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Abstract 

 

Three-dimensional (3D) city models have become indispensable in urban planning, disaster management, and various geospatial 

analyses. Advances in photogrammetric techniques and virtual reality (VR) platforms now enable highly detailed, immersive 

representations of urban environments for more effective decision-making. This paper presents a methodological framework for 

integrating produced photogrammetric 3D building models into Unreal Engine, with the goal of creating a VR environment. The 

workflow covers the capture of nadir and oblique aerial imagery, the organization of photogrammetric blocks, triangulation, and stereo 

compilation to derive accurate roof and facade geometries. Texture mapping is then applied using nadir and oblique photographs to 

ensure visual realism. Models in OBJ format are imported into Blender for scaling and preparation, and subsequently exported to FBX 

for compatibility with Unreal Engine. The paper also discusses incorporating georeferenced data via the Cesium for Unreal plugin. 

Despite a currently unresolved alignment issue that prevents proper placement of the models within Cesium’s global coordinate system, 

the outlined workflow provides a foundation for future research. Future improvements could include using pixel streaming for group 

VR sessions, adding GIS features to look up detailed information, and using real-time data for live updates. This method can help create 

interactive city simulations, making it easier for stakeholders to plan and analyze. 

 

 

1. Introduction 

 

Recent advancements in photogrammetry, geospatial 

visualization, and virtual reality (VR) have significantly 

broadened the possibilities for creating immersive 3D 

representations of urban environments. Three-dimensional city 

models, which accurately capture architectural and spatial 

features, now play a crucial role in urban planning, simulation, 

and decision-making processes (Jochem and Goetz, 2012). These 

models allow stakeholders to visualize and analyze complex 

geospatial data in intuitive and interactive ways, thereby 

supporting applications ranging from disaster management to 

public engagement in urban development projects. 

 

Photogrammetric techniques, in particular, have emerged as a 

reliable and scalable method for generating detailed 3D city 

models. By combining nadir and oblique aerial photographs with 

ground control points (GCPs), photogrammetric workfows can 

achieve accurate representations of roofs, facades, and terrain 

(Mitishita et al., 2008). When used in modern game engines like 

Unreal Engine, these models can be viewed and interacted with in 

real time, making them ideal for VR platforms. Additionally, 

plugins like Cesium for Unreal provide geospatial functionality, 

enabling the precise alignment of models within a global reference 

system. 

 

However, integrating photogrammetric 3D city models into 

Unreal Engine, and subsequently into a VR framework, poses 

various practical challenges. These include proper data 

preparation, suitable export formats (e.g., FBX), and alignment 

with georeferenced base maps. The latter is particularly important 

when combining local 3D city models with georeferenced 

datasets, as Unreal Engine does not natively support coordinate 

projections, making precise alignment with global datasets like 

those from Cesium for Unreal a critical challenge. This paper 

outlines the production of photogrammetric 3D building models, 

which are used in the VR environment as assets to represent 

detailed 3D city models. It further describes their preparation for 

real-time visualization and the steps required to create a VR 

environment in Unreal Engine. Notably, an alignment issue arose 

during the import of FBX files into Unreal Engine, resulting in a 

mismatch when placing the models into Unreal Engine 

environment. As of this writing, this issue remains unresolved, 

and the subsequent development tasks relying on correct 

alignment are deferred as future work. Despite this setback, the 

pipeline described here provides a foundation for researchers and 

practitioners looking to integrate detailed 3D urban data into a 

game engine like Unreal Engine 5. 

 

2. Production of 3D Building Models 

 

This chapter outlines the methodological framework for 

generating 3D building models using photogrammetric techniques 

according to the Production of 3D City Models and Creation of 

3D Cadastre Bases Project (TKGM, 2025). 

 

2.1 Ground Control Points (GCPs) and Photogrammetric 

Block Formation 

 

2.1.1 Marking and Measuring Ground Control Points: 
Accurate measurement of Ground Control Points (GCPs) is the 

foundation of photogrammetric production. These distinctive field 

points, identified through geodetic GNSS or classical polygon 

surveys, ensure the geometric reliability of subsequent processes. 

Precise GCP positioning directly impacts the overall accuracy of 

the 3D city models by serving as anchors for photogrammetric 

triangulation and adjustment (Parvu et al., 2024). 

 

2.1.2 Forming Photogrammetric Blocks: Aerial 

photographs are organized into photogrammetric blocks, grouping 

images based on spatial and temporal relationships. High-

resolution cameras like the UltraCam Osprey Mark 3 acquire 
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nadir and oblique images, enabling comprehensive 3D modeling. 

This systematic grouping ensures consistent orientation and 

facilitates precise photogrammetric triangulation (TKGM, 2025). 

 

2.2 Photogrammetric Triangulation and Adjustment 

 

The photogrammetric triangulation process is essential for 

determining the position, orientation, and rotation of aerial 

images. To ensure geometric consistency, block adjustment—a 

statistical refinement method—is applied to minimize errors. This 

process is conducted separately for nadir and oblique images due 

to their distinct roles in 3D modeling: 

 

• Nadir Photographs: These vertical images are critical 

forgenerating large-scale maps, orthophotos, and accurate 

roof surface measurements. With a ground sampling distance 

(GSD) of 10 cm, nadir triangulation adheres to strict 

regulatory accuracy standards (e.g., Regulation on the 

Production of Large-Scale Maps and Map Information) to 

produce 1:1,000-scale maps (HKMO, 2005). 

 

• Oblique Photographs: Captured at tilted angles, these images 

provide detailed views of building sides, enabling realistic 

texturing of fac¸ades. The geometric accuracy of oblique 

triangulation must remain within ±3 GSD, and the integration 

of ground control points (GCPs) and tie points is essential 

when merging nadir and oblique blocks (TKGM, 2025). 

 

2.3 Stereo Compilation 

 

Stereo compilation involves constructing the 3D geometry of 

buildings from overlapping nadir images. The process begins by 

setting up the stereo model, which uses nadir photographs oriented 

with ground control points (GCPs) and triangulation results as its 

foundation (Toutin, 2004). From these images, 3D building 

vectors are created, delineating roof outlines, terraces, and other 

structural details for accurate representation. The data is then 

organized into layers, such as roof boundaries and auxiliary 

structures, to standardize visualization and facilitate efficient 

management. Throughout the process, strict adherence to detailed 

production manuals ensures uniformity and consistency across 

projects, guaranteeing high-quality outputs. 

 

2.4 True Orthophoto Production 

 

True orthophotos, generated from nadir photographs, are 

distortionfree images essential for accurate mapping. The 

production process begins with the use of a Digital Surface Model 

(DSM), which incorporates height data from buildings, terrain, 

and other features to rectify the images and minimize edge 

distortions. To ensure geometric fidelity, building boundaries are 

refined using specialized edge correction filters. Additionally, 

adjacent orthophoto sheets are created with a 30-meter overlap, 

enabling seamless mosaicking and facilitating rigorous quality 

control to maintain the accuracy and consistency of the final 

product (TKGM, 2025). 

 

2.5 DSM and DTM Production 

 

The Digital Surface Model (DSM) captures the elevation of all 

features, including buildings, vegetation, and terrain, while the 

Digital Terrain Model (DTM) represents the bare ground by 

removing non-terrain elements. DTMs are derived either by 

directly classifying and filtering out features from the DSM or 

through point cloud processing. Although photogrammetric point 

clouds are less detailed than LiDAR data, they still support 

effective classification for terrain modeling. To maintain 

consistency, DTMs must match the spatial resolution of the DSM, 

which is 10 cm in this study. Rigorous quality checks are 

performed, particularly around building footprints and sloped 

areas, to ensure accuracy and reliability in the final models 

(TKGM, 2025). 

 

2.6 Constructing and Texturing 3D Building Models 

 

The process of constructing and texturing 3D building models 

transforms vector data into detailed, realistic representations of 

urban environments. This involves modeling geometric 

structures, applying textures, and preparing models for diverse 

applications. Outputs are typically delivered in widely used file 

formats like OBJ or CityGML, with specific supplementary files 

for texturing and material definitions (TKGM, 2025). Below are 

the key steps and considerations: 

 

2.6.1 3D Modeling of Vector Data: The geometric structure 

of 3D building models is derived from polygonal and line data 

obtained through stereo photogrammetry. 

 

• Roof Geometry Creation: Vector data delineating roof 

bound-aries and elements (e.g., terraces, chimneys) are 

converted into 3D polygons. 

 

• Main and Auxiliary Structures: Distinctions are made 

betweenprimary structures (e.g., main building) and 

secondary elements (e.g., rooftop installations) to improve 

semantic organization. 

 

2.6.2 Texturing: Textures are applied to 3D models to 

enhance visual realism. Two distinct processes address the 

different surfaces of the buildings: 

 

• Roof Texturing: 

 

- Data Source: Roof textures are extracted from nadir 

aerial photographs or true orthophotos. 

 

- Proper alignment of textures ensures that the roof’s 

geometric properties are preserved. 

 

• Building Side Texturing: 

 

- Data Source: Oblique aerial photographs provide the 

imagery for realistic building side textures. 

 

- Resolution: High-resolution images are mapped to the 

side surfaces to capture architectural details like 

windows, doors, and exterior designs. 

 

Textures are organized and managed using material libraries. In 

the OBJ format, texture-related data is stored in MTL (material 

library) files, which define properties such as texture images (JPG 

files) and their mapping to the 3D geometry (TKGM, 2025). 

 

2.6.3 Exporting to OBJ Format: The OBJ file format is 

widely used for storing 3D model data due to its compatibility 

with various modeling and visualization platforms (Dyaksa et al., 

2023). An OBJ file typically consists of:  

 

a. Geometry Data: 

 

• Vertex positions (v): Define the 3D coordinates of points in 

space 
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• Resolution: Texture coordinates (vt): Map textures to 

thegeometry.architectural 

 

• Faces (f): Represent polygons (typically triangles or quad-

rilaterals) using vertex indices. 

 

Figure 1 represents a 3D building in .obj format without attached 

.mtl and texture files. 

 

 
Figure 1. 3D Building Model in .obj format. 

 

b. Material Library (MTL): 
 

The MTL file contains material definitions used by the OBJ file. 

It links specific textures (e.g., JPG files) to parts of the model. 

 

Example:  

 

mtllib F-3017499-A.mtl  

 

c. Texture Files: 

 

Textures are stored as JPG or other image files. These images 

correspond to roof or building side textures and are mapped to the 

geometry using the material library. 

 

Figure 2 represents a 3D building in .obj format with attached .mtl 

and texture files. 

 

2.6.4 Preparing for Export and Quality Assurance: Export 

formats for 3D building models included CityGML and OBJ, each 

serving distinct purposes. CityGML provides a robust framework 

for integrating both geometric and semantic data, enabling 

detailed categorization of building components such as walls, 

roofs, and openings. This format supports structured organization 

and interoperability, making it ideal for projects requiring 

semantic richness and integration with geospatial systems (Saran 

et al., 2015). OBJ, on the other hand, is a versatile format widely 

used for visualization and rendering, capturing geometry and 

texture mapping effectively (Toledo et al., 2008). 

 
Figure 2. 3D Building Model in .obj format with material library 

(MTL) and textures. 

 

Depending on project requirements, 3D models are exported in 

various Levels of Detail (LOD), ranging from simple block 

representations to highly detailed structures with intricate 

textures. Following export, a thorough quality assurance process 

ensures accuracy and performance. This involves validating 

alignment, identifying and correcting issues such as texture 

stretching, gaps, or mismapping, and optimizing OBJ files by 

reducing unnecessary vertices and polygons. These steps strike a 

balance between file size and model fidelity, ensuring the models 

are both lightweight and visually accurate without compromising 

quality. 

 

Example of an OBJ File with MTL and Texture Integration 

 

mtllib F-3017499-A.mtl  

# Vertex positions  

v 483721.876000 4425439.316000 875.870000  

v 483721.940000 4425439.342000 875.921000  

... 

# Texture coordinates  

vt 0.135096 0.682703  

vt 0.134349 0.682137  

... 

# Faces with texture mapping  

f 1/1 2/2 3/3  

f 3/3 2/2 4/4 

... 

 

The MTL file referenced in this example, F-3017499-A.mtl, 

specifies the texture image paths and material properties. For 

example: 

 

newmtl RoofTexture  

map_Kd RoofTexture.jpg 

 

(TKGM, 2025) 

  

3. Importing and Preparing 3D Models for Unreal Engine 

in Blender 

 

To ensure compatibility with Unreal Engine, OBJ files must be 

imported, scaled, and prepared in Blender, a versatile opensource 

3D modeling software. This section elaborates on the process of 

importing OBJ files with their textures, scaling the models to 

match Unreal Engine’s requirements, and exporting the finalized 

models in the FBX format, detailing the rationale for this format 

choice over OBJ. 
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3.0.1 Importing OBJ Files in Blender: 242 OBJ files, along 

with their associated MTL and texture files (e.g., JPG or PNG), 

are first imported into Blender. The OBJ format provides a 

straightforward mechanism for transferring geometry and texture 

information, allowing Blender to recreate the 3D model with its 

defined surfaces and textures. Upon import, the model’s texture 

mapping is verified to ensure that the UV coordinates and material 

properties align correctly. If any issues arise, adjustments to the 

UV maps or material definitions are performed within Blender to 

maintain visual fidelity. 

 

3.0.2 Scaling and Preparation for Unreal Engine: Unreal 

Engine imposes specific requirements for 3D models, including 

consistent scaling, orientation, and pivot point alignment. In 

Blender, the imported model is checked for its scale relative to 

Unreal Engine’s default unit system, where 1 Unreal Unit (UU) 

corresponds to 1 centimeter (Unreal Engine 5.5 Documentation, 

2025c). Models are scaled and adjusted as needed to ensure they 

match real-world dimensions and are compatible with Unreal 

Engine’s physics and lighting systems. Additionally, the origin 

point of the model is repositioned to ensure that it aligns with the 

pivot point, facilitating proper placement and manipulation within 

the Unreal Engine environment. Normals are recalculated to avoid 

rendering artifacts, and material assignments are consolidated to 

minimize complexity. Figure 3 shows the prepared 3d building 

models for Unreal Engine requirements in Blender software. 

 

 
Figure 3. Scaled 3D Building Models in Blender. 

 

3.0.3 Exporting in FBX Format: After preparation, the 3D 

model is exported from Blender in the FBX format. FBX is a 

widely used format in game development and 3D applications 

because of its superior capabilities compared to OBJ (Jain and 

Choi, 2019). Unlike OBJ, which primarily supports geometry, UV 

maps, and basic material definitions, FBX offers an advanced 

feature set, including hierarchical data, skeletal animations, and 

support for embedded textures. By embedding texture maps 

directly into the FBX file, the format streamlines the process of 

importing models into Unreal Engine, ensuring that textures are 

automatically recognized and applied during the import process. 

This eliminates the need for manual texture reassignment, which 

can be laborintensive, especially in complex scenes. 

 

Another critical advantage of FBX is its support for animations, 

which makes it indispensable for dynamic 3D models requiring 

skeletal rigs or animated components. Although this may not be 

relevant for static architectural models, the capability ensures 

scalability for future modifications or animated elements. 

Furthermore, Unreal Engine natively supports FBX with 

optimized import pipelines, including support for advanced 

material properties, LODs, and collision meshes, which are either 

unavailable or cumbersome to implement using OBJ (Unreal 

Engine 5.5 Documentation, 2025a). 

 

 

4. Creating a Game Project in Unreal Engine for VR 

Environment 

 

The next step involves establishing a game project in Unreal 

Engine to develop an immersive VR environment for 3D city 

models. While the setup is not tied to a specific VR headset, the 

framework ensures compatibility with major VR platforms and 

headsets, providing exibility for future deployment. This section 

details the creation of the project, the integration of 3D city 

models, and the use of Cesium for Unreal to provide a 

georeferenced base map environment. 

 

4.0.1 Initial Setup in Unreal Engine: Unreal Engine (UE), a 

powerful and widely used game development platform, supports 

VR environments through its robust VR development tools, 

physics systems, and rendering capabilities. To begin, a new game 

project is created using the Blank Template, ensuring minimal 

overhead and maximum customization. The project settings are 

configured for VR compatibility, enabling features such as 

stereoscopic rendering, motion tracking, and input systems 

compatible with VR controllers. 

 

The level editor in Unreal Engine is the primary interface for 

constructing the virtual environment. It provides tools for 

managing assets, setting up the 3D scene, configuring lighting, 

and adjusting physics parameters. Key components of the game 

environment include: 

 

• Actors: Objects within the game environment, including3D 

models, cameras, lights, and geometry. 

 

• Blueprints: Unreal Engine’s visual scripting system 

thatallows for rapid prototyping and functionality 

implementation without requiring extensive programming 

knowledge. 
 

• Level Streaming: A feature used to dynamically load 

andunload parts of the environment, optimizing performance 

for large 3D city models. 

 

(Unreal Engine 5.5 Documentation, 2025b) 

 

4.1 Using Cesium for Unreal 

 

To establish a georeferenced environment, Cesium for Unreal is 

integrated into the project. Cesium is an advanced geospatial 

platform that supports globally accurate coordinate systems and 

integrates real-world geographic data into Unreal Engine. The 

following steps are undertaken to configure Cesium for Unreal: 

 

4.1.1 Installing Cesium for Unreal: The Cesium plugin is 

added to the project via the Unreal Marketplace. This plugin 

allows for seamless integration of geospatial data into the game 

environment. 

 

4.1.2 Setting Up the Georeferenced World: Cesium 

employs the EPSG:4978 (WGS 84) geocentric coordinate 

reference system (CRS), which aligns with global 3D coordinates. 

This ensures that all imported 3D models and the base map are 

positioned accurately in real-world locations. 

 

4.1.3 Adding Cesium World Terrain and Bing Maps 

Road: 

 

• Cesium World Terrain: This high-resolution global 

terraindataset provides a realistic and georeferenced 3D 
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surface. It includes elevation data and natural landforms, 

enhancing the visual realism of the environment. 

 

• Bing Maps Road: This basemap layer adds 

cartographicdetail, including roads, landmarks, and other 

essential geographic features, offering additional context to 

the 3D city models. The integration of these layers ensures 

that the 3D city models are accurately placed within a global 

geographic framework. This is particularly important for 

largescale urban environments where spatial accuracy and 

context are essential for meaningful interaction and analysis. 

 

Figure 4 shows added Cesium World Terrain and Bing Maps Road 

as basemap layer in Unreal Engine. 

 

 
Figure 4. Cesium World Terrain in Unreal Engine Environment. 

 

4.2 Importing 3D City Models 

 

The 3D city models exported in FBX format from Blender are 

imported into Unreal Engine as Static Meshes, a fundamental 

Unreal Engine asset type for non-animated objects. During 

import, the following parameters are adjusted: 

 

• Location, Rotation, and Scale: The models are alignedwith 

the Cesium georeferenced environment using accurate 

coordinates. 

 

• Collision Setup: Simplified collision meshes are added to 

ensure efficient physics interactions. 
 

• Material Mapping: Textures and materials from the FBXfile 

are applied, ensuring the models maintain their visual 

fidelity. 

 

Figure 5 shows how Unreal Engine configures FBX objects as 

static mesh, their materials and textures. 

 

Although the 3D city models function correctly in local coordinate 

systems, their final placement into Cesium’s georeferenced scene 

is misaligned. The root cause is still under investigation, 

encompassing potential discrepancies in coordinate transforms, 

pivot points, or scale factors in the FBX files. Due to this 

unresolved issue, the subsequent steps that rely on proper 

geographic alignment—such as georeferenced interactions, 

advanced VR simulations, or integration of additional geospatial 

layers—are not yet fully functional. 

 

4.3 Game Environment Configuration 

 

In Unreal Engine, the VR Pawn or Player Character is configured 

to facilitate user interaction with the virtual environment. This 

setup involves implementing VR-compatible cameras to enable 

stereoscopic rendering and provide an immersive first-person 

view. Navigation controls, such as teleportation or smooth 

locomotion, are tailored for exploring the 3D city models 

seamlessly, ensuring user comfort and accessibility. Additionally, 

interaction systems are integrated to allow users to engage with 

the environment, such as selecting specific buildings or triggering 

animations to enhance interactivity. 

 
Figure 5. Importing 3D Building Models into Unreal Engine as 

Assets. 

 

To create a visually compelling experience, the environment’s 

lighting, shadows, and post-processing effects are meticulously 

optimized for VR. These adjustments ensure a balance between 

visual quality and system performance, making the virtual space 

both immersive and efficient for real-time rendering. 

 

The integration of Cesium and Unreal Engine offers significant 

advantages in creating immersive and geospatially accurate VR 

environments. Cesium’s reliance on the WGS 84 (EPSG:4978) 

coordinate system ensures global consistency, allowing for 

precise placement and scaling of 3D city models within their 

realworld geographic context. This geospatial accuracy is crucial 

for applications requiring realism and spatial reliability. 

 

Meanwhile, Unreal Engine’s advanced rendering pipeline 

enhances the visual appeal of the 3D models, ensuring they are 

both realistic and engaging, even in the performance-intensive VR 

environment. Furthermore, Cesium’s extensibility enables 

seamless integration of additional geospatial data, such as weather 

layers or traffic information, enriching the environment’s 

functionality and making it adaptable for a wide range of 

interactive and analytical applications. 

 

5. Future Work 

 

The integration of photogrammetric 3D city models into Unreal 

Engine presents significant opportunities for expanding 

applications and enhancing user experiences in various domains. 

One promising avenue is the utilization of Unreal Engine’s pixel 

streaming technology, which enables the delivery of high-quality, 

real-time rendered 3D environments to web browsers and 

lightweight devices without requiring significant local processing 

power. This capability would allow seamless access to immersive 

3D city models, making them available to a broader audience, 

including urban planners, architects, and stakeholders, regardless 

of their hardware limitations. Such a streaming solution would 

also facilitate collaborative environments where multiple users 

can interact with the same 3D city model remotely. 

 

In the context of VR platforms, Unreal Engine’s robust support 

for different hardware, environments, and physics systems makes 

it an ideal tool for developing realistic and interactive simulations. 

Future work could involve enhancing VR interactions to allow 

users to not only explore 3D city environments but also 

manipulate and analyze them. For example, users could 

dynamically simulate urban scenarios such as traffic ow, ood 

modeling, or infrastructure development within a virtual 

cityscape. These simulations would benefit urban planning, 

disaster management, and public engagement by offering an 
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intuitive and immersive platform for understanding complex 

spatial data. 

 

Further integration of GIS (Geographic Information Systems) 

could significantly enrich the functionality of these 3D 

environments. By linking geospatial data to objects within the city 

model, users could query buildings, roads, or landmarks for 

metadata such as ownership, historical significance, or 

construction details. This would enable a comprehensive digital 

twin of the urban area, supporting decision-making processes in 

smart city initiatives, urban sustainability planning, and 

infrastructure management. Incorporating real-time data streams, 

such as traffic conditions, weather updates, or IoT sensor feeds, 

could further enhance the model’s utility by providing dynamic, 

upto-date information for simulations and analyses. 

 

Future advancements might also explore AI-driven features 

within these environments. For example, integrating machine 

learning algorithms could automate tasks such as feature 

recognition (e.g., identifying building types or land use patterns) 

or predictive modeling (e.g., forecasting urban growth). This 

would streamline processes like urban analysis, significantly 

reducing the manual workload required for complex studies. 

 

Additionally, the use of augmented reality (AR) could extend the 

reach of these models beyond virtual environments, enabling on-

site applications where city models are overlaid onto realworld 

landscapes. This could provide valuable tools for urban 

development, construction monitoring, and public engagement by 

merging physical and digital worlds in a seamless interface. 

 

In conclusion, the integration of 3D city models into Unreal 

Engine offers a versatile and scalable platform with vast potential 

for future applications. By leveraging Unreal’s advanced 

rendering, physics, and streaming capabilities, combined with 

GIS integration and emerging technologies such as AI and AR, 

this method could redefine how 3D city models are used across 

disciplines, from urban planning and smart city development to 

public engagement and immersive storytelling. 
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