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Abstract  

  

Localization is the process of determining the path, position and orientation of a robot in an environment. The data from different 

sensors such as LiDAR, inertial measurement units (IMU) or cameras are used in the localization process. This task is of fundamental 

importance to enable robots to navigate autonomously and perform tasks effectively. The robot localization can be performed utilizing 

different techniques either using hardware or software designs. Visual localization algorithms can be shown as one of the localization 

techniques that enable robots to determine their position and orientation. In this aspect, visual odometry is one of the mostly used 

methods. It is a technique that enables robots to determine their positions and movements by analysing sequential images. It tracks 

features in consecutive images to determine the movement of the camera between those frames which enables the determination of the 

robot’s position in the environment. The process commonly involves detecting and matching key points or features in the images, such 

as corners or edges, and then using algorithms to calculate the camera's motion. Visual odometry is useful in environments where 

Global Navigation Satellite Systems (GNSS) or other external positioning systems cannot operate. In this study, the use of visual 

odometry is assessed in comparison with the iPad Pro LiDAR and steel tape results to determine the distances between each image-

taking point. The iPad and steel tape results were taken as the ground truth and the root mean square values were determined by 

comparing the algorithm and their results. 

 

 

1. Introduction 

 

Localization can be defined as identifying a robot’s position 

concerning its environment. Localization is an important aspect 

of any autonomous robot since understanding its position is a 

necessary foundation for planning and executing future actions. 

In a usual robot localization framework, a map of the robot’s 

surroundings is available and the robot has sensors to observe the 

environment and track its movement. Then, the localization task 

involves determining the robot's position and orientation utilizing 

the information obtained using these sensors. Robot localization 

methods must also be able to handle noisy data, providing both 

an estimate of the robot's position and a measure of the 

uncertainty linked to that estimate (Huang and Dissanayake, 

1999).  

  

In general sense, several technologies can be used for accurate 

localization, and the choice of method depends largely to the 

environment.   

Global Navigation Satellite Systems (GNSS) are the most 

commonly used methods for localization at outdoor, where 

satellite connections are readily available. GNSS refers to a group 

of geo-referenced high orbit satellite systems, including the GPS 

(Global Positioning System) operated by the United States, 

GLONASS (Russia), Galileo (European Union), and  

BeiDou (China), which use signals to broadcast position 

(longitude, latitude, and altitude) and time information to 

receivers on Earth (Moradbeikie et al., 2021). GNSS technology 

is essential for producing maps (gathering the survey data), 

navigation for land-air-sea transportation vehicles, all 

engineering applications requiring location data, military 

purposes and location-based services.   

  

GNSS technology has its limitations, especially in indoor areas 

or densely constructed urban areas where satellite signals may be 

blocked or diminished. GNSS can be only used in outdoor 

environment because satellite signals cannot be received by the 

GNSS antennas inside the closed areas/buildings. For this reason, 

it is required different system providing indoor navigation at 

these types of places (Faria et al., 2010). In these situations, 

disparate techniques for localization is necessary. The relative 

location information can be obtained through calculating the 

signal strength of multiple access points with the techniques such 

as Wi-Fi triangulation and Bluetooth beacons (Bilgi et al., 2017).  

Wi-Fi localization systems are dependent upon Wi-Fi coverage 

and are not adjusted for recalculating location Ahmetovic et al., 

2017).  These methods work by triangulating signals from devices 

such as Wi-Fi routers or Bluetooth and calculating distances 

based on their relative signal strength. While, methods may not 

be as accurate as GNSS, they are applicable for indoor 

applications where exterior barriers prevent GNSS signal 

performance from being optimal (Tiku and Pasricha, 2023).  

  

In this study, the performance of the visual odometry was 

examined by comparing the localization results with the iPad Pro 

LiDAR and steel tape measurements. The distances between the 

points where photographs were taken were compared with the 

algorithm and the iPad Pro & steel tape results, and Root Mean 

Square Error (RMSE) values were calculated.  

  

2. Methodology 

 

2.1 Visual Odometry   

 

Visual odometry is a method to determine an object’s motion (its 

rotation and orientation) in an environment utilizing a sequence 

of images. It can be classified as a special case of Structure from 

Motion (SFM) is where both the 3D structure of the environment 

and pose information are obtained using unordered or in-order 

images (Scaramuzza and Fraundorfer, 2011).   

  

In recent years, different types of visual odometry methods have 

been presented. These methods can be classified into two 

categories: monocular (Campbell et al., 2005) and stereocamera 

(Mahon et al., 2008). Then, they can be divided into feature 

matching (Talukder et al., 2003), feature tracking (Dornhege and 

Kleiner, 2006), and optical flow techniques (Zhang et al., 2009).  

Nister et al. (2006) initially introduced visual odometry, since it 
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is similar to the concept of wheel odometry. They presented 

newly developed methods for determining camera poses utilizing 

visual input either monocular or stereo. The study focused on the 

outlier rejection using Random Sample Consensus (RANSAC) 

where the false feature matches are rejected (Fischler and Bolles, 

1981). Nister et al. (2006) were the first to apply feature tracking 

in all frames rather than limiting feature matching to sequential 

images. This method helps to eliminate the feature drift usually 

associated with cross-correlation-based tracking methods 

(Scaramuzza and Fraundorfer, 2011). They also introduced a 

RANSAC-based motion estimation method that relies on 3D-to-

2D reprojection error rather than the Euclidean distance error 

between 3D points.  It was demonstrated that using 3D-to-2D 

reprojection errors produces more accurate estimates compared 

to 3D-to-3D errors (Henry et al., 2012).   

  

The robotic space mission on Mars (Cheng et al., 2005) in 2003 

is an example of the usage of visual odometry that aimed to 

examine the surface and the geology of the planet using two 

rovers. Scaramuzza and Siegwart (2008) performed another study 

utilizing visual odometry in an outdoor environment. They used 

a monocular omni-directional camera and performed a fusion 

approach using two different methods: In the first method; the 

Scale Invariant Feature Transform (SIFT) feature extraction was 

used and the RANSAC was also used for the outlier rejection 

(Lowe, 2004). In the other method, an appearance-based method 

proposed by Comport et al. (2007) was utilized for the pose 

estimation.   

  

Visual odometry progressively determines a vehicle's movement 

by examining sequential camera images and calculating the 

relative pose between perspectives using 2D bearing vectors 

extracted from detected features. At time k, the visual odometry 

algorithm processes two consecutive images, Ik and Ik−1 , as input 

and generates an incremental motion estimate relative to the local 

camera reference frame. This motion is expressed as   δ*k,k−1  R3 

(Ouerghi et. al., 2018):  

  

                                                          (1)  

  

Visual odometry techniques can be categorized depending on the 

imagery they use during the monocular or stereoscopic process- 

and the processing methods are either direct (image/appearance-

based) or feature-based. The techniques may utilize a 

combination of feature tracking, feature matching, or optical flow 

(Scaramuza and Fraundorfer, 2011; Yousif et al., 2015). Most of 

the visual odometry systems use images from a pair of cameras 

that are mounted on a robot since the majority of them produce 

3D navigation information from a set of images. The triangulation 

of image features is used to calculate the robot's velocity and 

displacement easily depending on the distance between cameras 

and their capture frame rate (Hartley, 1997). On the other hand, 

monocular visual odometry is more challenging, and it has only 

recently gained attention. Monocular visual odometry estimates 

motion and reconstructs the environment using at least three 

consecutive 2D images and their associated bearing data. A 

parallel tracking and mapping (PTAM) algorithm (Klein and 

Murray, 2007), is utilized in many monocular applications. The 

algorithm was initially developed for augmented reality (AR), 

and its speed and robustness, relying solely on existing map 

features, have made it a popular choice among visual odometry 

researchers (Lim and Braunl, 2020). The types of visual odometry 

can be seen in Figure 1.   

  

  
Figure 1. Types of visual odometry (Lim and Braunl, 2020).  

  

2.2 Light Detection and Ranging (LiDAR)  

 

Light detection and ranging (LiDAR) technology has been widely 

used in different types of applications in recent years. LiDAR is 

a measurement system that quickly produces large amounts of 3D 

point cloud data. The features of LiDAR systems have advanced 

significantly, leading to a configuration with notably reduced 

weight, size, cost, and power (SWaP) requirements (Liner, 2015). 

The classification of LiDAR instruments differs based on the 

applications. According to, the classification based on the 

measurement platform, there are two types of LiDAR: aerial and 

terrestrial. Generally, time of flight (TOF) measurements are used 

to capture spatial information which is a core function of all 

LiDAR instruments. LiDAR systems that collect spatial data are 

available in three types: one-dimensional (1D), two-dimensional 

(2D), and threedimensional (3D), with 2D and 3D spatial data 

acquisition facilitated by optical deflection systems. Spatial 

information is of fundamental importance for generating a precise 

3D map of the environment. However, it alone is insufficient for 

applications that involve object detection. The second type of 

LiDAR instrument is designed to measure spectral data, like the 

laser return intensity (LRI), to offer supplementary information.  

Additionally, certain applications require the capture of temporal 

information alongside spatial and spectral data. The aim can be 

achieved with the use of the repeated LiDAR technique, which 

involves collecting temporal data from a target environment over 

a specific period (Robin and Jacky, 2014).  

  

LiDAR architecture is referred to as "the art of LiDAR 

instrumentation, which involves both hardware and software" 

(Xinzhao, 2012 & 2016). A fully operational LiDAR system 

includes four key subsystems: laser rangefinder, beam deflection, 

power management and master controller units, as illustrated in 

Figure 2. Each of these subsystems is critical, as a failure in any 

one of them can fail the functioning of the system.  

Without the beam deflection subsystem, the LiDAR can still 

operate as a 1D system, commonly referred to as a laser 

rangefinder (LRF) (Raj et al., 2020). The basics of LiDAR 

systems can be seen in Figure 2.  
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 Figure 2.  LiDAR system (Raj et al., 2020).  

  

2.2.1 iPad Pro LiDAR: The IPad Pro and iPhone 12 Pro with 

built-in LiDAR were released in 2020 which can be considered 

as a great innovation in tablet&smartphone market.  The LiDAR 

integrated into these devices primarily focuses on Augmented 

Reality (AR) applications, and its performance in this area has 

been tested in different studies (Spreafico et al., 2021). The IPad 

Pro and iPhone 12 Pro took the attention of the researchers in both 

indoor and outdoor studies. They use sensors developed by Sony 

for the LiDAR Scanners. The IPhone and IPad LiDAR uses a 

“time of flight” technology that measures the time it takes for 

light pulses (approximately 940 nm near-infrared range) (URL 1). 

They are particularly valuable when speed, portability, and cost-

efficiency are critical. Their technical capabilities, cost-

effectiveness, and user-friendly design make them an attractive 

alternative to traditional techniques, such as Terrestrial Laser 

Scanning (TLS) and Photogrammetric cameras, which are 

commonly utilized in different applications (Chiabrando et al., 

2011).  

  

The internal structure of the iPad Pro LiDAR can be seen in 

Figure 3.  

  

  
Figure 3. iPad Pro LiDAR (Yoshida, 2020).   

  

  

3. Application   

 

The study focuses on obtaining camera poses from consecutive 

images (Figure 4).  

   
Figure 4. The workflow of visual odometry.  

  

The ORB (Oriented FAST and Rotated BRIEF) algorithm is used 

for feature detection. The features are then matched between 

successive image frames using a brute-force matcher 

(BFMatcher) with Hamming distance. Lowe's ratio test is utilized 

to improve feature-matching accuracy. Therefore, only matches 

where the distance of the nearest neighbour is significantly less 

than that of the second nearest neighbour are kept (threshold 

value is 0.75). The detected key points and matched features 

between images can be seen in figures 5 and 6.   

  

   
Figure 5. Detected key points.  
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Figure 6. The matched features between images.  

  

RANSAC is used to estimate the fundamental matrix utilizing 

these filtered matches. The essential matrix is computed using a 

predefined intrinsic camera matrix and the fundamental matrix. 

The relative rotation and translation of the camera between two 

frames are then estimated utilizing the essential matrix. While 

each image is being processed, the cumulative rotation and 

translation are being tracked, assuming the first image as the 

origin. The trajectory of the camera is obtained by updating the 

positions iteratively. Then a 3D plot is obtained to display the 

camera's trajectory. The localization result can be seen in figure 

7.   

  

 
Figure 7. Localization with visual odometry.  

 

The same area was scanned using iPad Pro’s LiDAR and 

modelled in the SiteScape software (Figure 8). The distances 

were also measured on the scan data and then compared with the 

results from the visual odometry.   

 
Figure 8. The point cloud data of iPad Pro in SiteScape 

Software. 

  

The distances between the points where the photographs were 

captured were also measured with steel tape, on the ground. The 

same distances were also calculated with iPad Pro LiDAR point 

cloud. Consequently, a comparison between the distances 

obtained by visual odometry and Apple iPad Pro and steel tape 

measurements were acquired. The distances between each point 

where the photographs were captured can be seen in Table 1. 

 

Image 

Pair  

Distance   

(Visual 

Odometry) (cm)  

Distance   

(Steel 

Tape)  

(cm)  

Distance  

(iPad Pro)  

(cm)  

1 to 2  50.0  40.5  39.5  

2 to 3  50.0  40.5  40.1  

3 to 4  50.0  40.5  39.4  

4 to 5  50.0  40.5  41.0  

Table 1. The distances between each point. 

  

The RMSE values were calculated by comparing the visual 

odometry results with the distance obtained by iPad Pro and steel 

tape. The comparison with steel tape gives a RMSE of 9.50 cm 

while the comparison with iPad Pro gives a RMSE of 10.02 cm.   

  

4. Conclusion   

 

In this study, the performance of visual odometry was evaluated 

by comparing the distances between each image capturing point 

with the iPad Pro and steel tape measurements. The RMSE values 

are 9.50 cm in comparison with steel tape measurements and 

10.02 cm in comparison with iPad Pro LiDAR measurements 

respectively. Since, the localization process is easy and fast with 

visual odometry. However, the accuracy needs should be taken 

into consideration based on the application. For instance, in 

environments requiring high accuracy, such as robotic surgery or 

high-stakes construction, visual odometry may need to be 

augmented with more reliable measurement techniques. The 

findings show the importance of selecting the appropriate 

measurement method based on the specific requirements and 

accuracy needs of the task that is carried out.   
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