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Abstract  

  

The first appearance of inflorescence in sunflowers (Helianthus annuus L.) signifies the transition of the sunflower from the vegetative 

stage to the reproductive (R). At this growth period, accurate and automated detection of sunflower inflorescences is of utmost 

significance for sunflower yield estimation. Unmanned aerial vehicles (UAVs) have become essential in agricultural product detection 

due to their high spatial and temporal resolution data collection ability. With the rapid enhancements in deep learning, transformer 

architectures have emerged as a revolutionary paradigm, showing remarkable success in precision agriculture applications, including 

crop recognition and mapping. The main goal of this study is to investigate the potential of the DETection TRansformer (DETR) model 

in identifying sunflowers at the reproductive stage using multi-temporal UAV orthomosaics. To this end, orthomosaics were produced 

using high-resolution aerial photos collected with a DJI Phantom 4 Pro V2 UAV in a sunflower field located in Akyazı district of 

Sakarya province, during two reproductive periods of sunflower (R5.1 and R5.9). Utilizing the orthomosaics, two sunflower detection 

datasets were constructed to train and evaluate the model. The results revealed that the DETR performed better on the R5.9 growth 

stage (AP0.50 = 92.40%, AR100 = 68.00%) than the R5.1 (AP0.50 = 83.70%, AR100 = 53.90%). Furthermore, given increasing IoU 

thresholds, DETR demonstrated 16.4% and 29.8% improvements in AP and AP0.75, respectively, at the R5.9 stage. The results 

highlighted that DETR could be a powerful tool for identifying sunflowers, especially at advanced growth stages, likely due to more  

distinct and developed features of inflorescences.   

 

 

1. Introduction 

 

Sunflower (Helianthus annuus L.) ranks among the world’s top 

oilseed crops, value for its nutritional, medicinal, and economic 

benefits. It serves as a key raw material for various industries, 

including plastic, chemical, paint, soap, cosmetics, and biodiesel. 

Additionally, its pulp is utilized for animal feed production. 

Sunflowers are easily recognized by their single stem with a 

distinctly large inflorescence, and the size and number of these 

inflorescence play a crucial role in determining both yield and 

seed quality (Seiler, 1997). Global demand for sunflowers 

continues to rise. Production has grown significantly, increasing 

from 6.8 million tons harvested on 6.7 million hectares in 1961 to 

54.3 million tons on 29.3 million hectares in 2022 (FAO, 2023). 

In Türkiye, this trend is particularly evident. According to the 

Turkish Statistical Institute (TUIK), sunflower cultivation 

expanded from 5.5 million decares in 2004 to 9.5 million in 2023, 

marking a 73% increase (TUIK, 2023). Production more than 

doubled during the same period, rising from 0.9 million tons to 

2.2 million tons, marking a 144% growth. Yield per unit area also 

improved significantly, increased by 137%, and reached 498 kg 

per decare. As the demand for sunflowers continues to grow, 

effective monitoring and identification are essential for 

maximizing yields and maintaining sustainable production. 

However, traditional field observation presents challenges due to 

complex environmental conditions and the diverse morphology 

of sunflower inflorescences (Jing et al., 2024).   

  

Remote sensing has proven to be an invaluable tool for 

monitoring large areas with high resolution, significantly 

improving the accuracy and efficiency of agricultural practices. 

The introduction of Unmanned Aerial Vehicles (UAVs) has 

further revolutionized this field, providing a cost-effective means 

to capture extremely detailed images with flexible flight 

schedules at low altitudes. These capabilities make UAVs 

particularly well-suited for detecting and monitoring even 

smallscale agricultural features, such as sunflower 

inflorescences, maize tassels, cotton seedlings, rapeseed flowers, 

and wheat spikes (Alzadjali et al., 2021; Zhao et al., 2021; Feng 

et al., 2023; Li et al., 2023; Chen et al., 2024; Jing et al., 2024).  

  

In recent years, UAV imagery has become a key resource in 

sunflower crop monitoring, sparking numerous studies. For 

example, Pérez-Ortiz et al. (2015) introduced a weed mapping 

system for sunflowers, leveraging UAVs and machine learning to 

support site-specific weed control management. Similarly, Li et 

al. (2021) investigated sunflower lodging by applying various 

band combinations of multispectral UAV images and comparing 

the performance of Random Forest, SegNet, and U-Net 

algorithms. Bai et al. (2022) used RGB UAV imagery and a peak 

detection algorithm to count sunflowers at the seedling stage. 

Recently, Song et al. (2023) used multispectral UAV imagery and 

deep semantic segmentation models like SegNet, DeepLab, 

PSPNet to identify sunflower growth stages. These studies 

highlight the versatility and potential of UAV-based imagery, 

especially when integrated with deep learning (DL) algorithms, 

for advancing precision agriculture, particularly in monitoring 

and managing sunflower crops.  

  

Traditionally, agricultural crop detection and mapping have relied 

on image processing techniques and machine learning methods. 

However, these approaches often face challenges due to their 

reliance on manually crafted features, which can limit the 

algorithm’s robustness in complex environments with uneven 

illumination environments (Wei et al., 2022). The rise of DL, 

particularly convolutional neural networks, has transformed 

remote sensing applications, offering significant improvements in 

precision agriculture. The DL has been applied to various tasks, 

including crop detection, disease recognition, and yield 

estimation, with notable success. For example, Chen et al. (2024) 
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developed an improved DL-based object detection model, 

YOLOv8n, to detect maize tassels using UAV imagery. In 

another study, Jing et al. (2024) introduced a Sunflower-YOLO 

model, an improved version of the YOLOv7-tiny network, for 

identifying sunflower capitula from RGB UAV imagery. Li et al. 

(2023) focused on rapeseed inflorescences, proposing an 

upgraded YOLOv5 algorithm to count them using RGB UAV 

imagery. For the detection of sunflowers at different phenological 

stages from multi-temporal RGB UAV orthomosaics, 

Meanwhile, Yildirim et al. (2024) evaluated U-Net and DeepLab 

V3 deep semantic segmentation models to detect sunflowers at 

various phenological stages using multi-temporal RGB UAV 

orthomosaics. In cotton seedling detection, Feng et al. (2023) 

employed YOLOv5, YOLOv7, and CenterNet on multispectral 

UAV images collected at six different dates. They concluded that 

YOLOv7 outperformed other models in identifying and counting 

cotton seedlings, and seedlings were better recognized at 23 days 

after sowing. These studies highlight the growing role of DL in 

overcoming the limitations of traditional methods, enabling more 

accurate and efficient crop monitoring and mapping in precision 

agriculture.  

   

Recently, transformer-based architectures have attracted 

significant attention for their superior performance in natural 

language processing and thus applied to image vision tasks, 

performing better than popular DL-based convolutional neural 

networks (CNNs) due to their special decoder-encoder structure 

(Zhou et al., 2022a). Transformers differ from traditional CNN 

backbones by producing global receptive fields instead of local 

ones, enhancing their effectiveness in detecting targets within 

complex scenes (Zhou et al., 2022b). Transformer architectures 

can leverage attention mechanisms to map the global 

dependencies between inputs and outputs (Choi et al., 2023). In 

this regard, transformers have gained popularity as a cutting-edge 

and innovative technology in the agricultural field. They have 

been widely adopted in the literature to address diverse precision 

agriculture applications with high performance (Xie et al., 2024). 

For example, Li et al. (2024) developed SoybeanNet harnessing 

the transformer backbone to count soybean pods using UAV 

images and achieved a counting accuracy of 84.51%. To detect 

wheat heads from UAV images, Zhu et al. (2022) proposed three 

transformer architectures (i.e., FR-Transformer, R-Transformer, 

and FR-Transformer) by combining Faster R-CNN, RetinaNet, 

and YOLOv3 with transformer backbones. Results revealed that 

the FR-Transformer outperformed state-of-the-art models by 

AP50 of 88.3%. For the rice weed segmentation using UAV 

imagery, Guo et al. (2025) introduced CTFFNet by combining 

CNN and transformer architectures. The results indicated that the 

proposed method outperformed single CNN or transformer 

algorithms, achieving the highest segmentation accuracy for 

complex and variable weed shapes, with an MIoU of 72.8%.   

  

Although many studies show the potential of combining 

transformer-based architectures and UAV data for detecting and 

mapping crops, it is seen that limited studies have been focused 

on detecting and mapping sunflower inflorescences. Motivated 

by this research gap, this study aimed to explore the potential use 

of DETection TRansformer (DETR) for identifying sunflowers at 

different phenological stages using multi-temporal UAV data. To 

the best of our knowledge, this is the first study using the 

transformer in the sunflower detection domain. To this end, two 

different dated UAV flights were conducted in the study area, 

Sakarya, Turkey, and two high-resolution RGB orthomosaics 

representing two reproductive stages of sunflower growth (i.e., 

R5.1 and R5.9) were generated. Using orthomosaics, two 

sunflower detection datasets were constructed, and the 

performance of the DETR model was investigated using COCO 

metrics. This work also contributed to the literature by building 

sunflower datasets at different plant growth stages, which can be 

benchmark datasets for sunflower detection tasks.  

  

2. Study Area 

 

The study was carried out in a sunflower parcel within the fields 

managed by Sakarya Maize Research Institute in the Arifiye 

district of Sakarya province. Sakarya province is located in the 

northwestern part of Türkiye between 29°57' and 30°53' east 

longitudes and 40°17' and 41°13' north latitudes. The province is 

a transitional climate area where the Black Sea and 

Mediterranean climates are effective, with hot and humid 

summers and rainy, warm winters. The province has a total area 

of 5,015 km2, 44% of which is plateaus, 34% is mountains and 

22% is plains. The agricultural areas where cultivated field crops, 

vegetables, and fruits cover approximately 48% of the province’s 

territory. Its rich vegetation is mainly forested, and important 

agricultural products such as wheat, potatoes, beet, maize, 

sunflower, and hazelnut are grown in the province. With 10,970 

tons of sunflower production, Sakarya province meets 0.57% of 

Türkiye's sunflower production (TUIK, 2023).  

  

Sunflower has strong adaptation thanks to its ability to be grown 

in different climate conditions and soil types. According to plant 

development, sunflower growth consists of two main stages: the 

vegetative and the reproductive (Schneiter and Miller, 1981). The 

reproductive stage (R) consists of nine sub-stages, starting with 

the initial formation of the plant inflorescences and ending with 

the completion of plant physiological maturity. In this study, field 

studies were conducted to determine the inflorescences of 

sunflower plants in two different reproductive stages (i.e., R5.1 

and R5.9) in Kirazca Agricultural Research Area managed by 

Sakarya Maize Research Institute, and training and test sites were 

established in the sunflower field designed to be used in 

experimental research.  

  

 
Figure 1. Location map of the study area and experimental site. 
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3. Methodology 

 

In this current work, which aimed to detect sunflower 

inflorescences with the integration of transformer-based 

architectures and UAV technologies, DETR was evaluated as the 

transformer model and RGB UAV orthomosaic data generated at 

two different growth stages of sunflower were utilized as the main 

data source. For this purpose, the sunflower detection 

performance of the transformer model at different phenological 

stages is specifically investigated in detail. The methodology 

followed by the purpose of the study comprises three primary 

steps: (i) Collection high-resolution UAV aerial photographs, 

photogrammetric processing, and orthomosaic generation, (ii) 

creation of ground-truth data by manual labeling on 

orthomosaics, cropping of orthomosaics, data augmentation and 

division of the dataset into training, validation, and test datasets,  

(iii) construction of the DETR model, hyperparameter 

optimization, training and validation of the model with transfer 

learning approach, performance analysis and testing of the model.  

  

3.1 UAV Data Acquisition and Orthomosaic Production  

 

In UAV imaging, according to the targeted quality of final 

products, different flight parameters are applied. In this study, to 

achieve high geometric and spectral description quality in 

produced orthomosaics, bundle-grid (double-grid) flight missions 

were applied from 50 m altitude with 80% and 60% front and side 

overlap ratios and 70° viewing angle. With the advantage of 

bundle-grid flights in both North-South and EastWest directions 

and oblique viewing, the façades of the sunflowers were also 

imaged. As mentioned above, flights were completed by using 

DJI Phantom IV V2 UAV which has 20 MP resolution Sony 

Exmor RGB camera with 8.8 mm focal length. In line with the 

applied flight parameters, the aerial photos were obtained with an 

average ground sampling distance (GSD) of ~1.47 cm and each 

region of the stereo models to be generated was represented with 

at least nine aerial photos.   

  

The photogrammetric processing steps for orthomosaic 

production were implemented in Agisoft Metashape software by 

the workflow given in Figure 2. The aerial photos were matched 

by utilizing Structure from Motion (SfM) technique which has 

three major steps: (i) feature extraction for an individual UAV 

image, (ii) feature matching for each UAV image pair, and (iii) 

parameter solving based on iterative bundle adjustment (Jiang et 

al., 2020). Following image matching, absolute orientation was 

performed by using 14 polycarbonate mobile ground control 

points (GCPs) established in the field before UAV flights. The 

root mean square error (RMSE) of the GCPs used in absolute 

orientations was calculated as ±1.5 cm.  

 
Figure 2. Photogrammetric processing steps implemented for 

orthomosaic production in Agisoft Metashape. 

The produced orthomosaics in the same study area for two 

different dates are shown in Figure 3.  

 
Figure 3. UAV orthomosaics produced at phenological growth 

stages of (a) R5.1, and (b) R5.9 for the study area. 
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3.2 Sunflower Data Set  

 

To create a labeled dataset to be used in the model construction, 

sunflower inflorescences on generated orthomosaics were 

manually labeled with visual interpretation in ArcGIS Pro 3.0.3 

software. In this manner, approximately 2,000 sunflower 

instances were labeled separately on each orthomosaic within the 

study area, as shown in Figure 4. Since processing very 

highresolution UAV data is labor-intensive and time-consuming, 

orthomosaics were divided into 256×256 pixel image patches 

with 50% overlap (i.e., 128×128 pixels) to avoid GPU limitations. 

Image overlap was used to increase the number of training 

samples and to prevent the edge problem for sunflowers located 

in the image borders, ensuring that each sample falls within at 

least one image patch. In addition, synthetic data augmentation 

was applied by flipping, cropping, and rotating the training 

images by 90⁰, 180⁰, and 270⁰ to increase the number of training 

samples and improve model performance. As a result, the R5.1 

training dataset contains a total of 982 images, and the R5.9 

training dataset contains 1186 images. Afterwards, the created 

training datasets were randomly divided into training, validation, 

and test datasets at 70%, 20%, and 10% ratios, respectively, for 

training, validation, and testing of the model.  

 
Figure 4. Ground truth sunflower labels generated for the study 

area on two orthomosaics. 

  

3.3 DETection Transformer (DETR)  

 

Transformers have emerged as popular and are revolutionizing 

architectures in DL, achieving state-of-the-art results across 

various NLP and computer vision benchmarks. Numerous 

adaptations of the original transformer model, first introduced in 

2017 (Vaswani et al.), have been developed to deal with 

problems, including computational demands and data efficiency.  

  

The transformer-based object detection model used in the study, 

DEtection Transformer (DETR) treats object detection as a direct 

set prediction task within a transformer-based encoder-decoder 

structure. This paradigm eliminates the need for anchor 

generation or the non-maximum suppression processes. The 

DETR framework consists of three main components: a CNN 

backbone, an encoder-decoder transformer, and a feed-forward 

network (Figure 5). The CNN backbone captures intricate 

features from input data, producing a feature map. The feature 

representation is then flattened and supplemented with positional 

encoding before being sent to a transformer encoder. The 

transformer decoder, utilizing a fixed set of learned positional 

embeddings known as object queries, attends to the encoder’s 

output. Each decoder output embedding is passed through a 

shared feed-forward network (FFN) to predict either a detection 

(class and bounding box) or a "no object" classification. (Carion 

et al., 2020).  

 
Figure 5. Architecture of the DETR (Carion et al., 2020).  

  

3.4 Accuracy Assessment Metrics  

 

To evaluate the performance of the DETR model, Microsoft 

Common Objects in Context (MS COCO) evaluation metrics, 

which are frequently used in deep learning-based object detection 

studies, were utilized. In the COCO metrics, AP and AR are 

computed by averaging across 10 IoU thresholds ranging from 

0.50 to 0.95 in increments of 0.05. Additionally, AP0.5 and AP0.75 

represent AP values calculated at fixed IoU thresholds of 0.50 and 

0.75, respectively. AR1, AR10, and AR100 correspond to the 

maximum recalls averaged over all categories and IoU 

thresholds, considering 1, 10, and 100 detections per image, 

respectively (Lin et al., 2014).  

  

The IoU quantifies the overlap between the model's predicted 

bounding box (Bp) and the ground truth bounding box (Bgt). At an 

IoU threshold of 0.5, predictions with IoU values below 0.5 for a 

specific class are categorized as false positives (FP), while 

predictions with IoU values above 0.5 are referred to as true 

positives (TP). Ground truth boxes not matched with predictions 

are labeled false negatives (FN). Precision and recall metrics are 

derived using TP, FP, and FN. The AP reflects the shape of the 

precision/recall curve, calculated as the averaged precision at a 

set of eleven equally spaced recall levels [0, 0.1, ..., 1]. Also, AR 

is the recall averaged over all IoU values between 0.5 and 1.0. 

The formulas for IoU, precision, and recall are given below: 
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4. Results and Discussions 

 

This study conducted all experiments using Python programming 

language with the PyTorch 2.4.0 deep learning framework in the 

cloud-based Google Colab Pro environment, which offers access 

to the NVIDIA A100 GPU. The DETR is trained separately using 

two sunflower datasets with the AdamW optimizer with the initial 

transformer’s learning rate to 10−4, the backbone’s to 10−5, and 

weight decay to 10−4. The training of the models was initialized 

with ResNet-50 backbone weights pre-trained on the COCO 

dataset, and both models were trained for 100 epochs. After 

training the DETR, the training and validation loss graphs were 

monitored on TensorBoard, and it was observed that both loss 

curves gradually decreased as the number of iterations increased 

(Figure 6). The fact that the training loss and validation loss tend 

to decrease indicates that overfitting was not observed in the 

models and that the models were able to generalize what they 

learned in the training dataset to the validation dataset. On the 

other hand, it was clear that the loss values of the model trained 

with the R5.9 dataset converged more than the R5.1.  

  

 
Figure 6. Loss curve of the DETR model for (a) R5.1 and (b) 

R5.9 sunflower growth stages during the training process. 

  

After the training and validation, the performance of the DETR 

model on the test dataset was investigated using COCO metrics 

(Table 1). The results showed that DETR consistently performed 

better on the R5.9 growth stage of the sunflower across all 

metrics. For the AP0.5 metric, DETR achieved a score of 92.4% 

on the R5.9 stage, compared to 83.7% on the R5.1 stage. As the 

IoU thresholds increased, the model maintained superior 

performance on the R5.9 dataset. Notably, it achieved an AP0.75 

score of 77.3%, significantly higher than the 47.5% observed for 

the R5.1 dataset. When considering overall AP, the DETR model 

reached 62.8% on the R5.9 stage, outperforming the 46.4% score 

on the R5.1 stage. This suggests that the more developed and 

distinct inflorescence features in the R5.9 stage contributed to 

improved localization accuracy. On the other hand, the DETR 

model showed superior performance on the R5.9 stage in terms 

of AR metrics (AR1, AR10, AR100). In particular, it performed 

better on the R5.9 dataset than the R5.1 dataset by a large margin 

in terms of the AR100 metric, which considers at most 100 

detections per image. As a whole, the results revealed that the 

DETR model could identify sunflower inflorescences more 

accurately in higher growth stages, namely R5.9. Overall, these 

results indicated that the DETR model was better equipped to 

identify sunflower inflorescences at more advanced growth 

stages, such as R5.9, where the inflorescence features were more 

distinct and well-defined.  

  

Metric  
Dataset  

26 July (R5.1)  29 August (R5.9)  

AP  0.464  0.628  

AP0.5  0.837  0.924  

AP0.75  0.475  0.773  

AR1  0.011  0.016  

AR10  0.112  0.156  

AR100  0.539  0.680  

Table 1. Performance of DETR on two sunflower growth stages. 

  

To further investigate the model's performance, the sunflower 

prediction results on the test dataset were quantitatively analyzed. 

The results clearly showed that the DETR model tends to produce 

more false alarms, missed detections, and inaccurate bounding 

boxes on the R5.1 growth stage of sunflowers (Figure 7). At this 

stage, it was observed that the model tended to produce more FN 

and FP when multiple sunflowers were adjacent or overlapping. 

There were also problems with the precise positioning of the 

predicted TP boxes.  

  

In particular, adjacent sunflower inflorescences could not be 

detected separately and could be estimated with a single bounding 

box. Furthermore, various detection errors were observed due to 

objects being truncated at the image edges.  

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐼𝑜𝑈 =
𝑎𝑟𝑒𝑎(𝐵𝑝  ∩  𝐵𝑝)

𝑎𝑟𝑒𝑎(𝐵𝑝  ∩  𝐵𝑔𝑡)
 

  

(1)  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

  

(2)  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3)  
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Figure 7. Sunflower prediction results on R5.1 growth stage. 

 

On the other hand, much fewer false alarms and missed detections 

were observed in the prediction results at the R5.9 growth stage 

compared to R5.1 (Figure 8). Similar to R5.1, there were also 

problems at this stage where multiple sunflowers were located 

adjacently and at the image edges. Overall, sunflower detection 

at the R5.9 stage produced more accurate and precise results due 

to the more mature sunflower inflorescences and their obvious 

boundaries.  

 
Figure 8. Sunflower prediction results on R5.9 growth stage. 

  

5. Conclusions 

 

Identifying sunflowers from high-resolution UAV data is vital in 

achieving high yield and ensuring sustainable production. In this 

study, the transformer-based object detection method, DETection 

TRansformer (DETR), was employed to detect sunflower heads 

at different phenological stages using multi-temporal UAV 

orthomosaics. The results revealed that the DETR showed 

superior performance in identifying sunflower heads at the later 

reproductive stage (R5.9) compared to the earlier stage (R5.1), 

likely due to more distinct and developed features at this 

advanced growth stage. These results may stem from the mature 

inflorescences of the sunflower plant, which has more distinct and 

developed features and borders in the later reproductive stages. 

Overall, results highlight that DETR could be a powerful tool for 

identifying sunflowers at different phenological stages.  

  

Although this study highlights that the combination of UAV 

technology and transformer architectures offers effective 

solutions for the detection of agricultural products, some issues 

still need to be developed and planned to be realized in future 

studies. In this manner, it is necessary to utilize UAV elevation 

data (Digital Elevation Model, Canopy Height Model, etc.), 

multispectral data, and vegetation indices such as NDVI as 

datasets in the training of the DL model and to examine their 

effects on model performance. Another is to examine the model 

performance on sunflower data taken from a different study site 

to test the model's generalization capability. Explainable artificial 

intelligence techniques such as Grad-CAM should be used to 

interpret model predictions and improve model performance 

accordingly. 

 

References 

 

Alzadjali, A., Alali, M.H., Veeranampalayam Sivakumar, A.N., 

Deogun, J.S., Scott, S., Schnable, J.C., Shi, Y., 2021. Maize tassel 

detection from UAV imagery using deep learning. Frontiers in 

Robotics and AI, 8, 600410.  

  

Badrinarayanan V., Kendall A., Cipolla R., 2017. SegNet: A deep 

convolutional encoder-decoder architecture for image 

segmentation. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 39(12), 2481-2495.  

  

Bai, Y., Nie, C., Wang, H., Cheng, M., Liu, S., Yu, X., Shao, M., 

Wang, Z., Wang, S., Tuohuti, N., Shi, L., Ming, B., Jin, X., 2022. 

A fast and robust method for plant count in sunflower and maize 

at different seedling stages using high-resolution UAV RGB 

imagery. Precision Agriculture, 23(5), 1720-1742.   

  

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., 

Zagoruyko, S., 2020. End-to-end object detection with 

transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM.  

(eds.), Computer Vision – ECCV 2020, Lecture Notes in 

Computer Science, Springer, Cham, 213-229. 

doi.org/10.1007/978-3-030-58452-8_13  

  

Chen, J., Fu, Y., Guo, Y., Xu, Y., Zhang, X., Hao, F., 2024. An 

improved deep learning approach for detection of maize tassels 

using UAV-based RGB images. International Journal of Applied 

Earth Observation and Geoinformation, 130, 103922.  

  

Choi, S.R., Lee, M., 2023. Transformer architecture and attention 

mechanisms in genome data analysis: a comprehensive review. 

Biology, 12(7), 1033.   

  

FAO, 2023. FAOSTAT, Crops and Livestock Products. 

https://www.fao.org/faostat/en/#data/QCL, (Accessed in July 

2024).  

  

Feng, Y., Chen, W., Ma, Y., Zhang, Z., Gao, P., Lv, X., 2023. 

Cotton seedling detection and counting based on UAV 

  

  

  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-6-2025 
ISPRS, EARSeL & DGPF Joint Istanbul Workshop “Topographic Mapping from Space” dedicated to Dr. Karsten Jacobsen’s 80th Birthday 

29–31 January 2025, Istanbul, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-309-2025 | © Author(s) 2025. CC BY 4.0 License.

 
314

https://www.fao.org/faostat/en/#data/QCL


multispectral images and deep learning methods. Remote 

Sensing, 15(10), 2680.  

  

Guo, Z., Cai, D., Jin, Z., Xu, T., Yu, F., 2025. Research on 

unmanned aerial vehicle (UAV) rice field weed sensing image 

segmentation method based on CNN-transformer. Computers 

and Electronics in Agriculture, 229, 109719.   

  

Jiang, S., Jiang, C., Jiang, W., 2020. Efficient structure from 

motion for large-scale UAV images: A review and a comparison 

of SfM tools. ISPRS Journal of Photogrammetry and Remote 

Sensing, 167, 230-251.  

  

Jing, R., Niu, Q., Tian, Y., Zhang, H., Zhao, Q., Li, Z., Zhou, X., 

Li, D., 2024. Sunflower-YOLO: Detection of sunflower capitula 

in UAV remote sensing images. European Journal of Agronomy, 

160, 127332.   

  

Li, G., Han, W., Huang, S., Ma, W., Ma, Q., Cui, X., 2021. 

Extraction of sunflower lodging information based on UAV 

multi-spectral remote sensing and deep learning. Remote sensing, 

13(14), 2721.   

  

Li, J., Li, Y., Qiao, J., Li, L., Wang, X., Yao, J., Liao, G., 2023. 

Automatic counting of rapeseed inflorescences using deep 

learning method and UAV RGB imagery. Frontiers in Plant 

Science, 14, 1101143.  

  

Li, J., Magar, R.T., Chen, D., Lin, F., Wang, D., Yin, X., Zhuang, 

W., Li, Z., 2024. SoybeanNet: Transformer-based convolutional 

neural network for soybean pod counting from Unmanned Aerial 

Vehicle (UAV) images. Computers and Electronics in 

Agriculture, 220, 108861.   

  

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, 

D., Dollár, P., Zitnick, C. L., 2014. Microsoft COCO: Common 

Objects in Context. In: Fleet, D., Pajdla, T., Schiele, B., 

Tuytelaars, T. (eds.), Computer Vision – ECCV 2014, Lecture 

Notes in Computer Science, vol 8693, Springer, Cham, 740-755.  

doi.org/10.1007/978-3-319-10602-1_48  

  

Pérez-Ortiz, M., Peña, J.M., Gutiérrez, P.A., Torres-Sánchez, J., 

Hervás-Martínez, C., López-Granados, F., 2015. A 

semisupervised system for weed mapping in sunflower crops 

using unmanned aerial vehicles and a crop row detection method. 

Applied Soft Computing, 37, 533-544.   

  

Redmon J., Divvala S., Girshick R., Farhadi A., 2016. You only 

look once: Unified, real-time object detection. 2016 IEEE 

Conference on Computer Vision and Pattern Recognition 

(CVPR), Las Vegas, Nevada, USA, 779-788.  

  

Schneiter, A.A., Miller, J.F., 1981. Description of sunflower 

growth stages. Crop Science, 21(6), 901-903.  

  

Seiler, G.J., 1997. Anatomy and morphology of sunflower. In: A. 

A. Schneiter (ed.), Sunflower Technology and Production, 

American Society of Agronomy, Crop Science Society of 

America, Soil Science Society of America, 67-111. 

doi.org/10.2134/agronmonogr35.c3.  

  

Song, Z., Wang, P., Zhang, Z., Yang, S., Ning, J., 2023. 

Recognition of sunflower growth period based on deep learning 

from UAV remote sensing images. Precision Agriculture, 24(4), 

1417-1438.   

  

TUIK, 2023. Central Dissemination System. 

https://biruni.tuik.gov.tr/medas/?locale=tr, (Accessed in July 

2024).  

  

Xie, W., Zhao, M., Liu, Y., Yang, D., Huang, K., Fan, C., Wang, 

Z., 2024. Recent advances in Transformer technology for 

agriculture: A comprehensive survey. Engineering Applications 

of Artificial Intelligence, 138, 109412.   

  

Wei, L., Luo, Y., Xu, L., Zhang, Q., Cai, Q., Shen, M., 2021. 

Deep convolutional neural network for rice density prescription 

map at ripening stage using unmanned aerial vehicle-based 

remotely sensed images. Remote Sensing, 14(1), 46.  

  

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., 

Gomez, A.N., Kaiser, Ł., Polosukhin, I., 2017. Attention is all 

you need. Advances in Neural Information Processing Systems.  

  

Yang, X., Ye, Y., Li, X., Lau, R.Y., Zhang, X., Huang X., 2018. 

Hyperspectral image classification with deep learning models. 

IEEE Transactions on Geoscience and Remote Sensing, 56(9), 

5408-5423.  

  

Yildirim, E., Colkesen, I., Sefercik, U.G., 2024. Identification of 

sunflowers (Helianthus annuus L.) from multi-temporal UAV 

orthomosaics using deep learning models. 9th Advanced 

Engineering Days, Tabriz, Iran, 782-785.  

  

Yildirim, E., Nazar, M., Sefercik, U.G., Kavzoglu, T., 2022. 

Stone Pine (Pinus Pinea L.) Detection from High-Resolution 

UAV Imagery Using Deep Learning Model. IGARSS 2022-2022 

IEEE International Geoscience and Remote Sensing Symposium, 

Kuala Lumpur, Malaysia, 441-444.  

  

Zhao, J., Zhang, X., Yan, J., Qiu, X., Yao, X., Tian, Y., Zhu, Y., 

Cao, W., 2021: A wheat spike detection method in UAV images 

based on improved YOLOv5. Remote Sensing, 13(16), 3095.  

  

Zhou, C., Ye, H., Sun, D., Yue, J., Yang, G., Hu, J., 2022a. An 

automated, high-performance approach for detecting and 

characterizing broccoli based on UAV remote-sensing and 

transformers: A case study from Haining, China. International 

Journal of Applied Earth Observation and Geoinformation, 114, 

103055.   

  

Zhou, Q., Huang, Z., Zheng, S., Jiao, L., Wang, L., Wang, R., 

2022b. A wheat spike detection method based on Transformer. 

Frontiers in Plant Science, 13, 1023924.   

  

Zhu, J., Yang, G., Feng, X., Li, X., Fang, H., Zhang, J., Bai, X., 

Tao, M., He, Y., 2022. Detecting wheat heads from UAV low-

altitude remote sensing images using deep learning based on 

transformer. Remote Sensing, 14(20), 5141.   

  

  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-6-2025 
ISPRS, EARSeL & DGPF Joint Istanbul Workshop “Topographic Mapping from Space” dedicated to Dr. Karsten Jacobsen’s 80th Birthday 

29–31 January 2025, Istanbul, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-309-2025 | © Author(s) 2025. CC BY 4.0 License.

 
315

https://doi.org/10.2134/agronmonogr35.c3
https://doi.org/10.2134/agronmonogr35.c3
https://biruni.tuik.gov.tr/medas/?locale=tr



