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Abstract 

 

Air pollution is a serious issue in terms of public and environmental health. In this regard, it is important to determine its compliance 

with the standards by continuous monitoring. For this purpose, air quality ground monitoring stations have been established as part 

of monitoring systems. While these stations provide highly accurate data, they are point-based and costly. Satellite data, which 

provides a wide coverage area, enables local and global analysis while providing data with low spatial resolution. Integration of 

ground and satellite data using machine learning (ML) algorithms enables more accurate regional analysis. For this purpose, 

estimation analysis of the NO2 parameter, which is the most measured parameter at ground monitoring stations and has a major 

impact on its formation by human activities, was conducted for the Istanbul megacity using freely accessible Sentinel-5P satellite 

data. The performance of three ML algorithms, namely multi-layer perceptron (MLP), support vector regression (SVR), and 

XGBoost regression (XGB), in estimating the ground level-NO2 parameter was evaluated both quantitatively using RMSE and MAE 

accuracy metrics and qualitatively by visual analysis. The model was trained with data covering the years 2019-2022, validated with 

data for 2023, and tested with data for 2024. According to the results obtained, while the three models gave similar results with 

RMSE values of 19.59, 19.65, and 20.03 µg/m3 and MAE values of 15.00, 14.34, and 15.90 µg/m3 in the test data, SVR and MLP 

models provided higher accuracy in the seasonal assessment. In the visual assessment, the SVR model results provide a more 

accurate approach. 

 

 

1. Introduction 

Increasing population rates lead to higher consumption levels 

and accelerate raw material production. As populations 

concentrate in specific areas, metropolitan cities emerge, and 

communities within these limited regions contribute 

significantly to air pollution due to their production and 

consumption activities. Factors such as logistics, 

industrialization, housing, and heating all play a role in 

exacerbating air pollution. Identifying and managing the 

pollution generated by these factors are crucial for human 

health. 

  

There are various pollutants such as nitrogen dioxide (NO2), 

sulphur dioxide (SO2), carbon monoxide (CO), ozone (O3), and 

particular matter (PM2,5 and PM10). Daily exposure of these 

pollutants emitted by anthropogenic activities such as 

transportation and industrial activities and natural processes 

such as wildfires and lightning causes health issues that may 

lead to death (Semlali, 2019). Among these pollutants, the 

concentration of NO2 gas in the air is a commonly used 

indicator for assessing air quality and pollution levels. 

Combustion of fossil fuels and biomass burning are the main 

sources of NO2 pollutant in megacities (Zhang et al., 2003). 

Accumulation of high concentrations of NO2 around emission 

sources (Chi et al., 2022), results in long-term exposure to NO2. 

This leads to respiratory diseases (Manisalidis et al., 2020), and 

NO2 contributes to the creation of secondary pollutants like O3 

and aerosol nitrates, which can result in acid rain and decreased 

visibility (Seinfeld and Pandis, 2016). The World Health 

Organization (WHO) has stated that following the guidelines 

for NO2 could prevent many deaths caused by air pollution 

(Song et al., 2023). To ensure health-safe living environments, 

this parameter should be continuously monitored, and any 

changes in its concentration should be identified.  

 

Air quality in urban sites has been monitored with air quality 

monitoring stations which are among the main sources for 

collecting data for this purpose (Cedeno Jimenez and Brovelli, 

2023). However, the need for periodic calibration of ground 

monitoring stations and the fact that they are affected by 

environmental changes constitute the disadvantages of these 

data sources. The cost of installation, maintenance, and 

calibration of ground stations negatively affects the interest in 

air quality analysis for local governments. These reasons have 

triggered research on alternative sources for monitoring air 

quality. In this process, satellite-based air quality analyses have 

gained importance, but the detection capabilities of these 

sources in the troposphere layer pose difficulties in observing 

the interaction with ground-based activities. Unlike point-based 

ground stations, satellite sources enable regional analysis due to 

their wide coverage and repeated data acquisition from the same 

area. Additionally, they provide information about regions 

where ground monitoring stations have not been established. 

However, since accuracy analysis cannot be performed in these 

regions, studies have been conducted to enhance data reliability 

by models integrating ground station measurements and satellite 

sources. Multiple studies have established models that integrate 

the Sentinel-5P TROPOMI dataset with ground monitoring 

stations using machine learning (ML) algorithms for various 

regions, including China (Chi et al., 2022), East Asia (Kang et 

al., 2021), and Europe (Shetty et al., 2024). Although studies 

have examined the distribution of NO2 over Istanbul province 

(Kaplan et al., 2019; Makineci, 2022; Cavdaroglu and Arik, 

2023), no study has been identified that specifically integrates 

satellite data with ground monitoring data using machine 

learning algorithms for Istanbul. 

 

In this study, the potential of ML regression models developed 

with freely available Sentinel-5P satellite data and 

measurements of air quality ground monitoring stations was 

investigated for ground-level NO2 estimation over Istanbul. 
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With this aim, the models were developed using data collected 

between the years 2018 and 2023 and were tested for 2024. The 

performance of three different ML algorithms was compared 

using accuracy metrics such as root mean square error (RMSE) 

and mean absolute error (MAE). Quantitative and qualitative 

assessments of the results obtained were also seasonally 

evaluated. 

 

2. Study Area and Materials 

Istanbul, a metropolitan city in Turkey with a population of 

approximately 15.6 million, was used as the study area. The air 

pollution in this city, characterized by frequent traffic 

congestion and industrial zones, is continuously monitored by 

40 ground-based air quality monitoring stations. For this study, 

32 stations that consistently measure NO2 levels were included 

in the estimation process. The hourly measurements of ground 

monitoring stations were collected within the scope of the Air 

Quality Monitoring Project carried out under the administration 

of Istanbul Metropolitan Municipality and serve on the web 

portal (https://havakalitesi.ibb.gov.tr/). 

 

 

 

Figure 1. Study area region with the ground air quality monitoring stations on Google Earth image. 

 

NO2 concentration estimation was realized using not only 

ground monitoring stations but also the Sentinel-5P TROPOMI 

dataset. Sentinel-5P satellite carrying the TROPOMI instrument 

was developed in collaboration with the European Space 

Agency (ESA) and The Netherlands with the aim of performing 

atmospheric measurements with high spatio-temporal 

resolution. Sentinel-5P data has 5.0×3.5 km spatial resolution in 

the satellite flight direction and the perpendicular direction at 

nadir. In the study, ground monitoring stations were matched 

with the corresponding pixels of the Sentinel-5P datasets on the 

same date. The Sentinel-5P datasets were extracted by using the 

Google Earth Engine cloud computing platform which stores 

archive data and enables to collect and analyze satellite images 

and spatial datasets. 

 

The Sentinel-5P satellite images and ground-based observations 

for the years 2018-2024 were collected. While the values 

corresponding to each station in the satellite pixel were taken as 

input data, the output data was determined by the hourly station 

data corresponding to the satellite passing hours. Additionally, 

station values lower than 1 µg/m³ and higher than 300 µg/m³ 

were removed to eliminate their misleading impact on the 

model. After this data preparation step, data was divided into 3 

parts: training, validation, and test. The data collected from 

2018 to 2022 serves as the training data, the data from 2023 is 

used for validation, and the data from 2024 is used for testing. 

The statistical specifications of the data are given in Table 1. 

 

 

 

 

Data 
Min 

(µg/m³) 

Max 

(µg/m³) 

Mean 

(µg/m³) 

STD 

(µg/m³) 

Training 1.05 234.10 34.14 27.25 

Validation 1.05 253.00 31.28 23.34 

Test 1.30 257.05 29.59 21.81 

Table 1. The statistical properties of the ground-based data. 

 

The training dataset varies from 1.05 to 234 µg/m³, while the 

validation dataset is between 1.05 to 253 µg/m³, and the test 

dataset is between 1.30 to 257 µg/m³. The standard deviations 

of datasets are 27.25, 23.34, and 21.81 µg/m³, respectively. 

 

3. Methodology 

In the study, the performance of ML models in the estimation of 

NO2 was evaluated using Sentinel-5P TROPOMI and ground 

monitoring stations. The flowchart of the study is given in Fig. 

2.  

 

Firstly, the data preparation step was realized by integrating and 

filtering of satellite and ground station data. After this step, data 

was divided into three parts: training, validation, and test. 

Training and validation datasets were used for hyperparameters 

optimization and estimation of ML models. The hyperparameter 

tuning step of each ML model was processed with the 

GridSearch-CV algorithm. 
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Figure 2. The workflow of the study. 

 

Multiple models used for regression purposes produce different 

prediction results depending on their operating principles. In the 

NO2 estimation process step, multiple ML regression models 

were conducted to obtain more accurate results. For this 

purpose, these models can be listed as Multi-Layer Perceptron 

(MLP) regression, Support Vector Regression (SVR), and 

eXtreme Gradient Boosting (XGB) regression, respectively. 

MLP is a neural network model which consists of a number of 

neurons connected between layers by weight and bias (Atkinson 

and Tatnall, 1997). MLP approach is realized by performing 

non-parametric regression analysis and contains input layer, 

hidden layer/s and output layer. It is superior to single-layer 

perceptron due to its ability to learn linear and nonlinear 

relationships between input and output data and increase 

computational efficiency (Madhiarasan and Deepa, 2017). 

 

SVR, developed by Smola and Schölkopf (2004), is an 

algorithm used for regression tasks and is successful in drawing 

highly effective conclusions from complex datasets with the 

help of support vectors. In nonlinear datasets, it can solve 

various regression problems by utilizing kernel structures like 

the Radial Basis Function (RBF). This model structure offers 

users the flexibility to define key parameters, including the 

regularization parameter (C) and the error sensitivity parameter 

(ε), facilitating performance optimization through 

hyperparameter tuning. 

 

XGB algorithm proposed by Chen and Guestrin (2016) relies on 

a gradient boosting algorithm. XGB iteratively creates new trees 

that are used to fit residuals (differences of predictions and 

actual values) of the previous trees. 

 

All aforementioned ML models have been widely used in 

various research areas; however, their performance and 

accuracy can vary based on the data structure. To determine the 

accuracy of the models, two accuracy metrics were used in the 

study. These are RMSE and MAE and their equations are given 

in Eq. 1 and 2. 

                 

(1) 

 

 

(2) 

 

 

where yi is the actual measured value and ŷi is the estimated 

value. 

 

4. Results 

Using the parameters determined through hyperparameter 

optimization, the models were trained using training and 

validation datasets and tested with test data that models had not 

seen before. To assess model accuracy, RMSE and MAE 

accuracy metrics were computed using the estimated values and 

measured values, and results are given in Table 2. 

 

Model Training 

(2018-2022) 

Validation 

(2023) 

Test 

(2024) 

[µg/m3] RMSE MAE RMSE MAE RMSE MAE 

MLP 26.83 21.03 21.53 16.07 19.59 15.00 

SVR 25.34 17.70 21.38 15.23 19.65 14.34 

XGB 24.55 18.42 22.05 17.11 20.03 15.90 

Table 2. Accuracy assessment results of ML models. 

 

The results obtained showed that the prediction values are 

within the acceptable value ranges and all three models 

performed successfully. In the training part, the model 

accuracies can be ranked from highest to lowest as follows: 

XGB – SVR – MLP. In the validation part, the order changed 

as SVR – MLP – XGB. However, in the test part, the model 

accuracies can be ranked as MLP – SVR – XGB. The RMSE 

values being lower than the standard deviation (21.81µg/m3) 

indicate that models performed well. Since the concentration of 

the NO2 parameter varies depending on the seasons, accuracy 

assessment was performed on a seasonal basis on the test data. 

The RMSE and MAE values obtained are given in Fig. 3. 

 

According to Fig. 3, it is observed that the error values 

decreased in the seasonal evaluation in all ML models 

considering Table 1. In the RMSE values obtained in Fig. 3, the 

SVR model performed well in all seasons except winter. In the 

winter season, MLP performed relatively better than SVR. 

Considering MAE values, the SVR model performed well in all 

seasons. In the winter season, MLP has lower RMSE value than 

SVR, although SVR has lower MAE value than MLP. This 

indicates that the residuals between measured and estimated 

values obtained in the SVR model are higher in the winter 

season. The XGB model has the highest RMSE and MAE 

values compared with other models in all seasons. In general, 

the lowest error values were observed in the summer and spring 

seasons, while the highest error values were observed in the 

autumn and winter seasons, respectively. A possible reason is 

that NO2 concentration is high density in winter and low density 

in summer (Shen et al., 2021). 

 

RMSE =   (𝑦𝑖− 𝑦𝑖 )2

𝑛−1
 

MAE =   𝑦𝑖− 𝑦𝑖  

𝑛
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Figure 3. Accuracy assessment results on a seasonal basis. 

 

The quantitative evaluation may not be sufficient to determine 

the most appropriate model. That is why, qualitative analysis 

was realized by visual interpretation of the results obtained. To 

do this, seasonal NO2 estimation maps for Istanbul were 

produced for all models and are given in Fig. 4. 

 

According to Figure 4, the spatial distribution of NO2 in the 

MLP and SVR models was found to be better in all seasons 

compared to the XGB model. The result obtained in the XGB 

model showed the spatial distribution of NO2 as clustered. In all 

model results, NO2 distribution is high in winter, decreases in 

spring and shows the lowest distribution in summer. It increases 

again in autumn. Heating activities during the winter in urban 

areas can be shown as the main reason for this situation 

(Vîrghileanu et al., 2020; McDuffie et al., 2020; Morillas et al., 

2024). 

 

The other main source of NO2 is road transport which 

significantly affects its distribution over the region (McDuffie et 

al., 2020). In light of the results obtained, it is observed that the 

NO2 distribution is concentrated around the Bosphorus. It is 

noteworthy that the regions where the Bosphorus connects to 

the Sea of Marmara have the highest NO2 concentration in all 

four seasons. These regions are areas with dense settlements and 

traffic density. When the model results are examined, although 

the models visually show similar harmony in seasonal 

transitions, the SVR model, which has the lowest RMSE and 

MAE values in the accuracy analysis, shows more realistic 

results. Although both models give successful results in general, 

in the MLP model results, while the NO2 value range of the 

seasons has close values, the density difference between the 

seasons can be clearly seen in the SVR model. 

 

 

 

Figure 4. Seasonal distribution of NO2 in Istanbul for 2024 according to the ML models. 
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5.  Conclusions 

This study demonstrates the applicability of ML models to 

estimate ground-level NO2 over the Istanbul megacity. For this 

purpose, three ML algorithms, namely MLP, SVR, and XGB, 

were implemented to Sentinel-5P satellite data and ground air 

quality monitoring stations and compared both quantitatively 

and qualitatively. Additionally, the performance of the models 

according to seasons was also examined. 

 

In the study, it is revealed that ML regression models yield 

successful results in estimating ground-level NO₂ using freely 

available satellite-based data sources, such as Sentinel-5P, 

which has significant potential for air quality monitoring. It is 

observed that higher accuracy performance was achieved with 

lower error values specific to the seasons. Seasonal changes 

were also successfully detected from the results obtained. In the 

overall evaluation, the SVR model showed relatively better 

results compared to the MLP model, while the XGB model 

could not visually demonstrate the expected performance. 

 

The effect of environmental factors on model performance was 

not evaluated in the analysis. Therefore, future studies will aim 

to enhance model performance by enriching its feature space 

with environmental factors (e.g., land use/land cover, 

population), meteorological variables (e.g., air temperature), 

and topographic attributes (e.g., surface elevation). In addition, 

the accuracy of the models will be improved by developing 

season-specific models.  
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