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Abstract

The detection of tiny objects in satellite imagery is a critical task with wide-ranging applications, including environmental monitor-
ing, urban planning, disaster response, and the surveillance of critical transport infrastructure. Sentinel-2 satellite data, characterized
by providing rich spectral information at a moderate spatial resolution (10–60m), poses significant challenges for the identifica-
tion of small-scale features due to limited spatial detail and the effects of mixed pixels. This study investigates the potential of
super-resolution techniques to enhance Sentinel-2 imagery for improved tiny object detection. A dataset was meticulously annot-
ated to identify aircraft across diverse areas of interest, enabling rigorous evaluation using advanced methodologies. Detection was
performed using a hybrid approach that combines a YOLOv8-based object detector and a vision-transformer-based object density
estimator. The fusion of these complementary methods significantly reduces false positives, resulting in improvements in preci-
sion and F1 score. The findings underscore that super-resolved Sentinel-2 imagery offers a viable and cost-effective solution for
detecting tiny objects, particularly in scenarios where access to high-resolution imagery is restricted or economically prohibitive.

1. Introduction

Globally and freely available satellite images are currently lim-
ited by their ground sampling distance (GSD), e.g. Sentinel-2
(S2) with 10-60m. Regarding object detection, the question
arises of the spatial limit of object sizes where reliable detec-
tion is still possible. (Kaur and Singh, 2023) indicates small
object size as one of the main problems of object detection. In
this work, the limit is pushed by enhancing the resolution of the
input data and by combining two complementary methods for
object detection and object density estimation.

Main aim. The frame for this study is the development of a sys-
tem for continuous monitoring of critical transport infrastruc-
ture. It exploits the continuous acquisition and availability of
S2 imagery to detect tiny objects and proactively produce re-
ports of activity. For this study, the tiny objects selected are
aircraft. These are objects with sizes close to the GSD of a S2
image and appear in various sizes, shapes, and colors.

2. State of the Art

In the following, we give an overview of related work for all
necessary subtopics for tiny object detection in S2 imagery.

2.1 Super-resolution

In recent years, an increase in computational capabilities and
the development of Deep Neural Network architectures have
pushed the boundaries of super-resolution (SR) techniques, en-
abling the generation of high-quality high-resolution images
with improved accuracy and efficiency. In general, the clas-
sification of SR methods depends on the number of input im-
ages. The first category includes single image super-resolution
(SISR) methods, and the second comprises multi-frame super-
resolution (MISR) methods.

Among the SISR methods, the most promising are those based
on machine learning techniques, especially deep learning (DL).
DL-based methods can be divided into two groups: convolu-
tional architecture-based (CNN) methods and methods based
on Generative Adversarial Networks (GANs) (Zhou and Feng,
2019). GAN-based methods tend to generate high-frequency
noise (Park et al., 2018), making them less useful for satellite-
based image applications. For these reasons, a significant num-
ber of SR approaches based on CNNs have emerged, primarily
focusing on the Red, Green, Blue, and Near Infrared bands.

The first SRCNN, which directly learns an end-to-end map-
ping between low- and high-resolution images, was proposed
by (Dong et al., 2014). It was later redesigned and called FSR-
CNN (Dong et al., 2016). Since then, many other CNN-based
frameworks have emerged, including ResNet (He et al., 2015a),
DRNN (Kim et al., 2016b), and VDSR (Kim et al., 2016a).

A great deal of research has been conducted, demonstrating the
possibility of super-resolving S2 images. For example (Galar et
al., 2019) applied Enhanced Deep Residual Network and used
RapidEye imagery as high-resolution reference images to ob-
tain 5m S2. It has been later upgraded to quadruple the res-
olution to 2.5m (Galar et al., 2020). Some works increase the
resolution even higher, like by a factor of 8 in (Wolters et al.,
2023), however then objects get hallucinated. (Lanaras et al.,
2018) proposed a solution to SR 20m bands of S2 using 10m
bands.

2.2 Object detection

Traditional object detection relies of three stage computation
phases: selection of region, extraction of features and classific-
ation (Kaur and Singh, 2023). All three steps have their draw-
backs as for example necessity to inspect entire image with slid-
ing multi-scale window or to select manually appropriate fea-
tures. These drawbacks may be time consuming and computa-
tionally demanding.
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Object detection algorithms based on deep learning offer a
possible solution to limitations of traditional methods. Deep
learning-based object detection algorithms can be categorized
into two primary types. The first category covers region based
detectors also known as two-stage detectors. They work in
a two-stage approach: first, regions of interest are proposed
and second, objects are localized and classified within those
regions (Kaur and Singh, 2023). First CNN of this type was
Region-Based CNN (R-CNN) (Girshick et al., 2014) and was
successfully applied for small objects detection by (Chen et al.,
2017). Although the method is highly accurate the main draw-
back is its speed. Consequently, numerous follow up R-CNN
algorithms have been proposed such as Fast R-CNN (Girshick,
2015), Faster R-CNN (Ren et al., 2017) or SPP-Net (He et al.,
2015b).

The second category of object detection methods are one-stage
detectors. These perform both localization and classification in
a single pass through the network. In this category family of
You Only Look Once (YOLO) (Redmon et al., 2016, Redmon
and Farhadi, 2018, Bochkovskiy et al., 2020) object detectors
plays a significant role, along with RetinaNet (Lin et al., 2020).
In general, single-shot detectors are considered less accurate,
especially when it comes to small objects (Yin et al., 2020), but
at the same time significantly faster than two-stage detectors.

2.3 Density estimation

Object density estimation emerged as a research topic in com-
puter vision in cases when objects are very tiny or strongly
overlap, such that detecting each instance is very difficult or
even impossible. The main concept is to estimate the object
density function whose integral over any image region holds
the count of objects within this region. Classical applications
are cell counting in medical imagery or person counting in ter-
restrial images which were initially solved by regression-based
machine learning (Lempitsky and Zisserman, 2010). With the
rise of deep learning, CNN-based methods were employed (cf.
the review in (Perko et al., 2021) and (Li et al., 2018)), fol-
lowed by vision transformers (Liang et al., 2022). The latter
also estimates the center point of each object and its confidence
in addition to the density value. Even though there is a lot of
development within the field of computer vision, the paradigm
is only little applied in remote sensing, which is addressed in
(Rodriguez and Wegner, 2019, Perko et al., 2022).

2.4 Data fusion

For fusing the results of object detection and density estimation
several methods exist following different goals. One option is
to use the coarse density estimate to limit the search space for
object detection yielding speed-up (also called context prim-
ing) (Zou et al., 2023). Another option is to combine the con-
fidences in a probabilistic manner to re-weight the detections
based on the according (local) density (Perko and Leonardis,
2010). As a result, false positives are down-weighted while
true positives are up-weighted. Another version is to use the
thresholded density maps to reject all detections outside this
binary mask. In this case the density is used as a spatial filter to
remove detections (cf. (Perko and Leonardis, 2007)).

3. Data Set

For the proof of concept, a total of 5,378 aircraft were annotated
within 118 areas of interest. Figure 1 illustrates the distribution

of aircraft sizes in our dataset. The sizes range from extra-small
and small (up to 12 m or 16 m in length) to large and extra-large
(up to 50 m in length or beyond).

Figure 1. Distribution of aircraft sizes.

Ensuring annotation is reliable required not only the involve-
ment of staff specialized in the matter, but also the use of very
high-resolution (VHR) imagery. These are image with spatial
resolution under 1 meter. The detection using low-resolution
assets can be challenging, and the identification of specific
models of aircraft is only possible on the largest aircraft if using
S2 super-resolved imagery.

The use of VHR data introduced a new requirement. For an-
notation to be consistent to the ground truth of both super-
resolved and VHR imagery must be the same. This means that
both images should be acquired at the same time, thus ensuring
the reality represented in the high-resolution image is equal to
the low-resolution image. A total of 536 archived VHR satel-
lite images were acquired on areas of interest such as airports
and harbors. Figure 2 shows the differences in acquisition time
between high- and low-resolution couples across the dataset.
Additionally, Figure 3 represents an example of a pair of low
and high-resolution images acquired at the exact same moment,
which enables accurate labeling of the low-resolution dataset.

Figure 2. Differences in acquisition time between low- and
high-resolution couples across the dataset.

The provision of imagery is limited to existences in the
archives. A thorough archive search work was applied to ensure
that acquisition times were as close as possible. As a result, up
to 85% of imagery was acquired within one hour difference.

4. Methodology

The proposed fully automatic workflow for tiny object detection
consists of the steps described in this section and is illustrated
in Figure 4.

4.1 Super-resolution

The limited spatial resolution of S2 images makes it challen-
ging to detect objects like aircraft, particularly smaller ones.
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(a) High-resolution (b) Low-resolution

Figure 3. Both low- and high-resolution images must represent
the same ground truth.

Therefore, the first step in the proposed workflow involves en-
hancing image sharpness using a super-resolution deep learn-
ing model for the 10m bands (red - B04, green - B03, blue -
B02, near infrared - B08). For this purpose, an Enhanced Deep
Residual Network (EDSR) (Lim et al., 2017) was trained, con-
sidering a reference high-resolution sensor as the ground truth,
as proposed in (Galar et al., 2020). Specifically, we have opted
for PlanetScope, as it is as similar as possible to S2 (in terms
of spectral bands), while providing images at a greater spatial
resolution (3.125m GSD). To tailor this model for defense use
cases, only images of military bases have been considered. As
a result, the super-resolution model increases the spatial resol-
ution of S2 images by a factor of 4 to 2.5m GSD, making it
possible to accurately detect and identify military assets.

4.2 Object detection

Taking the super-resolved S2 images as input, an object detec-
tion model has been used to detect aircraft. In this regard, the
You Only Look Once (YOLO) (Redmon et al., 2016) family of
object detection models has been considered due to their good
tradeoff between speed and accuracy. Instead of relying on
sliding window approaches as traditional methods do, YOLO
treats object detection as a single regression problem, predict-
ing bounding boxes and class probabilities for objects directly
from the input image in a single forward pass.

Among the key innovations of the YOLOv8 architecture are
the use of spatial attention mechanisms, which help the model
focus on relevant parts of the image, leading to more precise
object localization, and a novel feature fusion module that ef-
fectively combines high-level semantic features with low-level
spatial information, improving detection accuracy for small ob-
jects (Sohan et al., 2024). Both characteristics are of paramount
importance for detecting aircraft in satellite imagery, as objects
are often located in specific parts of the image following partic-
ular patterns and tend to vary in size, with the majority being
small.

To address the challenge of small object detection, we util-
ized the Slicing Aided Hyper Inference (SAHI) method (Akyon
et al., 2022), a generic slicing-aided fine-tuning pipeline that
can be applied to any existing object detector. This approach
enhances the small object detection performance of any cur-
rent object detector without requiring fine-tuning, leveraging
slicing-aided inference. By dividing input images into over-
lapping patches, this method effectively increases the relative
pixel area of small objects in the images fed into the network,
facilitating their detection.

4.3 Density estimation

Within this work, we present a custom-tailored vision
transformer-based variant of (Liang et al., 2022) to estimate
the object density, confidence, and location. Here features are
extracted by a CNN encoder, which are then fed to a trans-
former encoder-decoder module with prediction heads (cf. Fig-
ure 5). The initial framework is designed for terrestrial 8-bit
RGB images, such that we first quantize the super-resolved
S2 16-bit reflectance also considering appropriate nodata hand-
ling. Second, bands are selected where red, green, and near
infrared performed best. Finally, the model was pretrained on
the NWPU-Crowd data set (Wang et al., 2020) followed by a
transfer learning to our custom S2-based dataset (epochs 7500,
learning rate 1e-4, crop size 256, batch size 16, queries 700).

Object density heatmaps are generated by applying Gaussian
filtering on the individual detections (cf. Figure 4).

4.4 Data fusion

Although the spatial resolution of the super-resolved S2 images
is four times greater than that of the original images, challenges
for object detection systems may still arise depending on the
size of the target objects. As noted in Section 3, the objects in
our dataset vary in size from 107m2 to 3272m2. Consequently,
some objects may occupy only a few pixels (e.g., 1 or 2 S2
pixels). Due to the presence of such small objects, object de-
tection models may experience significant performance limita-
tions. Specifically, they may either fail to identify many objects
or overcompensate by detecting spurious ones, resulting in a
high number of false positives.

In our research, we primarily address the latter issue by integ-
rating the outputs of a density estimation approach as a spatial
filtering step. The idea is to use the object density heatmaps
generated by this approach to remove false predictions from the
object detection model, thereby reducing the number of false
positives while preserving most of the true positives, thus, fol-
lowing the paradigm in (Perko and Leonardis, 2007). Figure 4
illustrates the processing flow described above.

5. Results

Table 1 compares the performance of the object detection model
alone (baseline) with the proposed data fusion approach, which
filters out false positives using heatmaps generated by the dens-
ity estimation model. The results show that this approach signi-
ficantly reduces false detections (from 487 to 186, a ≈62% re-
duction) while only slightly decreasing true positives (from 507
to 481, a ≈5% reduction), thereby increasing precision (from
0.51 to 0.72, a ≈41% improvement).

This analysis can be further broken down by object size to un-
derstand the impact of the proposed method across different ob-
ject scales:

• XS: Both methods achieve a low recall of 0.04, detecting
only 3 of the 78 true objects, highlighting the significant
challenge of identifying such small targets. However, the
baseline method achieves a precision of 0.75 due to one
false positive, while the proposed method eliminates all
false positives, achieving a perfect precision of 1.00. Des-
pite this improvement in precision, the F1 score remains
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Figure 4. Proposed processing flow that filters out false predictions made by the object detection (OD) model using the object density
heatmap produced by the density estimation approach.

Figure 5. Deep learning architecture initially designed for crowd counting and localization, based on CNN encoder, Transformer
encoder, Transformer Decoder, and prediction heads (cf. (Liang et al., 2022)). This design predicts the location of objects in the form

of 2D points, together with confidences and the overall object count.

Experiment Size TP FP FN Precision Recall F1

Baseline

XS 3 1 75 0.75 0.04 0.07
S 46 183 165 0.20 0.22 0.21

M 225 254 165 0.47 0.58 0.52
L 202 40 30 0.83 0.87 0.85

XL 31 10 0 0.76 1.00 0.86
Overall 507 487 435 0.51 0.54 0.53

Proposed

XS 3 0 75 1.00 0.04 0.07
S 46 58 165 0.44 0.22 0.29

M 211 104 179 0.67 0.54 0.60
L 192 20 40 0.91 0.83 0.86

XL 29 3 2 0.91 0.94 0.92
Overall 481 186 461 0.72 0.51 0.73

Table 1. Results obtained for the test set.

constant at 0.07 for both methods, as the low recall dom-
inates the overall performance. This suggests that while
the proposed method is effective in avoiding false detec-
tions, it does not enhance the model’s ability to detect
extra-small objects.

• S: For small objects, the proposed method demonstrates a
substantial reduction in false positives (from 183 to 58),

leading to a noticeable improvement in precision (from
0.20 to 0.44, a 120% increase). However, recall remains
constant at 0.22, as the number of true positives remains
unchanged. This trade-off highlights the effectiveness of
the proposed method in filtering out false positives for
small objects while maintaining detection rates.

• M: Medium-sized objects show a more balanced improve-
ment. The proposed approach reduces false positives sig-
nificantly (from 254 to 104) while maintaining a relatively
high recall (0.54 vs. 0.58 for the baseline). Precision sees
a major boost (from 0.47 to 0.67, a ≈43% improvement),
and the F1 score rises from 0.52 to 0.60, reflecting better
overall performance.

• L: Large objects are well-detected by both methods, but
the proposed approach further enhances performance. It
achieves a higher precision (0.91 vs. 0.83) with fewer false
positives (20 vs. 40) and a slightly lower recall (0.83 vs.
0.87). This results in an improved F1 score (0.86 vs. 0.85),
showcasing the method’s ability to optimize performance
for this size category.
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• XL: For extra-large objects, both methods perform excep-
tionally well, but the proposed method demonstrates su-
perior precision (0.91 vs. 0.76) and a marginally lower
recall (0.94 vs. 1.00). This leads to a higher F1 score
(0.92 vs. 0.86). The small number of false positives (3 vs.
10) highlights the proposed method’s accuracy in detect-
ing large, easily distinguishable objects.

In summary, the proposed approach excels particularly for me-
dium to extra-large objects, where precision improvements are
the most significant. For smaller objects (XS and S), challenges
persist, as reflected by relatively low F1 scores. However, the
ability to reduce false positives across all size categories, es-
pecially for small and medium objects, makes the proposed
method highly effective overall.

Figure 6 shows the object detection and density estimation res-
ults for a given airbase. By looking at this figure, one can draw
similar conclusions to those derived from the quantitative ana-
lysis.

(a) Object Detection results

(b) Density Estimation results

Figure 6. Object detection and density estimation results for the
same airbase.

Following this approach, object detection of critical transport
infrastructure with S2 imagery becomes feasible, which ini-
tially seemed unfeasible due to the high number of false pre-
dictions. This opens up new possibilities for monitoring critical
transport infrastructure using freely available satellite imagery,
with the associated advantages of obtaining a global track of
activity in strategic areas of interest. Moreover, our method
integrates the benefits of super-resolution in the downstream al-
gorithms, enabling acceptable performance in the detection of
small objects.

6. Conclusions and Future Research

The results demonstrate the efficacy of the proposed data fusion
approach in improving the precision of object detection by sig-

nificantly reducing false positives across all object sizes, espe-
cially for small and medium objects. This improvement comes
with only a minor trade-off in recall, indicating the robustness
of the method. For larger objects, where the baseline already
performed well, the proposed method further refined the pre-
cision while maintaining high recall, underscoring its scalabil-
ity across different detection challenges. However, the analysis
also highlights persistent challenges in detecting extra-small
objects, where neither the baseline nor the proposed method
achieved significant improvements in recall. These findings em-
phasize the need for tailored solutions to address size-specific
detection difficulties in real-world applications.

Future research should focus on enhancing the recall for smal-
ler objects without compromising precision. Potential strategies
include employing higher-resolution inputs, designing multi-
scale detection architectures, or integrating contextual and tem-
poral information from adjacent observations. Additionally, ex-
ploring advanced data augmentation techniques, such as lever-
aging synthetic or adversarial samples, could improve model
robustness. Another promising research line lies in incorporat-
ing self-supervised or semi-supervised learning approaches to
better utilize unlabeled data, which is often abundant but un-
derutilized. Furthermore, developing unified evaluation met-
rics that consider the trade-offs between precision, recall, and
application-specific priorities could provide a more compre-
hensive understanding of model performance and guide further
innovations in the field. Lastly, we plan to extend this work by
incorporating other object categories, such as helicopters and
vessels, to provide a deeper understanding of the model’s ef-
fectiveness across different scenarios.
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