
Integrating Photogrammetric 3D City Models into Virtual Reality: A Methodological

Approach Using Unreal Engine

İsmail Çağrı Gençtürk 1, Bilal Erkek 2, Ekrem Ayyıldız 3

1 General Directorate of Land Registry and Cadastre Ankara, Türkiye - tk48663@tkgm.gov.tr
2 General Directorate of Land Registry and Cadastre Ankara, Türkiye - berkek@tkgm.gov.tr

3 General Directorate of Land Registry and Cadastre Ankara, Türkiye – eayyildiz@tkgm.gov.tr

Keywords: Aerial Photogrammetry, Unreal Engine, Virtual Reality (VR), 3D City Models.

Abstract

Three-dimensional (3D) city models have become indispensable in urban planning, disaster management, and various geospatial

analyses. Advances in photogrammetric techniques and virtual reality (VR) platforms now enable highly detailed, immersive

representations of urban environments for more effective decision-making. This paper presents a methodological framework for

integrating produced photogrammetric 3D building models into Unreal Engine, with the goal of creating a VR environment. The

workflow covers the capture of nadir and oblique aerial imagery, the organization of photogrammetric blocks, triangulation, and stereo

compilation to derive accurate roof and facade geometries. Texture mapping is then applied using nadir and oblique photographs to

ensure visual realism. Models in OBJ format are imported into Blender for scaling and preparation, and subsequently exported to FBX

for compatibility with Unreal Engine. The paper also discusses incorporating georeferenced data via the Cesium for Unreal plugin.

Despite a currently unresolved alignment issue that prevents proper placement of the models within Cesium’s global coordinate system,

the outlined workflow provides a foundation for future research. Future improvements could include using pixel streaming for group

VR sessions, adding GIS features to look up detailed information, and using real-time data for live updates. This method can help create

interactive city simulations, making it easier for stakeholders to plan and analyze.

1. Introduction

Recent advancements in photogrammetry, geospatial

visualization, and virtual reality (VR) have significantly

broadened the possibilities for creating immersive 3D

representations of urban environments. Three-dimensional city

models, which accurately capture architectural and spatial

features, now play a crucial role in urban planning, simulation,

and decision-making processes (Jochem and Goetz, 2012). These

models allow stakeholders to visualize and analyze complex

geospatial data in intuitive and interactive ways, thereby

supporting applications ranging from disaster management to

public engagement in urban development projects.

Photogrammetric techniques, in particular, have emerged as a

reliable and scalable method for generating detailed 3D city

models. By combining nadir and oblique aerial photographs with

ground control points (GCPs), photogrammetric workfows can

achieve accurate representations of roofs, facades, and terrain

(Mitishita et al., 2008). When used in modern game engines like

Unreal Engine, these models can be viewed and interacted with in

real time, making them ideal for VR platforms. Additionally,

plugins like Cesium for Unreal provide geospatial functionality,

enabling the precise alignment of models within a global reference

system.

However, integrating photogrammetric 3D city models into

Unreal Engine, and subsequently into a VR framework, poses

various practical challenges. These include proper data

preparation, suitable export formats (e.g., FBX), and alignment

with georeferenced base maps. The latter is particularly important

when combining local 3D city models with georeferenced

datasets, as Unreal Engine does not natively support coordinate

projections, making precise alignment with global datasets like

those from Cesium for Unreal a critical challenge. This paper

outlines the production of photogrammetric 3D building models,

which are used in the VR environment as assets to represent

detailed 3D city models. It further describes their preparation for

real-time visualization and the steps required to create a VR

environment in Unreal Engine. Notably, an alignment issue arose

during the import of FBX files into Unreal Engine, resulting in a

mismatch when placing the models into Unreal Engine

environment. As of this writing, this issue remains unresolved,

and the subsequent development tasks relying on correct

alignment are deferred as future work. Despite this setback, the

pipeline described here provides a foundation for researchers and

practitioners looking to integrate detailed 3D urban data into a

game engine like Unreal Engine 5.

2. Production of 3D Building Models

This chapter outlines the methodological framework for

generating 3D building models using photogrammetric techniques

according to the Production of 3D City Models and Creation of

3D Cadastre Bases Project (TKGM, 2025).

2.1 Ground Control Points (GCPs) and Photogrammetric

Block Formation

2.1.1 Marking and Measuring Ground Control Points:
Accurate measurement of Ground Control Points (GCPs) is the

foundation of photogrammetric production. These distinctive field

points, identified through geodetic GNSS or classical polygon

surveys, ensure the geometric reliability of subsequent processes.

Precise GCP positioning directly impacts the overall accuracy of

the 3D city models by serving as anchors for photogrammetric

triangulation and adjustment (Parvu et al., 2024).

2.1.2 Forming Photogrammetric Blocks: Aerial

photographs are organized into photogrammetric blocks, grouping

images based on spatial and temporal relationships. High-

resolution cameras like the UltraCam Osprey Mark 3 acquire

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-6-2025
ISPRS, EARSeL & DGPF Joint Istanbul Workshop “Topographic Mapping from Space” dedicated to Dr. Karsten Jacobsen’s 80th Birthday

29–31 January 2025, Istanbul, Türkiye

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-353-2025 | © Author(s) 2025. CC BY 4.0 License.

353

nadir and oblique images, enabling comprehensive 3D modeling.

This systematic grouping ensures consistent orientation and

facilitates precise photogrammetric triangulation (TKGM, 2025).

2.2 Photogrammetric Triangulation and Adjustment

The photogrammetric triangulation process is essential for

determining the position, orientation, and rotation of aerial

images. To ensure geometric consistency, block adjustment—a

statistical refinement method—is applied to minimize errors. This

process is conducted separately for nadir and oblique images due

to their distinct roles in 3D modeling:

• Nadir Photographs: These vertical images are critical

forgenerating large-scale maps, orthophotos, and accurate

roof surface measurements. With a ground sampling distance

(GSD) of 10 cm, nadir triangulation adheres to strict

regulatory accuracy standards (e.g., Regulation on the

Production of Large-Scale Maps and Map Information) to

produce 1:1,000-scale maps (HKMO, 2005).

• Oblique Photographs: Captured at tilted angles, these images

provide detailed views of building sides, enabling realistic

texturing of fac¸ades. The geometric accuracy of oblique

triangulation must remain within ±3 GSD, and the integration

of ground control points (GCPs) and tie points is essential

when merging nadir and oblique blocks (TKGM, 2025).

2.3 Stereo Compilation

Stereo compilation involves constructing the 3D geometry of

buildings from overlapping nadir images. The process begins by

setting up the stereo model, which uses nadir photographs oriented

with ground control points (GCPs) and triangulation results as its

foundation (Toutin, 2004). From these images, 3D building

vectors are created, delineating roof outlines, terraces, and other

structural details for accurate representation. The data is then

organized into layers, such as roof boundaries and auxiliary

structures, to standardize visualization and facilitate efficient

management. Throughout the process, strict adherence to detailed

production manuals ensures uniformity and consistency across

projects, guaranteeing high-quality outputs.

2.4 True Orthophoto Production

True orthophotos, generated from nadir photographs, are

distortionfree images essential for accurate mapping. The

production process begins with the use of a Digital Surface Model

(DSM), which incorporates height data from buildings, terrain,

and other features to rectify the images and minimize edge

distortions. To ensure geometric fidelity, building boundaries are

refined using specialized edge correction filters. Additionally,

adjacent orthophoto sheets are created with a 30-meter overlap,

enabling seamless mosaicking and facilitating rigorous quality

control to maintain the accuracy and consistency of the final

product (TKGM, 2025).

2.5 DSM and DTM Production

The Digital Surface Model (DSM) captures the elevation of all

features, including buildings, vegetation, and terrain, while the

Digital Terrain Model (DTM) represents the bare ground by

removing non-terrain elements. DTMs are derived either by

directly classifying and filtering out features from the DSM or

through point cloud processing. Although photogrammetric point

clouds are less detailed than LiDAR data, they still support

effective classification for terrain modeling. To maintain

consistency, DTMs must match the spatial resolution of the DSM,

which is 10 cm in this study. Rigorous quality checks are

performed, particularly around building footprints and sloped

areas, to ensure accuracy and reliability in the final models

(TKGM, 2025).

2.6 Constructing and Texturing 3D Building Models

The process of constructing and texturing 3D building models

transforms vector data into detailed, realistic representations of

urban environments. This involves modeling geometric

structures, applying textures, and preparing models for diverse

applications. Outputs are typically delivered in widely used file

formats like OBJ or CityGML, with specific supplementary files

for texturing and material definitions (TKGM, 2025). Below are

the key steps and considerations:

2.6.1 3D Modeling of Vector Data: The geometric structure

of 3D building models is derived from polygonal and line data

obtained through stereo photogrammetry.

• Roof Geometry Creation: Vector data delineating roof

bound-aries and elements (e.g., terraces, chimneys) are

converted into 3D polygons.

• Main and Auxiliary Structures: Distinctions are made

betweenprimary structures (e.g., main building) and

secondary elements (e.g., rooftop installations) to improve

semantic organization.

2.6.2 Texturing: Textures are applied to 3D models to

enhance visual realism. Two distinct processes address the

different surfaces of the buildings:

• Roof Texturing:

- Data Source: Roof textures are extracted from nadir

aerial photographs or true orthophotos.

- Proper alignment of textures ensures that the roof’s

geometric properties are preserved.

• Building Side Texturing:

- Data Source: Oblique aerial photographs provide the

imagery for realistic building side textures.

- Resolution: High-resolution images are mapped to the

side surfaces to capture architectural details like

windows, doors, and exterior designs.

Textures are organized and managed using material libraries. In

the OBJ format, texture-related data is stored in MTL (material

library) files, which define properties such as texture images (JPG

files) and their mapping to the 3D geometry (TKGM, 2025).

2.6.3 Exporting to OBJ Format: The OBJ file format is

widely used for storing 3D model data due to its compatibility

with various modeling and visualization platforms (Dyaksa et al.,

2023). An OBJ file typically consists of:

a. Geometry Data:

• Vertex positions (v): Define the 3D coordinates of points in

space

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-6-2025
ISPRS, EARSeL & DGPF Joint Istanbul Workshop “Topographic Mapping from Space” dedicated to Dr. Karsten Jacobsen’s 80th Birthday

29–31 January 2025, Istanbul, Türkiye

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-353-2025 | © Author(s) 2025. CC BY 4.0 License.

354

• Resolution: Texture coordinates (vt): Map textures to

thegeometry.architectural

• Faces (f): Represent polygons (typically triangles or quad-

rilaterals) using vertex indices.

Figure 1 represents a 3D building in .obj format without attached

.mtl and texture files.

Figure 1. 3D Building Model in .obj format.

b. Material Library (MTL):

The MTL file contains material definitions used by the OBJ file.

It links specific textures (e.g., JPG files) to parts of the model.

Example:

mtllib F-3017499-A.mtl

c. Texture Files:

Textures are stored as JPG or other image files. These images

correspond to roof or building side textures and are mapped to the

geometry using the material library.

Figure 2 represents a 3D building in .obj format with attached .mtl

and texture files.

2.6.4 Preparing for Export and Quality Assurance: Export

formats for 3D building models included CityGML and OBJ, each

serving distinct purposes. CityGML provides a robust framework

for integrating both geometric and semantic data, enabling

detailed categorization of building components such as walls,

roofs, and openings. This format supports structured organization

and interoperability, making it ideal for projects requiring

semantic richness and integration with geospatial systems (Saran

et al., 2015). OBJ, on the other hand, is a versatile format widely

used for visualization and rendering, capturing geometry and

texture mapping effectively (Toledo et al., 2008).

Figure 2. 3D Building Model in .obj format with material library

(MTL) and textures.

Depending on project requirements, 3D models are exported in

various Levels of Detail (LOD), ranging from simple block

representations to highly detailed structures with intricate

textures. Following export, a thorough quality assurance process

ensures accuracy and performance. This involves validating

alignment, identifying and correcting issues such as texture

stretching, gaps, or mismapping, and optimizing OBJ files by

reducing unnecessary vertices and polygons. These steps strike a

balance between file size and model fidelity, ensuring the models

are both lightweight and visually accurate without compromising

quality.

Example of an OBJ File with MTL and Texture Integration

mtllib F-3017499-A.mtl

Vertex positions

v 483721.876000 4425439.316000 875.870000

v 483721.940000 4425439.342000 875.921000

...

Texture coordinates

vt 0.135096 0.682703

vt 0.134349 0.682137

...

Faces with texture mapping

f 1/1 2/2 3/3

f 3/3 2/2 4/4

...

The MTL file referenced in this example, F-3017499-A.mtl,

specifies the texture image paths and material properties. For

example:

newmtl RoofTexture

map_Kd RoofTexture.jpg

(TKGM, 2025)

3. Importing and Preparing 3D Models for Unreal Engine

in Blender

To ensure compatibility with Unreal Engine, OBJ files must be

imported, scaled, and prepared in Blender, a versatile opensource

3D modeling software. This section elaborates on the process of

importing OBJ files with their textures, scaling the models to

match Unreal Engine’s requirements, and exporting the finalized

models in the FBX format, detailing the rationale for this format

choice over OBJ.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-6-2025
ISPRS, EARSeL & DGPF Joint Istanbul Workshop “Topographic Mapping from Space” dedicated to Dr. Karsten Jacobsen’s 80th Birthday

29–31 January 2025, Istanbul, Türkiye

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-353-2025 | © Author(s) 2025. CC BY 4.0 License.

355

3.0.1 Importing OBJ Files in Blender: 242 OBJ files, along

with their associated MTL and texture files (e.g., JPG or PNG),

are first imported into Blender. The OBJ format provides a

straightforward mechanism for transferring geometry and texture

information, allowing Blender to recreate the 3D model with its

defined surfaces and textures. Upon import, the model’s texture

mapping is verified to ensure that the UV coordinates and material

properties align correctly. If any issues arise, adjustments to the

UV maps or material definitions are performed within Blender to

maintain visual fidelity.

3.0.2 Scaling and Preparation for Unreal Engine: Unreal

Engine imposes specific requirements for 3D models, including

consistent scaling, orientation, and pivot point alignment. In

Blender, the imported model is checked for its scale relative to

Unreal Engine’s default unit system, where 1 Unreal Unit (UU)

corresponds to 1 centimeter (Unreal Engine 5.5 Documentation,

2025c). Models are scaled and adjusted as needed to ensure they

match real-world dimensions and are compatible with Unreal

Engine’s physics and lighting systems. Additionally, the origin

point of the model is repositioned to ensure that it aligns with the

pivot point, facilitating proper placement and manipulation within

the Unreal Engine environment. Normals are recalculated to avoid

rendering artifacts, and material assignments are consolidated to

minimize complexity. Figure 3 shows the prepared 3d building

models for Unreal Engine requirements in Blender software.

Figure 3. Scaled 3D Building Models in Blender.

3.0.3 Exporting in FBX Format: After preparation, the 3D

model is exported from Blender in the FBX format. FBX is a

widely used format in game development and 3D applications

because of its superior capabilities compared to OBJ (Jain and

Choi, 2019). Unlike OBJ, which primarily supports geometry, UV

maps, and basic material definitions, FBX offers an advanced

feature set, including hierarchical data, skeletal animations, and

support for embedded textures. By embedding texture maps

directly into the FBX file, the format streamlines the process of

importing models into Unreal Engine, ensuring that textures are

automatically recognized and applied during the import process.

This eliminates the need for manual texture reassignment, which

can be laborintensive, especially in complex scenes.

Another critical advantage of FBX is its support for animations,

which makes it indispensable for dynamic 3D models requiring

skeletal rigs or animated components. Although this may not be

relevant for static architectural models, the capability ensures

scalability for future modifications or animated elements.

Furthermore, Unreal Engine natively supports FBX with

optimized import pipelines, including support for advanced

material properties, LODs, and collision meshes, which are either

unavailable or cumbersome to implement using OBJ (Unreal

Engine 5.5 Documentation, 2025a).

4. Creating a Game Project in Unreal Engine for VR

Environment

The next step involves establishing a game project in Unreal

Engine to develop an immersive VR environment for 3D city

models. While the setup is not tied to a specific VR headset, the

framework ensures compatibility with major VR platforms and

headsets, providing exibility for future deployment. This section

details the creation of the project, the integration of 3D city

models, and the use of Cesium for Unreal to provide a

georeferenced base map environment.

4.0.1 Initial Setup in Unreal Engine: Unreal Engine (UE), a

powerful and widely used game development platform, supports

VR environments through its robust VR development tools,

physics systems, and rendering capabilities. To begin, a new game

project is created using the Blank Template, ensuring minimal

overhead and maximum customization. The project settings are

configured for VR compatibility, enabling features such as

stereoscopic rendering, motion tracking, and input systems

compatible with VR controllers.

The level editor in Unreal Engine is the primary interface for

constructing the virtual environment. It provides tools for

managing assets, setting up the 3D scene, configuring lighting,

and adjusting physics parameters. Key components of the game

environment include:

• Actors: Objects within the game environment, including3D

models, cameras, lights, and geometry.

• Blueprints: Unreal Engine’s visual scripting system

thatallows for rapid prototyping and functionality

implementation without requiring extensive programming

knowledge.

• Level Streaming: A feature used to dynamically load

andunload parts of the environment, optimizing performance

for large 3D city models.

(Unreal Engine 5.5 Documentation, 2025b)

4.1 Using Cesium for Unreal

To establish a georeferenced environment, Cesium for Unreal is

integrated into the project. Cesium is an advanced geospatial

platform that supports globally accurate coordinate systems and

integrates real-world geographic data into Unreal Engine. The

following steps are undertaken to configure Cesium for Unreal:

4.1.1 Installing Cesium for Unreal: The Cesium plugin is

added to the project via the Unreal Marketplace. This plugin

allows for seamless integration of geospatial data into the game

environment.

4.1.2 Setting Up the Georeferenced World: Cesium

employs the EPSG:4978 (WGS 84) geocentric coordinate

reference system (CRS), which aligns with global 3D coordinates.

This ensures that all imported 3D models and the base map are

positioned accurately in real-world locations.

4.1.3 Adding Cesium World Terrain and Bing Maps

Road:

• Cesium World Terrain: This high-resolution global

terraindataset provides a realistic and georeferenced 3D

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-6-2025
ISPRS, EARSeL & DGPF Joint Istanbul Workshop “Topographic Mapping from Space” dedicated to Dr. Karsten Jacobsen’s 80th Birthday

29–31 January 2025, Istanbul, Türkiye

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-353-2025 | © Author(s) 2025. CC BY 4.0 License.

356

surface. It includes elevation data and natural landforms,

enhancing the visual realism of the environment.

• Bing Maps Road: This basemap layer adds

cartographicdetail, including roads, landmarks, and other

essential geographic features, offering additional context to

the 3D city models. The integration of these layers ensures

that the 3D city models are accurately placed within a global

geographic framework. This is particularly important for

largescale urban environments where spatial accuracy and

context are essential for meaningful interaction and analysis.

Figure 4 shows added Cesium World Terrain and Bing Maps Road

as basemap layer in Unreal Engine.

Figure 4. Cesium World Terrain in Unreal Engine Environment.

4.2 Importing 3D City Models

The 3D city models exported in FBX format from Blender are

imported into Unreal Engine as Static Meshes, a fundamental

Unreal Engine asset type for non-animated objects. During

import, the following parameters are adjusted:

• Location, Rotation, and Scale: The models are alignedwith

the Cesium georeferenced environment using accurate

coordinates.

• Collision Setup: Simplified collision meshes are added to

ensure efficient physics interactions.

• Material Mapping: Textures and materials from the FBXfile

are applied, ensuring the models maintain their visual

fidelity.

Figure 5 shows how Unreal Engine configures FBX objects as

static mesh, their materials and textures.

Although the 3D city models function correctly in local coordinate

systems, their final placement into Cesium’s georeferenced scene

is misaligned. The root cause is still under investigation,

encompassing potential discrepancies in coordinate transforms,

pivot points, or scale factors in the FBX files. Due to this

unresolved issue, the subsequent steps that rely on proper

geographic alignment—such as georeferenced interactions,

advanced VR simulations, or integration of additional geospatial

layers—are not yet fully functional.

4.3 Game Environment Configuration

In Unreal Engine, the VR Pawn or Player Character is configured

to facilitate user interaction with the virtual environment. This

setup involves implementing VR-compatible cameras to enable

stereoscopic rendering and provide an immersive first-person

view. Navigation controls, such as teleportation or smooth

locomotion, are tailored for exploring the 3D city models

seamlessly, ensuring user comfort and accessibility. Additionally,

interaction systems are integrated to allow users to engage with

the environment, such as selecting specific buildings or triggering

animations to enhance interactivity.

Figure 5. Importing 3D Building Models into Unreal Engine as

Assets.

To create a visually compelling experience, the environment’s

lighting, shadows, and post-processing effects are meticulously

optimized for VR. These adjustments ensure a balance between

visual quality and system performance, making the virtual space

both immersive and efficient for real-time rendering.

The integration of Cesium and Unreal Engine offers significant

advantages in creating immersive and geospatially accurate VR

environments. Cesium’s reliance on the WGS 84 (EPSG:4978)

coordinate system ensures global consistency, allowing for

precise placement and scaling of 3D city models within their

realworld geographic context. This geospatial accuracy is crucial

for applications requiring realism and spatial reliability.

Meanwhile, Unreal Engine’s advanced rendering pipeline

enhances the visual appeal of the 3D models, ensuring they are

both realistic and engaging, even in the performance-intensive VR

environment. Furthermore, Cesium’s extensibility enables

seamless integration of additional geospatial data, such as weather

layers or traffic information, enriching the environment’s

functionality and making it adaptable for a wide range of

interactive and analytical applications.

5. Future Work

The integration of photogrammetric 3D city models into Unreal

Engine presents significant opportunities for expanding

applications and enhancing user experiences in various domains.

One promising avenue is the utilization of Unreal Engine’s pixel

streaming technology, which enables the delivery of high-quality,

real-time rendered 3D environments to web browsers and

lightweight devices without requiring significant local processing

power. This capability would allow seamless access to immersive

3D city models, making them available to a broader audience,

including urban planners, architects, and stakeholders, regardless

of their hardware limitations. Such a streaming solution would

also facilitate collaborative environments where multiple users

can interact with the same 3D city model remotely.

In the context of VR platforms, Unreal Engine’s robust support

for different hardware, environments, and physics systems makes

it an ideal tool for developing realistic and interactive simulations.

Future work could involve enhancing VR interactions to allow

users to not only explore 3D city environments but also

manipulate and analyze them. For example, users could

dynamically simulate urban scenarios such as traffic ow, ood

modeling, or infrastructure development within a virtual

cityscape. These simulations would benefit urban planning,

disaster management, and public engagement by offering an

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-6-2025
ISPRS, EARSeL & DGPF Joint Istanbul Workshop “Topographic Mapping from Space” dedicated to Dr. Karsten Jacobsen’s 80th Birthday

29–31 January 2025, Istanbul, Türkiye

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-353-2025 | © Author(s) 2025. CC BY 4.0 License.

357

intuitive and immersive platform for understanding complex

spatial data.

Further integration of GIS (Geographic Information Systems)

could significantly enrich the functionality of these 3D

environments. By linking geospatial data to objects within the city

model, users could query buildings, roads, or landmarks for

metadata such as ownership, historical significance, or

construction details. This would enable a comprehensive digital

twin of the urban area, supporting decision-making processes in

smart city initiatives, urban sustainability planning, and

infrastructure management. Incorporating real-time data streams,

such as traffic conditions, weather updates, or IoT sensor feeds,

could further enhance the model’s utility by providing dynamic,

upto-date information for simulations and analyses.

Future advancements might also explore AI-driven features

within these environments. For example, integrating machine

learning algorithms could automate tasks such as feature

recognition (e.g., identifying building types or land use patterns)

or predictive modeling (e.g., forecasting urban growth). This

would streamline processes like urban analysis, significantly

reducing the manual workload required for complex studies.

Additionally, the use of augmented reality (AR) could extend the

reach of these models beyond virtual environments, enabling on-

site applications where city models are overlaid onto realworld

landscapes. This could provide valuable tools for urban

development, construction monitoring, and public engagement by

merging physical and digital worlds in a seamless interface.

In conclusion, the integration of 3D city models into Unreal

Engine offers a versatile and scalable platform with vast potential

for future applications. By leveraging Unreal’s advanced

rendering, physics, and streaming capabilities, combined with

GIS integration and emerging technologies such as AI and AR,

this method could redefine how 3D city models are used across

disciplines, from urban planning and smart city development to

public engagement and immersive storytelling.

References

Dyaksa, G. A., Arfian, N., Herianto, H., Choridah, L., Cahyanta,

Y.A., 2023. Smoothing module for optimization cranium

segmentation using 3d slicersmoothing module for optimization

cranium segmentation using 3d slicer.

HKMO, 2005. Büyük Ölçekli Harita ve Harita Bilgileri Üretim

Yönetmeliği. [Accessed: 2025-01-02].

Jain, K., Choi, Y.M., 2019. Building tangible augmented reality

models for use in product development.

Jochem, R., Goetz, M., 2012. Towards interactive 3d city models

on the web.

Mitishita, E.A., Habib, A., Centeno, J.A.S., Machado, M.L., Lay,

J.C., Wong, C., 2008. Photogrammetric and lidar data integration

using the centroid of a rectangular roof as a control point.

Parvu, I.M., Picu, I.A.C., Spiroiu, I., 2024. The importance ofˆ

ground control points in a photogrammetric workflow.

Saran, S., Wate, P., Srivastav, S.K., Murthy, Y.V.N.K., 2015.

Citygml at semantic level for urban energy conservation

strategies.

TKGM, 2025. 3d geographical information system. Accessed:

2025-01-02.

Toledo, R., Wang, B., Levy, B., 2008. Geometry textures and

applications¡sup¿†¡/sup¿.

Toutin, T., 2004. Dsm generation and evaluation from quickbird

stereo imagery with 3d physical modelling.

Unreal Engine 5.5 Documentation, 2025a. Fbx content pipeline.

[Accessed: 2025-01-15].

Unreal Engine 5.5 Documentation, 2025b. Level editor in unreal

engine. [Accessed: 2025-01-15].

Unreal Engine 5.5 Documentation, 2025c. Units of measurement

in unreal engine. [Accessed: 2025-01-15].

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-6-2025
ISPRS, EARSeL & DGPF Joint Istanbul Workshop “Topographic Mapping from Space” dedicated to Dr. Karsten Jacobsen’s 80th Birthday

29–31 January 2025, Istanbul, Türkiye

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-353-2025 | © Author(s) 2025. CC BY 4.0 License.

358

