory attitude

When incorporating the emulated pixel-to-point correspond-
ences (Sec. 4.2) into DN with low-cost IMU measurements
(case C), the impact on the quality of the trajectory attitude
is significant. Similar improvement is observed when using
these correspondences together with image-to-image and lidar-
to-lidar correspondences (case D). These results are compared
to the previously reported cases A and B. This improvement is
illustrated in Fig. 4 with the corresponding statistics provided in
Tab. 2, showing the attitude error distribution per attitude com-
ponent [roll, pitch, yaw] for all study cases. The attitude error
is computed with respect to the reference trajectory and reflects
the deviation of each trajectory solution from it.

Figure 4. Normalized distribution of the ALS trajectory attitude
error in degrees. The error of each trajectory corresponds to its

deviation from the high-quality trajectory.

It is observed that the use of 2D-3D constraints (cases C and D)
controls the attitude solution more significantly than the pre-
viously reported case (B), reducing its error and dispersion in
all three components. In other words, the solution with single-
domain correspondences (case B) is rather weak in the yaw
component, while the use of cross-domain correspondences
limits its drift, indicating the merit of this new type of con-
straints.

5.1.2 Impact on point-cloud geo-referencing

Given the DN computed trajectories and the formerly cal-
ibrated lidar mounting parameters, we geo-reference the laser
vectors and compare them with the reference point-cloud
(Sec. 4.4) to study the effect of the new type of spatial
constraints in DN. The trajectory improvement observed in

Traj. # Case A Case B Case C Case D
R [°]

MEAN 0.003 -0.001 -0.003 -0.001
STD 0.033 0.014 0.013 0.010
RMSE 0.033 0.014 0.013 0.010

P [°]
MEAN -0.067 -0.001 -0.002 0.000
STD 0.035 0.012 0.015 0.010
RMSE 0.075 0.012 0.015 0.010

Y [°]
MEAN 0.066 0.013 -0.012 0.003
STD 0.169 0.029 0.056 0.025
RMSE 0.182 0.032 0.057 0.025

Table 2. Error statistics of the estimated trajectories. The best
trajectory for each metric (line) is highlighted in bold.

Sec. 5.1.1 when using pixel-to-point correspondences (C) is
also reflected in the reduced geo-referencing error, in all studied
flight lines as depicted in Fig. 5.

Figure 5. Geo-referencing error (norm) of the lidar point-clouds
per flight line, with and without the pixel-to-point (2D-3D)

constraints.

Indeed, as shown in the graphs of cases C and D where the
2D-3D constraints are involved, the mean geo-referencing er-
ror is reduced by 30 − 50% compared to case B where only
single-domain optical constraints are used. Additionally, there
is a small reduction in the maximum error and the error disper-
sion indicating the increased mapping accuracy. The difference
between the last two graphs (C and D) is however minimal.

5.2 Correspondences via existing networks

We consider the following metrics to evaluate the performance
of the pre-trained SOTA networks on the studied aerial dataset,
which are summarized in Tab. 3.

• N° of correct matches: average number of correct pixel-
to-point matches per image, where the distance between
a 2D pixel and the re-projection of its paired 3D point is
below a threshold given its ground-truth projection. To
facilitate comparison in this section, we express the pixel
error threshold in meters in the 3D space given the down-
sampled GSD (Sec. 4.3), i.e. 2 m for both detection-free
networks.

• Inlier ratio: average proportion of correct matches relative
to the total number of output matches per image.

Specificity: The threshold mentioned in the first metric of n° of
correct matches is used only for D-GLSNet and VP2P-Match,
where the input datasets are whole images and point-clouds, as
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Metric -
(average per image) LCD D-GLSNet VP2P-Match

N° correct matches 18.6 1.3 0.8

Inlier ratio 1.6% 0.78% 0.70%

Table 3. Performance of the existing networks on the aerial
dataset. For each metric, we have the average of all images.

opposed to pixel and point patches. Thus, all pixels and points
present in the datasets are potential candidates. In LCD, the
input dataset is small non-overlapping patches centered in spe-
cific pixels and their corresponding 3D points. Thus, correct or
wrong matches can be identified based on their indices, while
their re-projection errors are multipliers of the constant patch
size used in data creation.

Discussion: Despite not being end-to-end (i.e. the pixel-to-
point correspondence extraction is the main task of the net-
work and not an intermediate step), the detect-then-match net-
work LCD provided the best results outperforming the other
networks, that struggled to extract meaningful 2D-3D corres-
pondences. The average number of correct matches per image
with LCD indicates that the network can extract some meaning-
ful information. However, all three networks failed to general-
ize effectively on new data, given their low inlier ratio scores.
More significant information could be potentially retrieved with
some further refinement, e.g. with PnP-RANSAC (Perspective-
n-Point RANdom SAmple Consensus) filtering (Fischler and
Bolles, 1981, Wu and Hu, 2006).

Limitations: The size and resolution of the studied scenes in
both images and lidar data are challenging for detection-free
networks due to the limited input size and number of points
they can handle. Detection-free networks, while being more
performant on specific datasets as indicated in the literature,
are more complex and thus harder to retrain and fine-tune. This
complexity often results in difficulties generalizing to new data,
which was evident in our evaluations as airborne data were not
used for training.

6. Conclusions & outlook

In this work, we have proposed to incorporate a new cross-
domain observation model that leverages matches between im-
ages and lidar point-clouds (so-called pixel-to-point corres-
pondences) and fuses them along with GNSS and raw iner-
tial measurements in the DN adjustment for optimal estima-
tion of trajectory and other parameters. We perform the proof
of concept by employing emulated correspondences from a
controlled aerial dataset to showcase their potential benefit in
the improvement of the trajectory quality and subsequently the
mapping quality. We also evaluated the performance of exist-
ing open-source deep-learning architectures in extracting real
pixel-to-point correspondences from the same aerial dataset.

Using emulated correspondences between images and lidar
point-clouds in the DN provided encouraging indications for at-
titude improvement, especially in the yaw component, in com-
parison to the previously described baseline of single-domain
correspondences (Mouzakidou et al., 2024). In turn, this im-
proved the geo-referencing accuracy of the lidar point-cloud by
30 − 50%. Further studies will focus on the amelioration of
other parameters related to sensor and system calibration, e.g.
parameter observability as boresight angles. On the other hand,

we show that the current deep-learning architectures, that were
trained on other than airborne data, cannot extract direct pixel-
to-point correspondences at sufficient number and quality.

This evidence gives research prospects for advancing the cross-
domain (image-to-lidar) matching workflow. This includes the
need to retrain the networks on aerial datasets, possibly even
evolving the architecture in terms of the input details, to obtain
reliable cross-modality descriptors. If realized practically, these
constraints may be fundamental in establishing a common and
qualitatively better data-alignment workflow for hybrid sensors
in aerial mapping.
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