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Abstract 

 

Object-Based Image Analysis (OBIA) is a method employed in the field of remote sensing with the objective of enhancing 

classification accuracy. This is achieved by focusing on image segments comprising groups of pixels, rather than evaluating 

individual pixels. By addressing the limitations of traditional pixel-based methods, OBIA is employed for the classification of 

segments based on their attributes. The present study evaluates the use of OBIA-based classification in conjunction with deep 

learning and machine learning classifiers. A study area, approximately 210 km² located in Ankara, was selected and SPOT-6 imagery 

with a spatial resolution of 1.5 meters and 4 spectral bands (red, green, blue and near infrared) was employed for this purpose. In the 

segmentation stage, a multiresolution segmentation approach was employed, and classification process was conducted using a 

Convolutional Neural Network (CNN) and Extreme Gradient Boosting (XGBoost). The CNN classifier demonstrated superior 

performance compared to the XGBoost algorithm, with an improvement of 2.7%. The Shapley Additive Explanations (SHAP) 

technique, an effective Explainable Artificial Intelligence (XAI) method, was employed to assess the explainability of the classifiers. 

The SHAP analysis indicated that the HSI transform was the most influential factor in the XGBoost algorithm’s decision-making 

process whereas the average DN values of the green band were the most effective feature for the CNN model. Global SHAP analyses 

elucidated the overarching model decision-making process, whereas class-specific analyses furnished insights into the classification 

of each land use and land cover (LULC) class.  

 

 

1. Introduction 

The use of remote sensing technology for the purpose of 

obtaining land use and land cover (LULC) information is 

widespread due to the technology’s ability to collect data on a 

periodic basis over vast geographical areas (Steinhausen et al., 

2018; Singh et al., 2017). The dynamic nature of LULC 

necessitates continuous monitoring and accurate predictions 

(Alshari and Gawali, 2021). However, traditional pixel-based 

methods are inadequate for high-resolution imagery as they are 

unable to account for the spatial context of neighboring pixels. 

Object-based image analysis (OBIA) methods are a more 

effective approach, particularly for high-resolution satellite 

imagery. OBIA employs groups of pixels as the unit of analysis, 

rather than individual pixels, integrating spatial, textural and 

contextual features to provide more accurate LULC 

classifications (Kavzoglu and Tonbul, 2017; Panda et al., 

2024). The success of this method is contingent upon the 

quality of the image segmentation process and the correct 

choice of parameters. The principal advantage of OBIA is that it 

markedly enhances mapping accuracy by combining spectral 

data with textural and contextual information (Kavzoglu et al., 

2024). 

 

Machine learning techniques, particularly Extreme Gradient 

Boosting (XGBoost), are extensively employed in the domain 

of computer vision and data science research (Chen and 

Guestrin, 2016). XGBoost is an efficient and powerful machine 

learning method based on the Gradient Boosting algorithm, 

which is characterized by high performance in both 

classification problems (Kavzoglu and Teke, 2022). In recent 

years, methods based on deep learning, particularly 

convolutional neural networks (CNNs), have been increasingly 

employed in the field of OBIA. They offer substantial benefits 

in the analysis of intricate and high-resolution images, largely 

due to their automated feature extraction capabilities (Kavzoglu 

and Yilmaz, 2022). The integration of CNNs with OBIA can 

demonstrate superior performance in LULC classifications, with 

high accuracy rates. These models are capable of effectively 

processing segmented image objects and accurately classifying 

different types of LULC. In addition, advances in image 

processing, in the field of Explainable Artificial Intelligence 

(XAI), have led to the development of methods such as SHapley 

Additive Explanations (SHAP), which provide invaluable 

insights into the decision-making processes of machine and 

deep learning models (Salih et al., 2024).   

 

SHAP analysis employs Shapley scores to elucidate the way 

individual characteristics contribute to the generation of 

classification outcomes (Lundberg et al., 2020). This method 

enhances the transparency of the decision-making processes 

within the models, thereby improving the interpretability of the 

results and strengthening the reliability of these models. XAI 

techniques, particularly SHAP, have been demonstrated to 

markedly enhance the reliability, accountability and accuracy of 

classification results obtained through the analysis of remote 

sensing data. Consequently, the integrated utilization of 

innovative techniques, such as XGBoost, CNN and XAI, 

optimizes the efficacy of classification and analysis applications 

within the domain of remote sensing. 

 

The objective of this study is to evaluate the effectiveness of 

OBIA in the interpretation of a very high-resolution image, 

while simultaneously investigating the performance of machine 

and deep learning algorithms, including CNN and XGBoost, in 

the classification process. The model is employed to examine 

the potential for high accuracy in deep learning approaches, 

with XGBoost regarded as a benchmark representing robust 

machine learning techniques. The primary objective of the study 

is to assess the capacity of each classifier to learn and accurately 

classify the spatial and spectral features of the image segments. 

Moreover, XAI methodologies, particularly SHapley Additive 

explanations (SHAP) analysis, are integrated to enhance the 

reliability and transparency of the classification outcomes. By 
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offering a comprehensive assessment of the decision-making 

processes of each classifier, both in aggregate and at the class 

level, SHAPE can explain the influence of individual features 

on the classification results. 

 

2. Study Area and Dataset 

The study area comprised approximately 210 km2 of Ankara, 

the capital of Turkey (Figure 1). The area encompasses a 

multitude of LULC classes, including urban, agricultural, and 

natural areas. To meet the objectives of the study, SPOT-6 

optical imagery, provided free of charge by Airbus, with a high 

spatial resolution, was employed. The image comprises a 

panchromatic band with a spatial resolution of 1.5 m and four 

spectral bands (red, green, blue, and near infrared) with a spatial 

resolution of 6 m. The panchromatic band enables the spatial 

resolution of the four spectral bands with a spatial resolution of 

6 m to be reduced to 1.5 m. All produced bands are combined 

with each other. The study area contains 6 LULC classes: 

shadow, bare ground, road, vegetation, white roof and red roof. 

Samples of these classes were also collected as 2000 sample 

points for each class prior to image processing. 

 

 

Figure 1. The study area situated in the Turkey capital, Ankara. 

 

3. Methodology 

In this study, LULC maps were created using OBIA with very 

high-resolution satellite imagery. OBIA consists of two main 

stages. In the first stage, the segmentation stage, meaningful 

image segments are created by grouping image pixels. In the 

second stage, these segments are assigned to one of the LULC 

classes by a classifier. In the segmentation stage, a resolution 

segmentation (MRS) approach was used, while machine and 

deep learning classifiers were performed in the classification 

process. Furthermore, the performance of the classifiers was 

evaluated by calculating recall, precision, F-score, overall 

accuracy and Kappa coefficient. Subsequently, SHAP was 

employed to enhance comprehension of the classification 

outcomes and to clarify the decision-making process of the 

model. This approach was utilized to ascertain the attributes on 

which artificial intelligence models base their results and to 

assess the influence of segment characteristics on classification. 

 

3.1 Segmentation Algorithms  

In the segmentation phase, multiresolution segmentation (MRS) 

algorithms were employed. The algorithm performs an analysis 

at varying resolution levels while generating image segments. 

At each resolution level, comparisons are performed between 

pixels regarding color, brightness and texture. Similar regions 

are combined, while regions with different properties are 

separated and converted into segments (Baatz and Schäpe, 

2000). Additionally, there are three fundamental parameters in 

MRS, namely scale, shape and compactness. The determination 

of these parameters directly affects the segmentation process 

and enhances the quality of the segmentation (Kavzoglu et al., 

2016). Scale is of paramount importance (Yilmaz and 

Kavzoglu, 2024). In accordance with the objective of the study, 

the efficacy of the algorithm is enhanced by selecting the 

optimal scale, thereby yielding the most favorable outcome 

(Kavzoglu and Tonbul, 2017). 

 

3.2 Extreme Gradient Boosting  

Through the combination of multiple machine learning models, 

models can have high performance and increase their 

generalization capacity. Several machine learning approaches 

are described in the literature that are based on this principle. 

One such approach is the Extreme Gradient Boosting 

(XGBoost) algorithm, developed by Chen and Guestrin (2016). 

This algorithm can produce rapid and highly accurate results 

through the utilization of many sequential decision trees, which 

serve to minimize errors. In other words, the outcomes of the 

jointly employed decision trees exert an influence on one 

another, thereby facilitating parallel computation. Furthermore, 

this algorithm is a highly flexible and versatile tool that can be 

deployed in both regression-based and classification-based 

applications (Kavzoglu and Teke, 2022). 

 

3.3 Convolutional Neural Network  

Convolutional neural networks (CNNs) are a widely utilized 

tool with the capacity to effectively analyze both spatial and 

spectral features from images due to the unique structures they 

contain. The convolutional layers enable the network to identify 

the distinctive characteristics of the data set without the need for 

human intervention (Kavzoğlu and Yılmaz, 2022). The general 

structure of CNNs is composed of three principal layers: the 

input layer, the hidden layer and the output layer. In a one-

dimensional CNN, the input layer accepts a vector matrix 

containing a feature value corresponding to each data input. The 

convolution layers consist of filters that have been optimized by 

a back-propagation algorithm, which scans the dataset to 

generate different feature maps. This process identifies the most 

significant aspects of the data while simultaneously reducing its 

size, the number of parameters, and the computational 

workload. Consequently, the potential for overlearning is 

mitigated. The activation function such as ReLU, employed 

after the convolution layers, endows the model with a non-

linear structure and accelerates the computational process. 

Optimization techniques utilized during model training aim to 

minimize the loss function and dynamically adjust the learning 

rate. These methodologies facilitate expedient and effective 

performance in gradient-based optimization processes (Song et 

al., 2019). 

 

3.4 Explainable Artificial Intelligence 

Explainable Artificial Intelligence (XAI) is a technique that 

aims to provide insight into the decision-making processes of 

machine learning and deep learning models. By unveiling the 

intrinsic characteristics and variables that inform the predictions 

and decisions of these models, XAI empowers users to 

comprehend the underlying logic and rationale behind the 

models’ conclusions. These models, often characterized as 

‘black boxes’, are challenging to interpret due to their intricate 

parameterization and sophisticated computational processes. 
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XAI methodologies elucidate internal structure and decision-

making mechanisms of these models, enhancing their 

transparency and reliability (Kavzoglu et al., 2024). 

 

SHapley Additive exPlanations (SHAP) analysis is one of the 

XAI methods and is based on game theory. It is used to 

interpret the predictions of artificial intelligence models 

(Kavzoglu and Teke, 2022). This method employs Shapley 

values to ensure a fair distribution of the impact of each feature. 

While positive and negative values reflect the contribution of 

each feature to a particular class, a high average absolute 

Shapley value over all data points indicates that a feature is 

generally more important. The reliability of SHAP results is 

superior to that of standard measurements, as it also considers 

the interactions between features. This method offers a 

comprehensive view of the overall performance of the 

algorithms, while simultaneously elucidating the contribution of 

each feature to the classification result in an objective and 

intelligible manner through example-based analyses. SHAP is 

model-agnostic and can be used to explain the outputs of both 

deep learning and machine learning algorithms. Furthermore, it 

provides various forms of graphical representation to visualize 

the decision-making processes of classification algorithms, 

thereby enhancing the reliability and interpretability of these 

algorithms (Chen et al., 2021). 

 

4. Results and Discussion 

4.1. Design of the Classifiers and Training Process 

In this study, the MRS method was employed for the purpose of 

segmentation. In the segmentation process, the scale parameter 

was set to 30, the shape parameter to 0.1, and the compactness 

parameter to 0.5, based on a process of trial and error. The 

segmentation was conducted on a four-band image, and the 

OBIA features were calculated for each segment. The features 

encompass brightness, maximum difference, mean, standard 

deviation, skewness, ratio, minimum and maximum pixel 

values, color space characteristics (hue, saturation, intensity), 

geometric parameters (area, boundary length, length, pixel 

count, asymmetry, boundary index, compactness) and GLCM-

based texture features (homogeneity, contrast, similarity, 

entropy, mean and standard deviation). Following the extraction 

of the features of the segments, the pixels collected for training 

purposes were assigned to the nearest segment. Subsequently, 

the data set was employed. The data set was randomly divided 

into 60% training, 20% validation and 20% testing, to be 

utilized in the training, validation and testing phases of the 

model. The training dataset was employed to ascertain the 

parameters of the model, whereas the validation dataset was 

utilized to optimize the hyperparameters. The test dataset was 

used to evaluate the overall performance of the model. 

The OBIA features were then classified by a one-dimensional 

CNN model. The model structure is as follows: three 

convolutional 1D layers are combined with max pooling 1D 

operations to enable the learning of deep spatial features. To 

enhance the accuracy of the model, fully connected layers 

(dense) are employed. Additionally, dropout layers are 

incorporated to prevent overfitting. In the final layer of the 

model, multiclass classification is conducted with a Softmax 

activation function. Moreover, the model was trained using the 

Adam optimization algorithm and a categorical cross-entropy 

loss function, with a total of 200 epochs completed. A batch 

size of 32 was employed during the training of the model. The 

results indicated that the model exhibited a loss of 0.075 and an 

accuracy of 97.8% on the training dataset, while the loss on the 

test dataset was 0.139 and the accuracy was 96.9%. On the 

other hand, The XGBoost algorithm was employed for 

multiclass classification purposes. The model was structured as 

‘multi:softprob’, with the max_depth parameter set to 200 and 

the number of trees (n_estimators) set to 5. The 

hyperparameters of the model were determined through testing 

to achieve optimal performance. The validation accuracy of the 

XGBoost classifier was 95.0%. 

 

4.2. Classification Results 

In this study, the classification of LULC classes was evaluated 

using both the XGBoost and CNN models. The performance of 

the models was evaluated using a range of metrics, including 

F1-score, recall, precision, overall accuracy and Kappa 

coefficient (Table 1). The results demonstrated that the CNN 

model exhibited superior performance compared to the 

XGBoost model, achieving higher accuracy rates across all 

classes. For the Shadow class, the CNN model demonstrated 

superior performance compared to the XGBoost model, 

achieving an F1-score of 96.34% and a recall of 96.94%. 

Similarly, for the Bare Soil class, the CNN model exhibited a 

higher F1-score (97.03%) than the XGBoost model (92.71%). 

For the Road class, the F1-score of the CNN model (92.93%) is 

higher than that of XGBoost (91.26%). Additionally, for the 

Vegetation class, the CNN model achieved an F1-score of 

97.89%, surpassing XGBoost’s 97.64% by a slight margin. For 

the White Roof class, the CNN model demonstrates a notable 

advantage, with an F1-score of 97.51% and a precision of 

99.85%. Finally, for the Red Roof, the CNN model achieved an 

F1-score of 98.53%, which was significantly higher than that of 

the XGBoost model (94.15%). In terms of overall model 

performance, the overall accuracy of the CNN model (96.71%) 

is higher than that of the XGBoost model (94.75%). Moreover, 

the Kappa coefficient is 0.960 for the CNN model and 0.936 for 

the XGBoost model. These findings demonstrate that the CNN 

model exhibits greater consistency and success in LULC 

classification. 

 

LULC Classes 

XGBoost CNN 

F1-score  

(%) 

Recall  

(%) 

Precision 

(%) 

F1-score 

 (%) 

Recall 

 (%) 

Precision 

 (%) 

Shadow 96.34 96.94 95.74 96.42 99.30 93.70 

Bare Soil 92.71 95.41 90.15 97.03 97.63 96.43 

Road 91.26 90.69 91.84 92.93 93.19 92.68 

Vegetation 97.64 97.50 97.77 97.89 97.08 98.72 

White Roof 96.38 96.25 96.51 97.51 95.27 99.85 

Red Roof 94.15 91.66 96.77 98.53 97.77 99.29 

Overall Acc. (%) 94.745 96.712 

Kappa Coef. 0.936 0.960 

Table 1. Assessment of the accuracy of the thematic maps produced with XGBoost and CNN
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Figure 2. Thematic maps are produced using classifiers of (a) XGBoost and (b) CNN. 

 

4.3. XAI Results 

To gain insight into the decision-making processes of machine 

learning and deep learning algorithms, SHAP analysis, a 

technique for describing the output of machine learning models, 

was employed. In the case of the XGBoost model, a class-based 

analysis was initially conducted using SHAP analysis (Figure 

3). For each class (Shade, Bare Soil, Road, Vegetation, White 

Roof, and Red Roof), the contribution of the features that affect 

the model’s decision-making process is illustrated. A positive 

SHAP value indicates that the feature is the primary 

determinant of the model’s decision in favor of that class. 

Conversely, a negative value suggests that the feature is a 

contributing factor to the model’s bias towards other classes. In 

the Shadow class, spectral features such as “Min_pixel_Red” 

and “Mean_Red” were of particular significance, exerting a 

positive influence on the model predictions and serving as 

pivotal determinants in the differentiation between classes. In 

the Bare Soil class, the “HSL_Transf” and “Ratio_Green” 

features exhibited high SHAP values and were the most 

influential in the model’s classification performance. 

Furthermore, statistical features, such as “Standard_d” and 

“Mean_Red” also exert a considerable influence. For the Road 

class, the “Ratio_Green” and “Ratio_Blue” features play a 

pivotal role in class prediction, exhibiting strong positive SHAP 

values. Furthermore, the application of geometric and spectral 

features, such as “Mean_Red” and “Length_Pxl,” has also 

proven to be effective. In other words, road segments exhibit 

distinctive characteristics when compared to other LULC 

classes. One such difference is their elongated, narrow structure, 

which sets them apart from other LULC classes in terms of 

length. For the Vegetation class, the “Ratio_NIR” and 

“Mean_Blue” features were identified as the most effective 

variables. This highlights the particular importance of 

reflectance characteristics in the NIR band for classification 

purposes. For the White Roof class, spectral features such as 

“Mean_Red” and “Ratio_Blue” were identified as having a 

significant impact on the prediction performance. In the Red 

Roof class, the variables “HSI_Transf” and “Min_pixel_Green” 

were found to have a significant impact on the classification 

process, as indicated by their high SHAP values. This suggests 

that certain color transformations are crucial for differentiating 

between classes in the Red Roof class. This analysis provides 

insights into the features that the model relies on for each class 

and the extent to which these features influence the decision-

making process. 
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Figure 3. LULC class based SHAP graphs for XGBoost classifier.

 

A class-based SHAP analysis was conducted on the XGBoost 

model and subsequently applied to the CNN model (Figure 4). 

The results of the analysis demonstrate the influence of features 

on model predictions and their relative importance for each 

class. In the case of the Shadow class, the spectral features 

“Mean_Green” and “Min_pixel_Red” emerge as the variables 

with the most significant impact on the model’s predictive 

performance. This demonstrates that the shadow classes can be 

differentiated based on the average reflectance values in the 

green and red bands. For the Bare Soil class, the “Mean_Red” 

and “Mean_Green” features contribute the most to the 

prediction accuracy, exhibiting strong SHAP values. In 

particular, the reflectance values of the soil surfaces in the red 

spectrum are of significant consequence regarding the 

distinction of classes. For the Road class, the mean red and 

standard near-infrared features have a positive effect on the 

model prediction. These findings highlight the significance of 

the mean values of the road class in spectral bands as 

discriminating factors. For the Vegetation class, the variables 

“Min_Pixel_Green” and “HSI_Transf” are of particular 

significance, exhibiting the highest SHAP values. For the White 

Roof class, the “Mean_Green” and “Standard_NIR” features 

contribute the most to the model prediction. These findings 

indicate that spectral reflectance differences are a significant 

factor in class distinction within the White Roof class. For the 

Red Roof class, the dominant variable was identified as 

“HSI_Transf.” In general, spectral bands (especially mean and 

standard values) were found to be prominent in the 

classification using the CNN model. These results demonstrate 

that the learning mechanism of the model is predominantly 

informed by spectral features and that the decision-making 

process of the model can be elucidated through SHAP analysis. 

The study makes significant contributions to the accuracy and 

reliability analysis of deep learning models in the context of 

XAI. 
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Figure 4. LULC class based SHAP graphs for CNN classifier. 

 

The global SHAP analysis of the XGBoost and CNN models 

provides a clear indication of the relative effectiveness of 

features in the decision-making processes of both models, as 

demonstrated by the contribution of these features (Figure 5). In 

the XGBoost model, spectral features were of primary 

importance, with variables such as “HSI_Transf”, “Ratio_NIR“, 

“Mean_Red” and “Ratio_Blue” contributing the most to the 

classification performance. Furthermore, it is evident that 

spectral features are considered in this model, facilitating more 

precise differentiation between classes. In other words, it can be 

said that XGBoost is capable of effectively modelling spectral 

variations, with these variations contributing significantly to the 

decision processes through SHAP values. In the CNN model, 

the decision-making process was significantly influenced by 

spectral features. Features such as “Mean_Green”, 

“Standard_NIR’ and “Min_pixel_Green” were found to be the 

most effective in the classification decisions of the model. 

Additionally, variables such as “HSI_Transf” and “Mean_Red” 

also made significant contributions to the performance of the 

model. The CNN model demonstrated a greater focus on 

spectral information than on textural and geometric features, a 

pattern that is clear in the density distribution of SHAP values. 

5. Conclusion 

The objective of this study was to evaluate the performance of 

XGBoost and CNN models in classifying LULC using features 

obtained through the OBIA approach. The findings of the study 

demonstrated that both models exhibited high accuracy rates; 

however, the CNN model demonstrated superior performance 

compared to the XGBoost model. In particular, the CNN model 

demonstrated superior performance in terms of F1-score, recall, 

and precision across all classes, with an overall accuracy of 

96.71%. In contrast, the XGBoost model achieved an accuracy 

rate of 94.75%. With regard to the Kappa coefficient, the CNN 

model demonstrated greater consistency (0.960) than the 

XGBoost model (0.936). Furthermore, the decision-making 

processes of the models were elucidated through the utilization 

of SHAP analysis, a prominent XAI method. The SHAP 

analysis demonstrated that both models place significant 

reliance on spectral features. The XGBoost model employed 

spectral features, including “HSI_Transf” “Mean_Red,” and 

“Ratio_NIR” whereas the CNN model emphasized features such 

as “Mean_Green” “Standard_NIR”, and “Min_pixel_Green.” 

These analyses have made a substantial contribution to the 

elucidation of the decision-making processes and the 
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enhancement of the reliability of the models. In conclusion, the 

findings of this study demonstrate that CNN models exhibit 

superior performance in LULC classifications, due to their 

capacity to learn deep spectral features. Concurrently, the 

application of SHAP analysis facilitated the explication of the 

classification processes, enabling a comprehensive 

interpretation of the model outputs and enhancing the reliability 

of the models. In light of the findings presented in this study, it 

is recommended that future research consider combining 

XGBoost and CNN models in a hybrid structure. This approach 

has the potential to enhance classification performance by 

leveraging the strengths of both models. Furthermore, the 

application of XAI techniques could facilitate a more 

comprehensive understanding of the decision-making processes 

involved in hybrid models, thereby improving the explainability 

of this hybrid approach. This, in turn, could lead to more 

reliable LULC classification results. 

 

 

 
Figure 5. Global SHAP graphs for (a) XGBoost and (b) CNN. 
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