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Abstract  

  

Nowadays, a rapid advancement of remote sensing technology has led to widespread recognition of its potential to improve the 

efficiency and reliability of crops inspection and monitoring. The objectives of this project are 1. To create a database of annual remote 

sensing data of economic crops from satellite imagery, 2. To study the cultivation patterns of economic crops based on annual changes 

in reflectance values. 3. To study the relationship between spectral signatures and growth characteristics obtained from field surveys. 

The remote sensing data from Sentinel 2 were calculated vegetation indices such as Normalized Difference Vegetation Index (NDVI), 

Green Normalized Difference Vegetation Index (GNDVI) and Normalized Difference Infrared Index (NDII) to study the correlation 

with crops growth parameters of five economic crops of Thailand such as sugarcane, cassava, pineapple, oil palm, and para rubber. 

The results show that spectral reflectance of each crop change all year round and synchronized with growth data such as height, canopy 

width, stem size, and leaves chlorophyll content. Therefore, the remote sensing data has a potential for the 5 economic tropical crops 

growth and health monitoring. The satellite imagery from some month can be used to create crop growth assessment models including 

height, canopy width, and stem size and leaves chlorophylls content. In addition, the effectiveness of the model depends on the type of 

vegetation index used.

 

 

1. Introduction 

 

The use of remote sensing technology, which acquires data 

through the collection of reflectance values from various objects 

on Earth, plays a critical role in managing and enhancing 

agricultural and agribusiness activities (Navalgund et al., 2007; 

Sowmya et al., 2017; Onojeghuo et al., 2018; Onojeghuo et al., 

2021; GISGeography, 2022; Pakdel-Khasmakhi, 2022; Kyriakos 

and Vavalis, 2023). Currently, remote sensing technology has 

advanced significantly, particularly in satellite imagery and 

unmanned aerial vehicles (UAVs), offering higher spatial 

resolution and multi-spectral data acquisition capabilities 

(Liaghat and Balasundram, 2010; Kulo, 2018; Sishodia et al., 

2020; Navalgund, 2001; Rattanakaew, 2018). This allows for the 

selection of appropriate spectral bands for various studies. Data 

from remote sensing serves as essential geospatial information in 

digital form, crucial for monitoring environmental and crop 

conditions due to its high quality, timebased analytical capability, 

and as a fundamental factor in creating and updating the national 

land use database. Thailand has an area of approximately 321 

million rai (about 51.4 million hectares), with around 138 million 

rai (about 22.1 million hectares) dedicated to agriculture, 

constituting 43 percent of the national area. The agricultural 

sector plays a vital role in the economy, contributing to 6 percent 

of the national GDP and employing nearly a third of the 

workforce. Key export crops like sugarcane (Thailand being the 

world’s second-largest sugar exporter), cassava (important in the 

animal feed and other industries), pineapple (significant in the 

food industry), rubber, and oil palm are crucial to both the 

economy and Thailand’s global standing in these markets. 

Remote sensing technology is thus vital in supporting agriculture 

and agribusiness management, enabling stakeholders to monitor 

and manage production efficiently. 

 

With remote sensing's capability for agricultural data analysis and 

monitoring, Thailand can enhance income security for farmers 

and the agribusiness sector. This benefits the management, study, 

and data preparation for remote sensing to support the analysis 

and monitoring of key crops in Thailand's economy, including 

sugarcane, cassava, pineapple, rubber, and oil palm. Effective 

remote sensing management of these crops directly benefits 

farmers by improving management strategies and increasing 

incomes. Both public and private sectors will be able to manage 

agricultural land more effectively, leading to enhanced 

productivity and economic growth.  

  

2. Literature review 

 

2.1 The Relevance of RS in Crop Growth Assessments   

 

Crop growth can reflect to crop yield because it serves as an 

indicator of the plant’s overall health and potential productivity. 

Healthy growth reflects adequate nutrient uptake, water 

availability, and favourable environmental conditions, all of 

which contribute to the development of more biomass, including 

the parts of the plant that are harvested. Crop growth study 

Traditionally, crop growth stages are observed from the ground, 

which is time-consuming and lacks spatial variability. Remote 

sensing Vegetation Index (VI) time series has been used to map 

land surface phenology (LSP) and relate to crop growth stages 

mostly after the growing season.  

 

Currently, remote sensing technology is increasingly being 

applied to study plant growth. This approach utilizes the 

differences in reflection and absorption of energy by plants across 

various wavelengths to calculate the band ratio of 

electromagnetic energy, known as Vegetation Indices. Vegetation 

Indices refer to calculations derived from specific spectral bands 

related to vegetation, where proportions of these bands are 

analysed to understand the interaction between electromagnetic 

energy from the sun and vegetation. This interaction reflects light 

differently across various times and conditions in agricultural 

areas. Vegetation indices are designed to enhance the data for 

better usability or to improve the clarity of the information 

relevant to the study. They can indicate the proportion of 

vegetation cover, the condition of the plants, and reveal the health 

and any abnormalities of vegetation in crop fields. In general, 

vegetation index values can be adapted for diverse applications 

depending on the research objectives. Examples of commonly 

used indices include the Normalized Difference Vegetation Index 
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(NDVI) (Rouse et al., 1974; Thompson et al., 2015), the Green 

Normalized Difference Vegetation Index (GNDVI) (Gitelson et 

al., 1996), and the Normalized Difference Infrared Index (NDII) 

(Hunt and Rock, 1989). These indices are valuable for real-time 

monitoring of crop growth, predicting or assessing characteristics 

such as leaf area, biomass, crop health, and vegetation density. 

These applications can be beneficial in various contexts, such as 

assessing seedling conditions (before and during planting stages), 

efficiently timing management techniques to ensure crop survival 

and yield, or promoting sustainable practices. Additionally, 

vegetation indices are useful in applications related to climate 

change impacts, especially regarding drought and extreme events 

like heat waves increasingly affecting drought-prone regions 

(Mongkonsawat, 1997). 

 

(a) Normalized Difference Vegetation Index (NDVI) is a popular 

index for indicating vegetation greenness, density, and health on 

each pixel of a satellite image. NDVI has been widely used in 

remote sensing since its introduction in the 1970s, especially in 

digital agriculture. It uses the reflectance ratio between near-

infrared (NIR) and red wavelengths, normalized to yield values 

between -1 and 1. Values close to 0 suggest a lack of green 

vegetation, while values around 0.8 or 0.9 indicate dense green 

vegetation. Areas covered with vegetation reflect more in the NIR 

than in the red spectrum, resulting in a positive NDVI, while bare 

soil shows similar reflectance in both bands, resulting in values 

near 0. Water surfaces, which reflect less in the NIR than in the 

red spectrum, result in negative values. Typically, NDVI values 

range from 0.1 to 0.7, making it effective for estimating plant 

vigour throughout the growing cycle by analysing the plant’s 

spectral reflection. NDVI enables comparisons over time to track 

growth patterns. Understanding NDVI helps in evaluating plant 

health and differentiating between healthy and stressed plants 

based on chlorophyll and structural density. NDVI relies on 

energy and light reflection, with NIR and red bands providing a 

dimensionless indicator between -1 and 1. Plants appear green 

due to chlorophyll, which reflects green light while absorbing red, 

thus a healthy plant with ample chlorophyll and cell structure 

reflects NIR during photosynthesis. On our platform, the scale on 

the right side of the field references crop vigour. Satellite sensors 

in space capture light wavelengths absorbed and reflected by 

green plants, making NDVI ideal for analysing vegetation. NDVI 

values help detect and quantify live green vegetation by 

measuring reflectance in the visible and near-infrared bands, as 

defined by the standard NDVI formula (Gao, 1996).  

(b) Green Normalized Difference Vegetation Index (GNDVI) is 

an index measuring vegetation greenness based on the difference 

between NIR and the green band in the electromagnetic spectrum, 

developed by Gitelson et al. (1996). GNDVI is more sensitive to 

chlorophyll variations in plants than NDVI and has a higher 

saturation point, making it suitable for dense vegetation or 

advanced growth stages. While NDVI is effective for early-stage 

vigour estimation, GNDVI serves as a photosynthesis activity 

indicator and a chlorophyll index, increasingly used to assess 

water and nitrogen levels in plant canopies due to its slower 

saturation compared to NDVI. As a  

widely used vegetation index, chlorophyll concentration serves as 

a key biomarker for various physiological processes linked to 

plant health, photosynthetic capacity, and stress detection, 

including drought stress. GNDVI values, ranging from -1 to 1, 

associate values between -1 and 0 with water presence or bare 

land. This index is primarily applied in the mid and late stages of 

the crop growth cycle.  

(c) Normalized Difference Infrared Index (NDII) is an index that 

measures reflectance by calculating the difference between the 

near-infrared (NIR) and shortwave infrared (SWIR) wavelengths, 

developed by Hunt and Rock (1989). The NDII uses the same 

calculation formula as the Normalized Difference Water Index 

(NDWI) introduced by Gao (1996) or the Normalized Difference 

Moisture Index (NDMI) (Sentinel Hub, 2017). NDII is sensitive 

to changes in water content in plant canopies (Ji et al., 2011) and 

can effectively detect water stress in vegetation. This sensitivity 

is due to the properties of SWIR reflectance, which shows a 

negative relationship with leaf water content, as water is strongly 

absorbed by leaves. The index values increase with rising water 

content, making it applicable for agricultural crop management, 

forest canopy monitoring, and detecting plant stress (Hardisky et 

al., 1983; Sentinel Hub, 2017). NDII can also detect root-zone 

water stress due to its sensitivity to vegetation water status. 

 

Because of this high sensitivity to plant water content, NDII 

provides more detailed information about vegetation conditions 

than NDVI. NDII shows a strong correlation with soil moisture 

in root zones at regional scales (Ochoa et al., 2022). The 

shortwave infrared wavelengths capture changes in both plant 

water content and the structure within the spongy mesophyll layer 

of plants, while NIR reflectance is influenced by internal leaf 

structure and leaf dry matter content, but not by water content. 

The combined analysis of NIR and SWIR wavelengths helps to 

remove variability caused by leaf structure and dry matter 

content, enhancing the accuracy of water content data extraction. 

The amount of water within the internal leaf structure largely 

governs electromagnetic reflectance in the SWIR range, meaning 

SWIR reflectance has a negative correlation with leaf water 

content. Thus, NDII can be used to track changes in leaf water 

content over time (Sentinel Hub, 2017). NDII values range from 

-1 to 1, with typical values for green vegetation lying between 

0.02 and 0.6 (Hardisky et al., 1983; Sentinel Hub, 2017).  

 

No. VIs Formula References 

a NDVI (NIR - red) / (NIR + red) Rouse et al., 1974 

b GNDVI (NIR - Green) / (NIR + Green) Gitelson et al., 1996 

c NDII (NIR - SWIR) / (NIR + SWIR) Hunt and Rock, 1989 

Table 1. Various Vegetation Indices. 

  

This study hypothesizes that different plant species and growth 

stages exhibit variations in light absorption and reflection across 

both visible and non-visible wavelengths. Remote sensing data, 

which captures images across multiple wavelengths—including 

visible and non-visible spectra—are commonly used to calculate 

vegetation indices. These indices effectively analyze 

relationships with various growth parameters, enabling 

applications such as plant species classification, growth stage 

identification, and growth rate estimation.  

Vegetation index values vary throughout the year, particularly for 

crops with planting-harvest-replant cycles. For instance, 

perennial crops tend to have higher vegetation indices like NDVI 

and GNDVI compared to seasonal crops. After harvesting, 

croplands exhibit low NDVI and GNDVI values, which gradually 

increase as new crops are planted and grow. However, remote 

sensing data collection for the growth stages of five key economic 

crops remains limited.  

  

Studying monthly variations in vegetation indices not only 

reveals growth stages but also provides reference statistics for 

crop area classification using both visual and computer-based 

methods. This is particularly relevant in areas with small, mixed 

crop plots, such as cassava and sugarcane fields, where farmers 

often intersperse or rotate crops across plots. Satellite imagery 

classification in such cases can be challenging without 

experienced interpreters. These data can serve as a database for 

less experienced analysts and as thresholds for computer-based 

classification, especially in multi-temporal analysis using 
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decision tree models. This approach enhances the accuracy of 

mapping five key economic crops. 

 

Modeling relationships using regression equations is a popular 

method to correlate plant growth parameters—such as height and 

canopy width—with remote sensing data from reference plots. 

This method facilitates growth analysis and yield estimation. 

Growth parameters are treated as dependent variables, while 

remote sensing data serve as independent variables. The resulting 

models can predict growth parameters for adjacent plots by 

substituting vegetation index values into the equations, 

significantly reducing time and field data collection costs. 

Satellite imagery covers large areas and is easily analyzed with 

geospatial technology software, this approach is well-suited for 

studying plant abnormalities in extensive areas, forecasting 

growth, and estimating yields quickly. Such near real-time data 

allow relevant agencies to efficiently manage operations, such as 

plot management, input use, and production planning. 

 

2.2 Sentinel 2  
 

The Sentinel satellites are a series of natural resource monitoring 

satellites developed by the European Space Agency (ESA). This 

initiative was developed as part of the nextgeneration Earth 

observation missions under the Copernicus program, a 

collaborative effort between ESA and the European Commission. 

The aim of the Sentinel program is to replace older Earth 

observation missions, such as the ERS and Envisat missions, 

which have been decommissioned or are nearing the end of their 

operational lifespan. This ensures continuity of data without any 

gaps, supporting ongoing studies. Each mission focuses on 

various aspects of Earth observation, such as monitoring the 

atmosphere, oceans, and land. The data collected is applied in a 

wide range of applications (European Space Agency, 2022). 

 

Sentinel-2 is part of the Copernicus program, the largest Earth 

observation program overseen by the European Commission in 

collaboration with ESA under the Global Monitoring for 

Environment and Security (GMES) program. Its objective is to 

enhance the EU’s capacity to provide and utilize environmental 

and security-related information. Sentinel-2 is a wide-swath 

satellite designed to capture continuous imagery of the Earth’s 

surface, building on data continuity from the Landsat and SPOT 

satellites. Launched into orbit in 2015, Sentinel-2 consists of two 

Earth observation satellites, Sentinel-2A and Sentinel-2B. These 

satellites capture solar reflectance data from the Earth’s surface, 

operating in sun-synchronous orbits with a 180-degree phase 

difference, at an altitude of 786 kilometers. They monitor 

variations in land surface conditions with an image swath width 

of 290 kilometers and revisit the same area every 10 days at the 

equator with a single satellite, or every 5 days with two satellites 

under cloud-free conditions (2-3 days at midlatitudes). This 

enables tracking of surface changes on Earth (European Space 

Agency, 2022). 

 

The mission of Sentinel-2 provides continuous imaging, 

transmitting data to ground stations every 5-7 days. It is valuable 

for terrestrial and marine monitoring, natural disaster mapping, 

and maritime vessel detection. The multispectral instrument 

(MSI) on board records reflectance data across 13 spectral bands, 

including visible light, near-infrared, and shortwave infrared 

bands, with spatial resolutions ranging from 10 to 60 meters. 

Sentinel-2 captures continuous imagery, transmitting data to 

ground stations every 5-7 days. Sentinel-2 is grouped by spatial 

resolution (Table 2): 10-meter resolution for four bands (bands 2, 

3, 4, and 8); 20-meter resolution for six bands (bands 5, 6, 7, 8A, 

11, and 12); and 60-meter resolution for three bands (bands 1, 9, 

and 10) (European Space Agency, 2022). 

 

Band  Wavelength Wavelength (αm) Resolution (m) 

1 Coastal aerosol 0.443 60 

2 Blue 0.490 10 

3 Green 0.560 10 

4 Red 0.665 10 

5 Vegetation Red Edge 0.708 20 

6 Vegetation Red Edge 0.740 20 

7 Vegetation Red Edge 0.783 20 

8 Near Infrared 0.842 10 

8A Vegetation Red Edge 0.865 20 

9 Water vapour 0.945 60 

10 SWIR - Cirrus 1.375 60 

11 SWIR 1.610 20 

12 SWIR 2.190 2 

Table 2. Sentinel 2 image. Source: European Space Agency 

(2022). 

  

3. Methodology 

  

1. Site selection: The selection of the operational area is based 

on choosing sub-watersheds that primarily have areas for growing 

five economic crops, namely sugarcane, cassava, pineapple, 

rubber, and oil palm.   

2. Data Gathering: Collect a geospatial database and other 

relevant data related to the cultivation of the five major economic 

crops  

3. Study Areas selection: Select study plots within the 

subwatershed under study to be used as reference plots for the 

study of wave signature values and the collection of data on plant 

growth changes throughout the year. The steps are as follows:  

3.1 Selection of Reference Plots: Reference plots are 

selected using systematic sampling, with the plots chosen based 

on the type of crop to ensure distribution across the subwatershed 

being studied.  

3.2 Selection of Reference Plots for Each Crop Using 

Purposive Sampling, Considering Plots with Sizes Ranging from 

10 to 50 Rai.  
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Figure 1. Distribution areas of five economic crops in Lam 

Phachi Sub-Basin. 

  

4. Collect data and prepare Sentinel 2 satellite imagery of the 

COPERNICUS/S2 type for the Lam Phachi Sub-Basin and 

Khlong Luang Sub-Basin by calculating three vegetation indices: 

NDVI, GNDVI, and NDII through 

https://code.earthengine.google.com/. The resulting values will 

be the monthly median value for each month of the study year.  

5. Field Data Collection: Conduct surveys and collect plant data 

in reference plots, including height, canopy width, stem diameter, 

and chlorophyll content using the SPAD-502 chlorophyll meter 

by Konica Minolta. The plant data will be randomly sampled 

from five plants per plot to calculate the average. The plants 

selected for sampling will be those that exhibit similar growth 

patterns across the entire plot, with sampling points spread evenly 

throughout the plot.  

6. Analyze the relationship between reflectance data and field 

data using a regression model, considering the correlation values 

from the p-value and r-square.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Distribution areas of five economic crops in Khlong 

Luang Sub-Basin. 

  

4. Results 

 

The creation of a database to study the cropping patterns of 

economically significant plants through annual spectral 

reflectance changes revealed that the reflectance values of five 

plant species varied distinctly throughout the year. By applying 

regression analysis to investigate the relationship between 

spectral signatures and morphological characteristics of these five 

economic plants, it was found that three vegetation indices were 

correlated with morphological attributes, including plant height, 

canopy width, stem size, and chlorophyll content in leaves. The 

type of equation used and the data periods analyzed affected the 

resulting r2 and p-values of the model. Generally, incorporating 

multiple vegetation indices in a multiple linear regression 

equation enhanced the correlation between spectral signatures 

and morphological attributes, with the highest correlations 

observed in each model. These models can be further used to 

estimate the growth and health status of the five plant species. 

The detailed study results are as follows: 

 

4.1 Sugarcane  

 

The reflectance values exhibit clear changes throughout the year. 

During the period after harvest when the crop is either waiting to 

sprout again or being replanted (February-March), the vegetation 

index is at its lowest. It then steadily increases as the sugarcane 

starts to sprout (April-May) and continues through the growth 

stage (June-September). The vegetation index peaks near harvest 

time (October-November) and decreases during the harvesting 

period (December-January), reaching its lowest again after 

harvest, completing the annual cycle. However, the physiological 

characteristics and reflectance values of sugarcane exhibit 
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considerable variability between January and March, due to some 

fields having already been harvested while others have not. The 

changes in the physiological characteristics and reflectance 

values follow a clear pattern, which can be attributed to the 

defined planting period for sugarcane, as planting must align with 

the factory's designated purchasing periods. Therefore, 

reflectance values can be used to study the sugarcane planting 

cycle and to classify areas where sugarcane is sprouting, standing, 

harvested, or awaiting new growth. The highest correlation 

between spectral signatures and the physiological characteristics 

of sugarcane each year is shown in Table 3 and 4. 

 

Year Month Equation r2 

Height 

2021 Apr 
H = -223.418 + 910.22b - 

29.836c 
0.61** 

2022 Feb 
H = 270.387 + 49.330a+ 

1224.933c 
0.47** 

2023 Mar 
H = 19.507 + 930.483a+ 

800.599c 
0.65** 

Canopy Width 

2021 - - - 

2022 Feb 
W = 64.923 + 343.714a + 

301.348c 
0.60** 

2023 Sep W =194.598 -131.087a 0.44** 

Stem Size 

2021 - - - 

2022 - - - 

2023 - - - 

Leaf chlorophylls Content 

2021 Apr 
CHLO = 56.871 + 131.087a - 

209.544b -35.863c 
0.75** 

2022 - - - 

2023 - - - 

Table 3. The highest correlation between spectral signatures and 

biometric parameters of sugarcane in Lam Phachi Sub-Basin. 

Remarks: a = NDVI, b = GNDVI, c = NDII   

*  = p < 0.05, model inefficint less than 5%   

** = p < 0.01, model inefficint less than 1%   

  

  

  

  

  

  

  

  

  

  

  

 

 

 

  

 

 

 

Year Month Equation r2 

Height 

2021 Sep H = 192.649 + 290.256c 0.43* 

2022 Mar 
H = -9.455 + 358.269a - 

41.646c 
0.56** 

2023 Jun 
H = 124.581 -506.648a 
+548.658b + 227.280c 

0.75** 

Canopy Width 

2021 May 
W = 82.432 + 53.421a + 

136.621c 
0.49** 

2022 Apr 
W = 7.773 -48.975a + 
40.975b + 453.045c 

0.56** 

2023 Jun 
W = 133.899 -277.437a + 

312.377b + 141.206c 
0.73** 

Stem Size 

2021 May 
SZ = 3.203 + 2.967a + 

6.170c 
0.52** 

2022 Oct 
SZ = 1.253 + 0.622a + 

4.855b 
0.33** 

2023 - - - 

Leaf chlorophylls Content 

2021 Aug CHLO = 38.792 + 31.250c 0.47** 

2022 Mar CHLO = 27.664 + 50.645b 0.34** 

2023 Jun 
CHLO = 32.325 -19.958a + 

42.991b + 5.648c 
0.62* 

Table 4. The highest correlation between spectral signatures and 

biometric parameters of sugarcane in Khlong Luang Sub-Basin. 

Remarks: a = NDVI, b = GNDVI, c = NDII   

*  = p < 0.05, model inefficint less than 5%   

** = p < 0.01, model inefficint less than 1%   

  

4.2 Cassava 

 

It was found that the period from February to April is when the 

vegetation index of the cassava planting fields is at its lowest. 

This is due to the fact that during this period, most farmers have 

not yet planted cassava cuttings, or if they have, the cassava has 

not yet sprouted. As a result, the vegetation index during this time 

behaves similarly to the reflectance values or soil vegetation 

index. The vegetation index begins to increase from May to 

November because there are cassava plants that are actively 

growing in the fields during this time. The vegetation index starts 

to decline from December to January as farmers begin harvesting, 

and it reaches its lowest point in February when the cassava has 

been fully harvested. The highest correlation between the spectral 

signature and the phenological values of cassava each year is 

shown in Table 5 and 6.  
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Year Month Equation r2 

Height 

2021 - - - 

2022 - - - 

2023 Jun H = -10.886 + 61.360a + 

248.342b + 161.524c 
0.46** 

Canopy Width 

2021 Dec W = -58.607 + 344.490b - 

115.757c 
0.46** 

2022 Jan W = -65.159 + 216.072a + 

439.681b 

0.47** 

2023 Jun W = 34.796 + 603.498a - 

491.880b -148.22c 

0.57** 

Stem Size 

2021 Apr SZ = -0.267 + 5.250a 0.44** 

2022 - - - 

2023 Jul SZ = -0.076 + 3.825a 0.48** 

Leaf chlorophylls Content 

2021 - - - 

2022 - - - 

2023 Sep CHLO = 27.409 + 62.755b 0.70** 

Table 5. The highest correlation between spectral signatures and 

biometric parameters of Cassava in Lam Phachi Sub-Basin. 

Remarks: a = NDVI, b = GNDVI, c = NDII   

*  = p < 0.05, model inefficint less than 5%   

** = p < 0.01, model inefficint less than 1% 

 

Year  Month  Equation  r2  

  Height   

2021  Sep  H = -402.443 + 768.175a + 

101.832b  

0.54**  

2022  Mar  H = 156.137 -336.411c  0.28**  

2023  Mar  H = -55.573 + 445.814a + 

172.247b + 134.866c  

0.79**  

  Canopy Width   

2021  Sep  W = 14.860 +96.559a + 123.781c  0.74**  

2022  Mar  W = -7.255 + 152.079a +  

88.336b  

0.76**  

2023  Mar  W = 25.707 + 83.987a + 66.456b  

+ 46.871c  

0.54**  

  Stem Size   

2021  Dec  SZ = 0.983 -3.084a + 3.659b +  

4.842c  

0.40**  

2022  Jul  SZ = -0.387 + 3.811a + 1.845b  0.72**  

2023  Mar  SZ = -0.044 + 3.603a + 1.544b +  

0.987c  

0.50**  

  Leaf chlorophylls Content   

2021  -  -  -  

2022 Jun  CHLO = 58.364 -32.586a  0.31**  

2023 Mar  CHLO = 37.153 + 27.288a +  

4.258b + 8.477c  

0.65**  

Table 6. The highest correlation between spectral signatures and 

biometric parameters of Cassava in Khlong Luang Sub-Basin. 

Remarks: a = NDVI, b = GNDVI, c = NDII   

*  = p < 0.05, model inefficint less than 5%   

** = p < 0.01, model inefficint less than 1%  

  

4.3 Pineapple 

 

The comparison of the average 5-year reflectance values or 

vegetation index (VI) in each month for pineapple with the 5-year 

average vegetation index in each month for sugarcane and 

cassava shows that the vegetation index values for pineapple tend 

to be higher. The NDVI values ranged from 0.365 to 0.560, the 

GNDVI values ranged from 0.350 to 0.471, and the NDII values 

ranged from 0.063 to 0.197. It was found that the vegetation index 

values for pineapple tend to be higher in months with more 

rainfall and lower in months with less rainfall, similar to the 

variation in chlorophyll levels. Therefore, it may be possible that 

the three vegetation indices have the potential to estimate the 

chlorophyll content in pineapple leaves and can be used to predict 

water stress and water requirements for pineapples. The use of 

satellite imagery, particularly from Sentinel 2, which provides 

data every 10 days, allows for the calculation of the average 

monthly vegetation index over 5 years for reference plots, which 

can also be used to study the growth cycle of pineapple, just as it 

has been done for sugarcane and cassava. 

 

The average 5-year monthly vegetation index values can be 

divided into two periods. The first period, from February to April, 

is when the vegetation index values in the pineapple fields are 

lower. The average NDVI values range from 0.365 to 0.374, the 

average GNDVI values range from 0.350 to 0.364, and the 

average NDII values range from 0.063 to 0.071. This period 

corresponds to the dry season, when farmers harvest and wait for 

rainfall to enable further growth of the pineapple or prepare the 

fields for replanting. The second period, from May to January, is 

when the vegetation index values in the pineapple fields are 

higher. The average NDVI values range from 0.417 to 0.560, the 

average GNDVI values range from 0.376 to 0.471, and the 

average NDII values range from 0.105 to 0.197. This period 

aligns with the changes in chlorophyll levels in the leaves each 

month. The highest correlation between the spectral signature and 

the physiological characteristics of pineapple in each year is 

shown in Table 7 and 8. 

 

Year  Month  Equation  r2  

  Height   

2021  Dec  
H = -6.231 + 103.587a +  

22.435b  0.49**  

2022  Feb  H = 46.733 + 104.034c  0.57**  

2023  Jul  
H = 73.381 -53.024a -29.606b  

-22.734c  
0.56*  

  Canopy Width   

2021  May  
W = 43.302 + 14.822b 

+93.349c  0.43**  
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2022  Apr  
W = -8.439 + 140.712a + 

118.825b -41.792c  
0.48*  

2023  -  -  -  

 
 

Leaf chlorophylls Content   

2021  Jul  CHLO = 109.338 -97.203a  0.38**  

2022  Feb  
CHLO = 56.850 -124.543a + 

102.652b + 90.633c  
0.43*  

2023  Dec  CHLO = 30.850 + 72.856b  0.41**  

Table 7. The highest correlation between spectral signatures and 

biometric parameters of Pineapple in Lam Phachi Sub-Basin. 

Remarks: a = NDVI, b = GNDVI, c = NDII   

*  = p < 0.05, model inefficint less than 5%   

** = p < 0.01, model inefficint less than 1%  

 

Year  Month  Equation  r2  

 
Height  

 

2021  Aug  
H = -14.381 + 107.865a +  

84.108Gb  0.68*  

2022  Jan  
H = 47.634 + 349.591a 

328.243b + 17.488c  
0.58**  

2023  Aug  
H = -30.795  -172.743a+ 

425.012b + 14.915c  
0.67**  

 
Canopy Width  

 

2021  May  
W = 127.770 -61.712a 

109.046b  0.60*  

2022  Jan  
W = 19.144 + 

390.892a268.330b -46.522c  
0.81**  

2023  Aug  
W = -57.923 -258.945a+ 

658.340b  0.74**  

 Leaf chlorophylls Content   

2021  -  -  -  

2022  -  -  -  

2023  Aug  
CHLO = 32.486 + 44.735a +  

13.769b + 47.611c  0.55*  

Table 8. The highest correlation between spectral signatures and 

biometric parameters of Pineapple in Khlong Luang Sub-Basin. 

Remarks: a = NDVI, b = GNDVI, c = NDII   

*  = p < 0.05, model inefficint less than 5%   

** = p < 0.01, model inefficint less than 1%  

  

4.4 Para Rubber 

 

The rubber tree's Vegetation Index (NDVI) from January to April 

typically has a lower average value, ranging from 0.436 to 0.540. 

This is consistent with the lower chlorophyll content in the leaves 

during this period, as it coincides with the dry season. During this 

time, the rubber tree leaves change color and shed. The 

Vegetation Index of rubber gradually increases from May to 

November, which is the rainy season, allowing the rubber tree to 

sprout new leaves. The leaves and trees grow well due to adequate 

water availability, and the leaves accumulate higher levels of 

chlorophyll. The NDVI ranges from 0.536 to 0.678 during this 

period. However, in August, the 5-year average NDVI decreases 

slightly, which may be due to reduced rainfall from June to 

August, affecting the water supply to the rubber trees and 

potentially impacting their growth. Rubber trees are perennial 

plants, but their growth cycle is closely linked to the seasons and 

the amount of water they receive, similar to pineapples. The 

study's results suggest the potential to estimate chlorophyll 

content and predict water stress and water requirements for 

rubber trees. Additionally, it was found that the Vegetation Index 

of rubber is higher than that of sugarcane, cassava, and pineapple. 

The highest correlation between the spectral signatures and the 

physiological values of rubber trees in each year is shown in 

Table 6.  

 

Year Month Equation r2 

Height 

 

2021 

 

Apr 

 

H = 932.41e2.797C 

 

0.64** 

 

2022 

 

Mar 

 

H = 9695.4b1.7486 

 

0.43** 

 

2023 

 

Apr 
H = 1914.179 + 3478.520a - 

6061.918b + 5096.662c 

 

0.40** 

Canopy Width 

 

2021 

 

Apr 

 

W = 456.97e2.1234c 

 

0.58** 

 

2022 

 

Mar 

 

W = 463.89e2.4051c 

 

0.34** 

 

2023 

 

Apr 

 

W = 1309.2a0.6185 

 

0.36** 

Stem Size 

 

2021 

 

Apr 
SZ = 56.824 -258.560a + 246.777b + 

132.052c 

 

0.48** 

 

2022 

 

Mar 

 

SZ = 112.61b + 17.316 

 

0.27** 

 

2023 

 

Apr 
SZ = 36.239 -14.868a + 81.316b + 

31.636c 

 

0.49** 

Leaf chlorophylls Content 

 

2021 

 

Nov 
CHLO = 34.424 -12.529a + 56.203b 

+ 36.385c 

 

0.81** 

2022 Jan CHLO = 104.43c + 40.424 0.52** 

 

2023 

 

Apr 
CHLO = 32.700 + 75.819a -23.270b 

-17.091c 

 

0.39** 

Table 9. The highest correlation between spectral signatures and 

biometric parameters of Para rubber in Lam Phachi Sub-Basin. 

Remarks: a = NDVI, b = GNDVI, c = NDII   

*  = p < 0.05, model inefficint less than 5%   

** = p < 0.01, model inefficint less than 1%  
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Year Month Equation r2 

Height 

 

2021 

 

Apr 
H = 382.595 + 1035.323a + 70.241b 

+ 1933.167c 

 

0.28** 

 

2022 

 

Mar 
H = -17.878 + 1271.153a + 

1968.876b + 3716.948c 

 

0.34** 

 

2023 

 

Apr 
H = 584.046 + 1625.316a + 

2368.925b + 2992.900c 

 

0.79** 

Canopy Width 

 

2021 

 

Apr 
W = 144.093 + 559.844a + 

405.947b+ 160.288c 

 

0.34** 

 

2022 

 

Mar 
W = 161.532 + 732.263a + 432.353b 

+ 1117.480c 

 

0.43** 

 

2023 

 

Apr 
W = 411.806 + 598.446a + 749.956b 

+ 1023.525c 

 

0.59** 

Stem Size 

 

2021 

 

Apr 
SZ = 13.930 + 38.923a + 14.214b + 

38.079c 

 

0.33** 

2022 Mar 
SZ = 1.069 + 55.326a + 63.460b + 

55.384c 
0.38** 

2023 Apr 
SZ = 25.458 + 44.23a + 66.522b + 

72.683c 
0.63** 

Leaf chlorophylls Content 

2021 Nov 
CHLO = 55.476 -28.143a+ 45.837b 

-37.117c 
0.61** 

2022 Jan 
CHLO = 33.940 + 8.640a + 1.250b 

+ 72.015c 
0.48* 

2023 Apr 
CHLO = 43.730 + 12.274a + 

13.934b + 11.368c 
0.58** 

Table 10. The highest correlation between spectral signatures 

and biometric parameters of Para rubber in Khlong Luang Sub-

Basin. 

Remarks: a = NDVI, b = GNDVI, c = NDII   

*  = p < 0.05, model inefficint less than 5%   

** = p < 0.01, model inefficint less than 1%  

  

4.5 Oil Palm 

 

The vegetation index of oil palm during the period from February 

to April has an average NDVI value that is low, ranging from 

0.476 to 0.488, which corresponds to lower chlorophyll content 

in the leaves compared to other periods. This is due to the dry 

season, where water may be insufficient for the growth of oil 

palm. The vegetation index of oil palm gradually increases from 

May to November, which is the rainy season, allowing the leaves 

and trees to grow well due to sufficient water, and chlorophyll 

content in the leaves increases. Since oil palm is a perennial plant, 

its growth cycle is aligned with the seasons and the amount of 

water it receives, similar to pineapple and rubber trees. The 

findings of this study may have potential for estimating 

chlorophyll content and predicting water stress and water 

requirements of oil palm. Additionally, it was found that the 

vegetation index of oil palm is higher than that of sugarcane, 

cassava, and pineapple, which are crops grown in smaller fields. 

However, when compared with the vegetation index of rubber, 

which is also a perennial plant, the vegetation index of oil palm 

tends to be higher during the season. Moreover, the five-year 

average NDII index of oil palm is significantly higher than other 

crops, as oil palm has a large canopy, is evergreen, and 

continuously covers the field, resulting in a higher NDII value. 

The highest correlation between spectral signatures and 

physiological characteristics of oil palm each year is shown in 

Table 7. 

 

Year Month Equation 

 

r2 

Height 

2021 - - - 

 

2022 

 

Mar 
H = -15.562 + 967.428a 

+789.795b + 1781.790c 

 

0.55** 

 

2023 

 

Apr 
H = 1342.830 -5288.715a + 

3128.109b + 4846.635c 

 

0.44** 

Canopy Width 

2021 - - - 

 

2022 

 

Mar 
W = 1272.893 + 625.177a - 

1443.405b+ 443.083c 

 

0.54** 

 

2023 

 

Apr 
W = 491.227 + 196.636a + 

692.451b + 866.515c 

 

0.40** 

Stem size 

2021 - - - 

 

2022 

 

Mar 
SZ = 194.176 -465.993a + 

265.040b + 423.888c 

 

0.56** 

 

2023 

 

Apr 
SZ = 150.612 + 177.864a + 

84.278b + 49.913c 

 

0.42** 

Leaf chlorophylls Content 

 

2021 

 

Dec 
CHLO = 43.201 + 3.824a + 

29.457b + 21.444c 

 

0.53** 

 

2022 

 

Feb 
CHLO = 64.424 -78.008a + 

116.943b + 17.131c 

 

0.59** 

 

2023 

 

May 
CHLO = 35.718 -140.649a + 

247.959b + 37.816c 

 

0.85** 

Table 11. The highest correlation between spectral signatures 

and biometric parameters of Oil Palm in Lam Phachi Sub-Basin. 

Remarks: a = NDVI, b = GNDVI, c = NDII   

*  = p < 0.05, model inefficint less than 5%   

** = p < 0.01, model inefficint less than 1%  
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Year Month Equation r2 

Height 

2021 Apr 
H = 421.316 + 326.211a+ 

394.315b + 1059.954c 
0.39** 

2022 Mar 
H = -816.622 + 3195.892a+ 

2466.027b + 2285.257c 
0.47** 

2023 Apr 
H = 309.621 + 1144.942a + 

2431.173b + 2763.557c 
0.60** 

Canopy Width 

2021 Apr 
W = 590.044 + 181.329a + 

323.117b + 317.041c 
0.47** 

2022 Mar 
W = 496.838 + 345.181a + 

761.124b + 651.668c 
0.43** 

2023 Apr 
W = 885.148 + 118.064a + 

477.726b + 420.063c 
0.51** 

Stem size 

2021 Apr 
SZ = 176.603 + 65.584a + 

46.989b + 23.746c 
0.39** 

2022 Mar 
SZ =199.853 -9.476a + 

84.390b + 166.812c 
0.42** 

2023 Apr 
SZ = 206.797 + 146.412a - 

21.797b + 71.173c 
0.54** 

Leaf chlorophylls Content 

2021 Dec 
CHLO = 85.579 -11.070a - 

8.920b -10.220c 
0.53** 

2022 Apr 
CHLO = 57.078 + 9.144a + 

22.731b + 25.886c 
0.55** 

2023 Apr 
CHLO = 61.466 + 13.966a + 

12.831b + 22.031c 
0.68** 

Table 12. The highest correlation between spectral signatures 

and biometric parameters of Oil Palm in Lam Phachi Sub-Basin. 

Remarks: a = NDVI, b = GNDVI, c = NDII   

* = p < 0.05, model inefficint less than 5%

** = p < 0.01, model inefficint less than 1%

5. Summary

5.1 Developing an Annual Remote Sensing Database for Key 

Crops Using Satellite Imagery with Google Earth Engine: 

Satellite imagery is collected and mosaicked using Google Earth 

Engine to generate monthly images, enabling annual 

phenological monitoring of five crop types. This database can 

serve as a foundation for creating localized crop calendars, 

providing insights into planting and harvest timings. It also aids 

in estimating cultivated areas and forecasting harvestable land for 

these economic crops.  

5.2 Vegetation Index Variability as an Indicator of Phenological 

Changes: The vegetation index varies over time, corresponding 

to phenological changes, such as plant height and canopy width. 

These characteristics, consistent year by year, enable assessment 

of crop health annually. For example, in years with adverse 

weather, like low rainfall, poor crop growth is observed, reflected 

in lower vegetation indices such as NDVI and GNDVI compared 

to years with favourable weather conditions. 5.3 Potential of 

Vegetation Indices in Modeling Crop Growth: Vegetation indices 

have the potential to create models assessing different growth 

parameters and can use satellite imagery from selected months 

for modeling. The three vegetation indices exhibit potential for 

modeling crop height, canopy width, stem size, and chlorophyll 

content, aiding in crop health assessment and growth prediction.  
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