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Abstract 

 

Visual Foundation Models (VFMs) demonstrate impressive generalization capabilities for image segmentation and classification tasks, 

leading to their increasing adoption in the remote sensing field. This study investigates the performance of VFMs in zero-shot building 

segmentation from aerial imagery using two model pipelines: Grounded-SAM and SAM+CLIP. Grounded-SAM integrates the 

Grounding DINO backbone with a Segment Anything Model (SAM) while SAM+CLIP first employs SAM for generating masks 

followed by Contrastive Language Image Pretraining (CLIP) for classification. The evaluation, performed on the WHU building dataset 

using Precision, Recall, F1 score, and intersection over union (IoU) metrics, revealed that Grounded-SAM achieved F1-score of 0.83 

and IoU of 0.71. SAM+CLIP achieved F1-score of 0.65 and IoU of 0.49. While Grounded-SAM excelled at accurately delineating 

partially occluded and irregularly shaped buildings, SAM+CLIP was able to segment larger buildings but struggled with delineating 

smaller ones. Given the impressive performance of VFMs in zero-shot building segmentation, future efforts aimed at refining these 

models through fine-tuning or few-shot learning could significantly expand their application in remote sensing. 

 

 

1. Introduction 
 

Accurate building segmentation is essential for various 

applications, including urban planning, monitoring, and mapping 

(Hajjar et al., 2024). In the field of remote sensing (RS), many 

researchers (Erdem and Avdan, 2020; Wang et al., 2022; Chang 

et al., 2024; Yildirim et al., 2024) have contributed to studies on 

building segmentation using deep learning (DL). Over the past 

few years, DL has emerged as a widely used method for 

automatic feature learning, driving significant advancements in 

computer vision (Wang et al., 2022). One of the key challenges 

in deploying deep neural networks in real-world applications is 

their dependence on large amounts of precisely annotated 

training data, particularly for dense prediction tasks like semantic 

segmentation and change detection (Ding et al., 2024). Another 

point noted by Li et al. (2021) is that each sensor requires its own 

training data, and single-sensor models cannot be effectively 

transferred to other sensors. Lately, Vision Foundation Models 

(VFMs) have emerged and attracted considerable attention in 

computer vision research (Ding et al., 2024). 

 

In recent years, a variety of foundational models have been 

developed (Liu et al., 2024a), and interest in these models has 

surged due to their extensive pre-training on web-scale datasets, 

which grants them a remarkable ability to generalize across 

various downstream tasks (Ji et al., 2024). Liu et al. (2024a) 

provided examples of foundation models for computer vision, 

including SimCLR (Chen et al., 2020), Masked AutoEncoder 

(MAE) (He et al., 2022), and Segment Anything Model (SAM) 

(Kirillov et al., 2023). Moreover, recent innovations in VFMs 

have focused on integrating multiple foundational models into 

unified pipelines to leverage their complementary strengths. A 

notable example for these hybrid frameworks is Grounded-SAM, 

introduced by Ren et al. (2024), which combines Grounding 

DINO (Liu et al., 2024b), an open-set object detector, with SAM. 

Similarly, OV-SAM (Yuan et al., 2025) integrates SAM with 

open-vocabulary detector Contrastive Language Image 

Pretraining (CLIP) (Radford et al., 2021), allowing for 

segmentation based on textual descriptions. 

In the remote sensing field there are several new foundational 

models that employs VFMs. Liu et al. (2024a) introduce 

RemoteCLIP, marking it as the first vision-language foundation 

model tailored for RS. RSPrompter (Chen et al., 2024) which is 

based on SAM, is another adaptation of VFMs for RS 

applications. SAM-RSIS (Luo et al., 2024) is based on fine-tuned 

SAM and has automatic box prompting for remote sensing 

instance segmentation applications. RingMo-SAM (Yan et al., 

2023), a multimodal image segmentation model based on SAM 

which can segment and identify categories of optical imagery and 

synthetic aperture radar (SAR) images. 

 

In this study, we explored the use of two foundational models 

Grounded-SAM and SAM+CLIP pipeline for zero-shot building 

segmentation in aerial imagery. The SAM+CLIP pipeline works 

in two stages: first, images are segmented using SAM, 

specifically the SAM Automatic Mask Generator with the pre-

trained ViT-H model. Once segmentation is complete, the second 

stage employs the CLIP RSICD model (Arutiunian et al., 2021) 

for zero-shot classification. This model integrates CLIP 

introduced by Radford et al. (2021), with the Remote Sensing 

Image Caption Dataset (RSICD) developed by Lu et al. (2018). 

In the Grounded-SAM model (Ren et al., 2024) pipeline, input 

images goes through the grounding stage in which the model 

looks for image segments align with the given prompt. After the 

grounding stage, SAM model segments the detected object with 

the predictor method using the bounding boxes extracted in the 

grounding stage. For the experiments, the WHU aerial image 

dataset (Ji et al., 2019) was used, and precision, recall, F1 score, 

and Intersection over Union (IoU) metrics were employed to 

evaluate the performance of the models. Also, we evaluated the 

CPU and GPU processing times of the models. To evaluate the 

models’ sensitivity to textual prompts, we ran experiments in 

which we systematically varied the input prompts and observed 

the resulting changes in segmentation performance. 
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2. Methodology 

 

2.1 Review of Vision Foundation Models 

 

Foundational models, a concept introduced by Bommasani et al. 

(2021) at Stanford’s Institute for Human-Centered AI, are 

primary models developed using extensive self-supervised or 

semi-supervised training on large datasets and can be adapted for 

various downstream applications (Awais et al., 2025). These 

applications include autonomous driving, medical diagnostics, 

and remote sensing image analysis (Yu et al., 2024). Training on 

multi-modal data enables foundation models to recognize 

complex patterns, ensuring strong generalization and robustness 

across all types of tasks (Yu et al., 2024). A notable example is 

the SAM, which offers class-agnostic segmentation capabilities 

for specialized domains such as medical imaging, robotics, or 

remote sensing (Awais et al., 2025). As stated by Ding et al. 

(2024), another significant example is CLIP (Radford et al., 

2021), a model that represents visual content through textual 

descriptions and was trained on 400 million imagetext pairs. Its 

zero-shot image classification performance is on pair with fully-

supervised convolutional neural network (CNN) (Ding et al., 

2024). 

 

2.1.1 Segment Anything Model: The SAM is a newly 

introduced image segmentation model, trained on one of the 

largest datasets in computer vision, featuring over one billion 

masks from 11 million images (Kirillov et al., 2023). Notably, 

SAM exhibits remarkable zero-shot transfer capabilities, 

frequently surpassing prior supervised methods. First proposed 

by Kirillov et al. (2023), SAM is specifically designed for 

promptable segmentation and is structured around three key 

components: an image encoder, a prompt encoder, and a mask 

decoder (Figure 1). 

 

 
Figure 1. Segment Anything Model (adapted from Kirillov et al. 

(2023)). 

 

2.1.2 Contrastive Language Image Pre-Training Model: 

The CLIP model (Figure 2), introduced by Radford et al. (2021), 

offers an innovative way to learn visual representations using 

natural language supervision. Rather than striving to match exact 

text descriptions with images, CLIP employs a contrastive 

learning strategy by identifying correct image-text pairs from a 

large batch of candidates. This is accomplished via a symmetric 

cross-entropy loss applied to the cosine similarity between image 

and text embeddings (Radford et al., 2021). It is worth noting, 

however, that the original CLIP model was not explicitly trained 

on remote sensing imagery. For this reason we choose to run 

CLIP RSICD Arutiunian et al. (2021) model which is CLIP 

model fine tuned on Remote Sensing Image Caption Dataset 

(RSICD) by Lu et al. (2018). 

 
Figure 2. CLIP model architecture (adapted from Radford et al. 

(2021)). 

 

2.1.3 Grounded-SAM: Ren et al. (2024) presented 

Grounded-SAM, which leverages Grounding DINO (Liu et al., 

2024b) as an open-set object detector in conjunction with the 

SAM. When provided with an input image and a text prompt, 

Grounded-SAM initially utilizes Grounding DINO to create 

accurate bounding boxes for objects or regions by conditioning 

on the textual information. These annotated boxes then serve as 

prompts for SAM, which generates precise mask annotations 

(Ren et al., 2024). Grounding DINO (Liu et al., 2024b) is a dual-

encoder-single-decoder framework designed to detect and 

localize objects in an image while associating them with 

corresponding textual prompts. The model uses dedicated 

backbones to extract vanilla image and text features, which are 

then merged through a feature enhancer. A language-guided 

query selection module further refines these fused features, 

generating cross-modality queries that the cross-modality 

decoder uses to produce bounding boxes and extract matching 

phrases. As a result, Grounding DINO can perform both object 

detection and referring expression comprehension by aligning 

object proposals with the relevant text inputs (Liu et al., 2024b). 

 

2.2 Dataset 

 

In this study, we employed the WHU Building Aerial Imagery 

Dataset (Ji et al., 2019) to evaluate the performance of the 

models. The dataset consists of 8,189 aerial images, each image 

has 512 × 512 pixels with a ground resolution of 0.3 meters. Since 

the models do not require any training, we proceeded directly to 

the testing phase. The WHU Building Dataset includes 3,810 test 

images, from which we randomly selected 10% (381 images) to 

conduct our experiments. 
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2.3 Experiments 

 

In this study, both Grounded-SAM and SAM+CLIP pipelines 

were utilized to segment building boundaries in a variety of urban 

environments. Experiments were conducted on a workstation 

equipped with an Intel i5-11400F processor, 32 GB of RAM, and 

an NVIDIA RTX 3060 GPU with 12 GB of dedicated memory. 

For the Grounded-SAM pipeline (Figure 3), we employed the 

pre-trained groundingDINO swinb cogcoor checkpoint, which 

integrates a SwinB backbone with coordinate-based 

enhancements for improved spatial alignment. In the Grounded-

SAM pipeline, input images goes through the grounding stage in 

which the model looks for image segments align with the given 

prompt which is building. After the grounding stage, SAM 

segments the detected object, which is defined by a bounding 

box, utilizing predictor method of SAM with default parameters. 

 

 
Figure 3. Grounded-SAM pipeline. 

 

For the SAM+CLIP pipeline (Figure 4), the pre-trained CLIP 

RSICD v4 model utilized. For the SAM model the pre-trained 

ViT-H backbone was employed. In this pipeline, the SAM 

model’s automatic mask generator method was used with the 

default parameters. This method prompts the SAM model with a 

predefined number of points spread equally inside the image 

boundary in a grid pattern. SAM then identifies and generates 

segments within the image. Following the segmentation step, 

each extracted image segment is fed into the CLIP model to 

determine semantic categories. The desired class names are 

merged into a prompt, which guides the classification process. 

The classes used in the input prompt include: building, roof, 

parking, house, commercial, center, medium residential, square, 

industrial, dense residential, bare land, sparse residential, 

grassland, meadow, forest, and park. Image segments with a 

cumulative probability of 85% for the building, roof, and house 

classes are marked as buildings, while segments below this 

threshold are discarded. 

 

2.4 Evaluation Metrics 

 

In order to evaluate the performance of the Grounded-SAM and 

the SAM+CLIP, precision, recall, F1 score and IoU metrics were 

employed. The formulas are as follows: 

 

 Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

 

 Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 
Figure 4. SAM+CLIP pipeline. 

 

Precision = 2 ×
Precision × Recall

Precision + Recall
 (3) 

  

 IoU =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 

where, TP is true positive, TN is true negative, FP is false 

positive, and finally FN is false negative. 

 

3. Results 

 

3.1 Building Extraction Performance 

 

In this section, we present the results of the Grounded-SAM and 

SAM+CLIP pipelines. Both the Grounded-SAM and 

SAM+CLIP pipelines accurately segment building boundaries 

across diverse urban environments, including industrial 

complexes and densely populated residential districts. This is 

further supported by the accuracy metrics shown in Table 1. 

Grounded-SAM outperforms SAM+CLIP across all evaluation 

metrics. Specifically, Grounded-SAM achieves precision of 0.86, 

recall of 0.80, F1-score of 0.83, and IoU of 0.71. In contrast, 

SAM+CLIP achieves slightly lower values: 0.69 for precision, 

0.62 for recall, 0.65 for F1-score, and IoU of 0.49. The obtained 

results are presented through six examples from the study area, 

as shown in Figure 5. 

 

MODEL Precision Recall F1-Score IoU 

SAM+CLIP 0.69 0.62 0.65 0.49 

Grounded-SAM 0.86 0.80 0.83 0.71 

Table 1. Building extraction results for Grounded-SAM and 

SAM+CLIP models. 

 

Despite roof shape and colour variations or partial occlusions 

from surrounding vegetation (Figure 6), the segmentation masks 

produced by both methods align closely with actual building 

boundaries. Notably, Grounded-SAM demonstrates enhanced 

boundary precision in challenging areas such as roofs partially 

occluded by trees which indicates the grounding mechanism 

contributes additional contextual cues for more accurate building 

extraction. 

 

3.2 Prompt Selection 

 

In this section, we evaluate the prompt sensitivity of the 

Grounded-SAM and the SAM+CLIP pipelines. For the 

Grounded-SAM, we used three distinct prompts: structure, 

building, and roof. During the building detection phase, the 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-6-2025 
ISPRS, EARSeL & DGPF Joint Istanbul Workshop “Topographic Mapping from Space” dedicated to Dr. Karsten Jacobsen’s 80th Birthday 

29–31 January 2025, Istanbul, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-23-2025 | © Author(s) 2025. CC BY 4.0 License.

 
25



 
Figure 5. Grounded-SAM and SAM+CLIP results. 

 

model responded similarly to each prompt (Figure 7). Focusing 

on the Test1 3213 area, which is a medium-density residential 

zone with similarly sized houses, we observed that the building 

prompt enabled the model to detect an additional small building 

located at the eastern corner of the image. 

 

In an industrial scene such as Test3 101, the Grounded-SAM 

demonstrates behavior consistent with previous observations. In 

this scene, all of the prompts yields slightly different outcomes 

for building detection with the Grounding DINO component. The 

building detection results for the different prompts are shown in 

Figure 7. As shown in Figure 8, in Test3 101, the SAM model 

struggles to accurately extract large roofs, particularly for 

buildings with white roofs that feature repeating textures. 

 

To evaluate the CLIP model’s sensitivity to different input 

prompts, we compiled three prompt sets (Figure 9). Prompt 1 

included classes such as building, roof, parking, house, 

commercial, center, medium residential, square, industrial, dense 

 
Figure 6. Buildings extracted with Grounded-SAM. 

 

 
Figure 7. Building detection results for different prompts with 

Grounded-SAM model. 

 

 
Figure 8. Building extraction results for different prompts with 

the Grounded-SAM. 

 

residential, bare land, sparse residential, grassland, meadow, 

forest, and park. Prompt 2 contains building, roof, house, square, 

bare land, grassland, meadow, and forest. Prompt 3 combined 

classes from the first two prompts, building, roof, parking, house, 

commercial, center, medium residential, industrial, dense 

residential, sparse residential, and park. These prompts were 

deliberately chosen to establish contrasting classes, thereby 

enhancing CLIP’s capacity to differentiate between them. 

 

As illustrated in Figure 9, CLIP effectively identified the roof, 

building, and house classes while accurately discerning unrelated 
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classes such as park and forest. However, the 9 also reveals that 

CLIP responds differently to various roof types. Specifically, for 

larger roofs and those with diverse styles as shown in the last two 

rows of Figure 9, CLIP assigns higher scores to the roof class. In 

a residential setting (first and second rows of 9), building and roof 

classes have similar probability scores across all of the prompts. 

The observed behavior of the CLIP model can be attributed to 

several factors. Roofs, especially those with differing shapes or 

colors, possess distinct visual features that CLIP can identify and 

prioritize. Larger or more varied roof types further emphasize 

these characteristics. This may confuse CLIP and cause it to 

weigh these classes differently based on the prominence and 

distinctiveness of the roof features in the image. Moreover, the 

specific composition of the prompts influences how CLIP 

interprets and prioritizes classes. 

 

 
Figure 9. CLIP prompt selection results. 

 

3.3 Time Complexity 

 

Regarding the time complexity of the models, we performed a 

series of tests. For the Grounded-SAM, processing a single image 

requires about 0.3059 seconds of wall clock time on the GPU 

(0.3255 seconds of CPU time) for the DINO component, and 

1.2960 seconds of wall clock time on the GPU (1.3629 seconds 

of CPU time) for the SAM component. The total GPU time 

measured for SAM is 1.258 seconds, while Grounding DINO’s 

total GPU time is about 0.256 seconds processing a single image. 

For the SAM+CLIP, running SAM alone takes approximately 

4.724 seconds of CPU time and 3.752 seconds of GPU time to 

process a single image. The CLIP model, which was executed on 

the CPU only, requires about 1.2015 seconds of CPU time. 

However, it should be noted that these times refer to processing 

a single mask. If there are multiple masks, the total time will scale 

linearly with the number of masks. In terms of wall clock time, 

SAM completes the segmentation of the entire image in about 

4.2818 seconds, while CLIP takes about 0.4772 seconds to 

process a single mask.The difference in processing times within 

the SAM model is attributable to the use of the predictor method 

in Grounded-SAM, while the automatic mask extractor method 

is employed in the SAM+CLIP pipeline. It has been observed that 

the Grounded-SAM is more efficient than SAM+CLIP in terms 

of time complexity. 

 

4. Discussion 

 

Grounded-SAM and SAM+CLIP demonstrated promising 

performance on zero-shot building segmentation from aerial 

imagery across complex scenarios. Nevertheless, there are 

certain limitations that can be broadly grouped into two 

categories. First, the object detection model in the case of 

Grounded-SAM or image captioning in the case of the 

SAM+CLIP pipeline can suffer from domain biases, leading to 

errors. Secondly, the SAM may produce less precise boundaries 

when dealing with objects of very irregular shapes or when 

presented with significant color and texture variation which leads 

to either oversegmentation or under-segmentation. 

 

Although the Grounding DINO backbone was not explicitly 

trained on remote sensing imagery, it still achieved better 

building segmentation performance than the CLIP-RSICD 

model. As illustrated in Figure 10a-1, Grounding DINO 

successfully detected one large structure and two smaller 

structures. However, the SAM failed to segment the large 

structure, though it did accurately segment the smaller ones 

(Figure 10a-2). A similar pattern appears in Figure 10b-1, where 

Grounding DINO detected both large structures, but the SAM 

only segmented the northernmost structure (Figure 10b-2), 

despite both roofs having similar characteristics. 

 

Regarding the SAM+CLIP, it notably excelled in areas where the 

Grounded-SAM struggled with SAM’s segmentation (Figures 

10a-4 and 10b-4). The SAM+CLIP successfully segmented the 

large buildings (Figures 10a-3 and 10b-3) that were not detected 

by Grounded-SAM. However, CLIP either failed to label the 

smaller structures (Figure 10a-4) or mislabelled a parking lot as 

a building (Figure 10b-4), indicating that it is generally more 

effective with large-scale objects. It is worth noting that CLIP’s 

primary purpose is image captioning, but it can reliably caption 

segments extracted from images with reasonable accuracy. 

 

Our findings indicate that prompt selection has a limited impact 

on the Grounded-SAM. In contrast, within the SAM+CLIP, the 

choice of prompts significantly affects the performance of the 

CLIP model. Additionally, it has been observed that the 

Grounded-SAM is more efficient than SAM+CLIP in terms of 

time complexity. 
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Figure 10. SAM image segmentation performance. 

 

5. Conclusion 

 

In this study, we employed two foundational models, Grounded-

SAM and SAM+CLIP, to perform zero-shot building 

segmentation on WHU aerial imagery dataset. Despite 

employing zero-shot methods, the pipelines achieved promising 

segmentation accuracy. Grounded-SAM obtained an F1-score of 

0.83 and an IoU of 0.71, outperforming SAM+CLIP, which 

achieved an F1-score of 0.65 and an IoU of 0.49. Notably, 

Grounded-SAM demonstrated enhanced boundary precision for 

partially occluded or complex roofs, whereas SAM+CLIP 

excelled in segmenting and classifying large-scale structures. 

 

Both of the pipelines have certain limitations. The SAM can 

produce inaccurate boundaries for irregularly shaped or visually 

ambiguous targets in both pipelines. Another limitation is that the 

CLIP model showed occasional mislabelling of smaller buildings 

or non-building features, suggesting that domain biases. 

Considering the success of VFMs in zero-shot building 

segmentation in this study, future research efforts to fine-tune 

these models or apply few-shot approaches will pave the way for 

their more widespread use in the field of remote sensing. 
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