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Abstract 

 

The ever-evolving technology has significantly affected the sensors used in UAV cameras and has played an important role in the 

expansion of the application areas of hobbyist and commercial UAVs. In particular, UAVs with multispectral (MS) cameras, which 

have the potential to detect a wide range of spectral information, are widely used in many popular research areas such as precision 

agriculture and forestry. However, despite their advanced capabilities, the high cost of these technologies limits their accessibility for 

basic users. In this study, the agricultural potential of RGB UAVs, which have a much wider user base due to their lower cost, was 

investigated by predicting the Normalized Difference Vegetation Index (NDVI), which is widely preferred for plant classification, 

growth and health monitoring. In the literature, RGB camera-based NDVI prediction studies involving machine learning and deep 

learning algorithms have focused on the correlation of the results with the reference data (R²) or the model accuracy of the algorithms 

used. The approaches applied have generally been tested on single photographs or solely on vegetation areas. In this study, using the 

MS UAV NDVI map as reference, a comprehensive evaluation approach was applied where each pixel of the NDVI prediction maps 

produced by categorical boosting (CatBoost), light gradient boosting machine (LightGBM) and a stacking ensemble learning model 

obtained from the combination of both algorithms, whose performance in NDVI estimation has not been tested extensively before. The 

models were tested in an urban area with numerous buildings and a large study area with dense vegetation. The performance of the 

NDVI maps was analyzed using R², Root Mean Square Error (RMSE), Normalized Median Absolute Deviation (NMAD) and Standard 

Deviation (STD) metrics. As a result of the comprehensive analysis, it was found that the models performed similarly in general, but 

the LightGBM model was slightly behind the others. The considerable results around 0.81-0.83 as R² and ~0.09 as RMS and STD 

clearly showed that RGB cameras can be a lower-cost alternative solution for generating NDVI maps in agricultural studies when 

supported by machine learning models. 

 

1. Introduction 

Today, unmanned aerial vehicles (UAVs) have diverse 

applications, including disaster monitoring, land cover and land 

use (LULC) mapping, crop health assessment, urban heat map 

production, and various hobby uses (Ahmed et al., 2008; Do et 

al., 2018; Cho et al., 2023; Saponaro and Tarantino, 2022). Their 

potential to record high-resolution data from lower altitudes has 

paved the way for their use, especially for monitoring agricultural 

fields. Agricultural practices are gaining importance day by day 

in order to increase productivity. This application area, which 

forms the basis for many research topics, makes frequent use of 

images recorded by advanced cameras and indices derived from 

them. The normalized difference vegetation index (NDVI), 

which provides information on vegetation and plant health, is 

among the main resources commonly used in precision 

agriculture practices (Houborg and McCabe, 2016; Mahajan and 

Bundel, 2016). This index, calculated as the ratio of the near-

infrared and red bands, cannot be obtained with standard camera 

equipment that detects in the visible spectrum range (0.4 µm - 0.7 

µm). This situation brings forth the need for multispectral (MS) 

cameras, which increases the cost. 
 

MS UAVs have proven effectiveness in detecting diseases and 

monitoring crop development, thanks to the high-quality data 

they provide. However, their high cost makes them less 

accessible to many users. Due to this reason, UAVs with 

relatively cheaper RGB cameras have started to be tested for their 

suitability for agricultural use. Initially, the generation of RGB-

based indices was attempted and such as the triangular greenness 

index (TGI) were developed (Raymond Hunt et al., 2011). 

However, vegetation reflectance is not high in the visible 

wavelength range and the difference between bands does not 

provide reliable data, making this approach ineffective. Fuentes-

Peailillo et al. reported that the TGI index produced inaccurate 

results compared to the NDVI index in determining vegetation 

areas in their study based on the comparison of RGB-based 

indices (Fuentes-Peailillo et al., 2018). 
 

To date, only a limited number of studies have been published on 

NDVI estimation using RGB imagery. Most of these studies 

focus exclusively on evaluating prediction performance within 

vegetation-covered areas (Moscovini et al., 2024; Wang et al., 

2020). Most previous studies were based on point-based analyses 

of single images (Costa et al., 2020; Moscovini et al., 2024). In 

contrast, this study applied a model-based approach that allows 

the evaluation of each pixel on an NDVI map generated from 

RGB data, and an NDVI map generated from an MS UAV was 

used as a reference in the analyses.  
 

In this study, we tested the performance of light gradient boosting 

machine (LightGBM) and categorical boosting (CatBoost) 

(Latha and Bommi, 2023; Xiang et al., 2022), which are tree-

based ensemble learning models widely used to solve regression 

problems, on NDVI estimation using the RGB UAV dataset. In 

addition to these models, an ensemble stacking model was used 

as a third approach, integrating the estimation results of both 

LightGBM and CatBoost. As a result of the analysis, it has been 

revealed that the applied approaches can produce considerable 

results in NDVI estimation from RGB images. Thus, it has been 

determined that low-cost RGB UAV data can serve as an 

alternative source in the production of NDVI maps required in 

agricultural research. 

 

2. Study Area and Materials 

The study area is located in the northern part of the Gebze 

Technical University campus in Kocaeli, Türkiye (Figure 1).  The 

campus area close to sea provides ideal conditions for this 

research, with dense vegetation and human-made features. Since 

the study area has many land cover classes, it contains a wide 

range of NDVI values belonging to these classes.  
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Figure 1. Study area.

Aerial images were acquired with DJI Phantom 4 MS UAV and 

their radiometry was calibrated by MAPIR V2 calibration target. 

The 5.74 mm focal length UAV camera used in the study consists 

of six different sensors as five single bands (R, G, B, NIR, RED) 

and one composite (RGB) sensor. CMOS sensors with a spectral 

range of 450-840 nm and a spatial resolution of 2.08 MP can 

capture six different images simultaneously for each photo taken. 

 

3. Methodology 

The methodology for producing NDVI prediction map directly 

from RGB UAV images begins with land reconnaissance, 

followed by the image acquisition. In the preparation of the data 

to be used for regression, two separate flights were conducted in 

order to obtain the train and test datasets.  

 

The flights were planned in DJI Ground Station Pro software, 

which offers autonomous flight support. Both flights were 

conducted in polygonal geometry by utilizing same parameters 

as an altitude of 110 m and 80% front and 60% side overlap 

ratios. The nadir view (90°) was preferred to ensure maximum 

radiometric accuracy, and the aerial photos were achieved with 

0.06 m ground sampling distance (GSD).  

 

 
Figure 2. The followed workflow for data preparation and 

accuracy analysis. 

In photogrammetric processing of the UAV imagery, Agisoft 

Metashape Pro, a Structure from Motion (SfM)-based software, 

was utilized. To prepare the test and training datasets, identical 

parameters were used in geometric and radiometric corrections, 

dense point cloud generation and digital surface model (DSM) 

production. Image matching and dense point cloud generation 

were performed using the high-quality option. While the image 

captured by the UAV equipped with RTK hardware was 

automatically matched based on SfM with high precision, eight 

mobile 0.25 m x 1 m polycarbonate ground control points (GCPs) 

installed in a radial distribution across the study area, were used 

for geometric accuracy control. As a result, the entire 

photogrammetric workflow was conducted in a controlled 

manner, resulting in outputs with sub - pixel accuracy. 

 

First, a MS orthomosaic of the entire study area was produced by 

stacking all mono-bands obtained from two separate flights. 

Then, the train and test regions were masked on the orthomosaic 

and NDVI maps of the relevant areas were produced. In this way, 

reference maps were obtained to be used for testing model 

performances and accuracy of the final products. Then, all 

images from the composite RGB camera were processed and the 

train and test datasets were generated by extracting the areas 

within the mask boundaries from the 3-band orthomosaic (Figure 

3). The boundary of the training dataset was carefully defined to 

ensure it included examples of all LULC classes. Additionally, 

the impact of increasing data size on training time, which varies 

depending on hardware specifications, was mitigated by 

identifying the most suitable area for the training dataset (~20.5 

million pix.). 

 

 
Figure 3. Training - Test data boundary and GCP distribution 

over the study area. 

After preparing the training data, the decision tree-based 

LightGBM and CatBoost algorithms, which have not been 
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widely used in similar studies, were employed as base models for 

NDVI estimation. 

 

The LightGBM algorithm is an important algorithm that is 

frequently used in solving regression problems as it speeds up the 

training process designed with large data sets (Shehadeh et al., 

2021; Xuan et al., 2023). The leaf-wise tree growth strategy in 

LightGBM enables a rapid reduction in error values during 

training, enhancing model performance. However, this approach 

often results in deeper tree structures, which can increase the risk 

of overfitting to the training data. This problem is avoided by 

adjusting the maximum tree depth and maximum tree leaves 

parameters provided to the user (Zhu et al., 2022).  

 

CatBoost regression is widely regarded for its high performance 

in various forecasting and prediction tasks (Qian et al., 2021; 

Zhong et al., 2023). This algorithm begins by constructing a weak 

learner and iteratively trains additional learners using the 

outcomes of previous rounds. The primary goal is to enhance the 

learner's accuracy by reducing bias during the training process. 

Finally, all the weak learners from each iteration are weighted 

and combined to form a strong and accurate model. 

 

NDVI values were computed using an stacking ensemble 

learning model that integrates predictions from both the CatBoost 

and LightGBM models. Stacking ensemble learning is a powerful 

machine learning algorithm that improves the overall prediction 

accuracy by evaluating the prediction results of various base 

models (Shu et al., 2022). The fundamental principle of a 

stacking model is to combine the outputs of base models and use 

them as input features for a meta-model, which is trained to 

enhance the overall prediction performance. In this approach, for 

each pixel in the input RGB data, the NDVI values predicted by 

CatBoost and LightGBM are utilized as training inputs for the 

meta-model. To enhance the accuracy of the final predictions, a 

ridge regressor is employed as the final predictor in the meta-

model. Ridge regression is widely used in statistical modelling 

and is highly effective in handling highly correlated independent 

variables (Jha et al., 2024). It is frequently preferred for 

evaluating and weighting multiple predictions in stack models 

(Khooran et al., 2023). 

 

In machine learning regression algorithms, hyperparameter 

optimization is essential for revealing true model performance. It 

is a powerful approach for identifying the optimal values of 

hyperparameters, ensuring the algorithm performs at its best. In 

this study, the Optuna algorithm was used to estimate the 

hyperparameters in the models. This algorithm is a promising 

alternative due to its success in hyperparameter optimization for 

tree-based models (Lai et al., 2023). 

 

When applying the Optuna algorithm, the first step is to define 

the parameters to be estimated in the CatBoost model and 

establish the general structure of the model. The optimization 

process proceeds iteratively, with Optuna suggesting different 

sets of hyperparameters and their corresponding value ranges. 

The model is trained using these suggested parameters, and its 

performance is evaluated using the RMSE metric on the test data. 

A total of 50 different parameter sets were tested, and trials that 

performed poorly during training were stopped early through 

pruning. Finally, the best-performing hyperparameter values 

were identified, along with an output showing the impact of each 

parameter on the model's performance. The same workflow was 

applied for the LightGBM algorithm. Figure 4 shows the 

hyperparameter importance determined by Optuna for both 

CatBoost and LightGBM. 

 
Figure 4. Hyperparameter importance in CatBoost (upper) and 

LightGBM (bottom) regression models. 

 

3.1 Accuracy Analysis 

 

The accuracy analysis was conducted in two stages: first, by 

evaluating the performance of the regression models, and second, 

by assessing the quality of the final outputs. In evaluating the 

model performance, the training data was divided into 90% train 

and 10% test, and the RMS values calculated for the test data set 

were used as performance measures. 

 

Prior to the accuracy assessment, the planimetric alignment 

between the reference data and the production results was 

evaluated, confirming that sub-pixel accuracy was achieved. 

NDVI prediction map produced by regression models were 

evaluated using accuracy metrics such as Root Mean Squared 

Error (RMSE), Standard Deviation (STD), Normalized Median 

Absolute Deviation (NMAD), and the coefficient of 

determination (R²), as shown in Equations 1-4. For visual 

analysis and interpretation, differential NDVI maps were 

generated to represent the differences between the reference data 

and the NDVI prediction maps, using the formulation provided 

in Equation 5. When calculating the standard deviation, the 

differences in NDVI values (∆NDVIi) between the reference data 

and the model results are used, along with the mean of these 

differences (𝜇). 𝑛 represents the total number of pixels considered 

in the calculation. R² and RMSE are calculated based on the 

comparison between the actual values (𝑦𝑖), the predicted values 

(𝑦�̂�), and the mean of the actual values (�̅�). The NMAD metric, 

which is less sensitive to outliers than the standard deviation, 

provides robust results about the overall distribution of the data. 

 

𝑆𝑇𝐷𝑁𝐷𝑉𝐼 = √
∑ (∆NDVIi − μ)2n

i=1

n − 1
 (1) 

𝑅2 = 1 −
∑(𝑦𝑖 − 𝑦�̂�)

2

∑(𝑦𝑖 − �̅�)2  (2) 

𝑁𝑀𝐴𝐷 = 1.4826 ×  𝑚𝑒𝑑𝑖𝑎𝑛(∣ 𝑋𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋) ∣) (3) 
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RMSE = √  
1

𝑛
 ∑(𝑦𝑖 − 𝑦�̂�)

𝑛

𝑖=1

  2 (4) 

 

NDVIDifferential = NDVIReference − NVDIRegression 

 

(5) 

4. Results 

The fact that the train and test data were obtained from flights 

performed for independent areas increased the interpretability in 

the generalization of the results. Figure 5 shows the orthomosaic 

and reference NDVI map produced with MS UAV data for the 

test area (~19 ha) to be applied for the performance analysis of 

the regression models.  

 

 
Figure 5. Orthomosaic (upper) and reference MS NDVI map 

(bottom) for the test area. 

Figure 6 shows the performance of Catboost, LightGBM and 

stacking regression models on the test data, as determined by 

accuracy metrics. All models exhibited very similar bias values, 

with only minor differences. The LightGBM model exhibited 

slightly higher systematic errors than the other models; however, 

the difference was minimal. Bias values identified prior to the 

calculation of other metrics were eliminated, ensuring 

consistency and enhancing the interpretability of the results. The 

stacking ensemble model and CatBoost demonstrate the lowest 

RMSE values (0.093), indicating better prediction accuracy 

compared to LightGBM (0.097). CatBoost and the stacking 

model achieve the highest R² values (0.827), indicating better 

model fit and higher explained variance. LightGBM lags slightly 

behind with an R² of 0.815. Statistical evaluations revealed that, 

as a general result, CatBoost achieved higher accuracy compared 

to LightGBM in model comparisons. The stacking ensemble 

model performed as well as CatBoost, with no significant 

performance differences. 

 
Figure 6. Model-based accuracy assessment of regression 

results. 

 

Figure 7 shows the NDVI prediction maps obtained by applying 

CatBoost, LightGBM and stacking models. While all models 

were able to clearly distinguish between vegetation and other 

class, the predicted NDVI values for the classes showed small 

differences between the regression models. 

 

 
 

Figure 7. NDVI regression results: (a) LightGBM, (b) CatBoost, 

(c) Stacking model. 

 

Figure 8 illustrates the differential maps, highlighting the pixel-

to-pixel differences between the reference data and the NDVI 
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maps generated by the regression models. When the differential 

maps are examined, it is clearly seen that the entire study area can 

be represented by an NDVI difference of ± 0.06, expressed in 

green. Given the emphasis on analyzing vegetation areas and the 

objective of distinguishing these areas from other land cover 

classes, the results were deemed satisfactory. Specifically, the 

NDVI values corresponding to vegetation areas were predicted 

with a minimal error rate (± 0.06) across all models. Conversely, 

the model performance declined in the building, soil, and road 

classes, which are characterized by low NDVI values. 

Additionally, the LightGBM model demonstrated lower 

performance compared to other models. In Figure 8, sections of 

the soil and building classes with incorrect predictions are 

highlighted by black frames to facilitate a visual comparison 

between the LightGBM (a) and CatBoost (b) models. In the 

building structure located in the north of the study region, the 

LightGBM model showed better results with small differences, 

while it was behind CatBoost in other regions and overall 

performance. The stack ensemble model showed largely the same 

performance as CatBoost as in the statistical results. 

 

 
Figure 8. NDVI differential map results: (a) LightGBM, (b) 

CatBoost, (c) Stacking ensemble model. 

An analysis of the visual results reveals that regression models 

tend to have a higher likelihood of error when predicting classes 

characterized by low NDVI values, such as buildings and soil. In 

contrast, fewer errors were observed in classes associated with 

higher NDVI values. These findings suggest that the regression 

models face challenges in predicting low NDVI values and tend 

to overestimate the NDVI values for these classes, predicting 

them as higher than the actual values.  

 

5. Conclusions 

In this study, where current ML algorithms were evaluated for 

NDVI prediction, regression was performed with three different 

model approaches and all prediction maps were evaluated on a 

model basis. Although statistical evaluations revealed minimal 

differences with no significant results, visual assessments 

indicated significant disparities between the CatBoost and 

LightGBM algorithms. Therefore, statistical evaluation of the 

regression results alone proves insufficient, highlighting the 

importance of visual analysis.  

 

The findings reveal that the stacking ensemble model does not 

yield a significant performance improvement and closely aligns 

with the prediction results of the CatBoost model. At this point, 

it has been observed that the stacking process highlights the high-

performing algorithm and prioritizes its prediction results. 

 

In the light of the analyses, it has been determined that the 

application of continuously evolving algorithms to sources with 

limited spectral information, such as RGB images, can yield 

promising results for agricultural studies. Furthermore, it has 

been demonstrated that the approaches employed could serve as 

a viable alternative for basic user groups, given their limited 

access to high-cost MS cameras. 

 

References 

Ahmed, A., Nagai, M., Tianen, C., Shibasaki, R., 2008. UAV 

based monitoring system and object detection technique 

development for a disaster area. Int. Arch. Photogramm. Remote 

Sens. Spatial Inf. Sci., XXXVII, 37, 373-377. 

 

Cho, Y. Il, Yoon, D., Lee, M.J., 2023. Comparative Analysis of 

Urban Heat Island Cooling Strategies According to Spatial and 

Temporal Conditions Using Unmanned Aerial Vehicles (UAV) 

Observation. Applied Sciences, 13(18), 10052. 

doi.org/10.3390/app131810052. 

 

Costa, L., Nunes, L., Ampatzidis, Y., 2020. A new visible band 

index (vNDVI) for estimating NDVI values on RGB images 

utilizing genetic algorithms. Computers and Electronics in 

Agriculture, 172.  doi.org/10.1016/j.compag.2020.105334. 

 

Do, D., Pham, F., Bhandari, S., Raheja, A., 2018. Machine 

learning techniques for the assessment of citrus plant health using 

UAV-based digital images. Autonomous Air and Ground Sensing 

Systems for Agricultural Optimization and Phenotyping III, 

10664, 189-200. SPIE. doi.org/10.1117/12.2303989. 

 

Fuentes-Peailillo, F., Ortega-Farias, S., Rivera, M., Bardeen, M., 

Moreno, M., 2018. Comparison of vegetation indices acquired 

from RGB and Multispectral sensors placed on UAV. IEEE ICA-

ACCA 2018 - IEEE International Conference on 

Automation/23rd Congress of the Chilean Association of 

Automatic Control: Towards an Industry 4.0 - Proceedings. 

doi.org/10.1109/ICA-ACCA.2018.8609861. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-6-2025 
ISPRS, EARSeL & DGPF Joint Istanbul Workshop “Topographic Mapping from Space” dedicated to Dr. Karsten Jacobsen’s 80th Birthday 

29–31 January 2025, Istanbul, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-67-2025 | © Author(s) 2025. CC BY 4.0 License.

 
71



 

Houborg, R., McCabe, M.F., 2016. High-Resolution NDVI from 

planet’s constellation of earth observing nano-satellites: A new 

data source for precision agriculture. Remote Sens (Basel), 8. 

doi.org/10.3390/rs8090768. 

 

Jha, A., Goel, V., Kumar, M., Kumar, G., Gupta, R., Jha, S.K., 

2024. An Efficient and Interpretable Stacked Model for Wind 

Speed Estimation Based on Ensemble Learning Algorithms. 

Energy Technology, 12(6), 2301188. 

doi.org/10.1002/ente.202301188. 

 

Khooran, M., Golbahar Haghighi, M.R., Malekzadeh, P., 2023. 

Remaining Useful Life Prediction by Stacking Multiple 

Windows Networks with a Ridge Regression. Iranian Journal of 

Science and Technology, Transactions of Mechanical 

Engineering, 47(2), 583-594. doi.org/10.1007/s40997-022-

00526-9. 

 

Lai, J.P., Lin, Y.L., Lin, H.C., Shih, C.Y., Wang, Y.P., Pai, P.F., 

2023. Tree-Based Machine Learning Models with Optuna in 

Predicting Impedance Values for Circuit Analysis. 

Micromachines, 14(2), 265. doi.org/10.3390/mi14020265. 

 

Latha, R., Bommi, R.M., 2023. Hybrid CatBoost Regression 

model based Intrusion Detection System in IoT-Enabled 

Networks. Proceedings of the 9th International Conference on 

Electrical Energy Systems, ICEES. 

doi.org/10.1109/ICEES57979.2023.10110148. 

 

Mahajan, U., Bundel, B.R., 2016. Drones for Normalized 

Difference Vegetation Index (NDVI), to Estimate Crop Health 

for Precision Agriculture: A Cheaper Alternative for Spatial 

Satellite Sensors. International Conference on Innovative 

Research in Agriculture, Food Science, Forestry, Horticulture, 

Aquaculture, Animal Sciences, Biodiversity, Ecological Sciences 

and Climate Change (AFHABEC-2016). 

 

Moscovini, L., Ortenzi, L., Pallottino, F., Figorilli, S., Violino, 

S., Pane, C., Capparella, V., Vasta, S., Costa, C., 2024. An open-

source machine-learning application for predicting pixel-to-pixel 

NDVI regression from RGB calibrated images. Computers and 

Electronics in Agriculture, 216, 108536. 

doi.org/10.1016/j.compag.2023.108536. 

 

Qian, Q., Jia, X., Lin, H., Zhang, R., 2021. Seasonal forecast of 

nonmonsoonal winter precipitation over the eurasian continent 

using machine-learning models. Journal of Climate, 34(17), 

7113-7129. doi.org/10.1175/JCLI-D-21-0113.1. 

 

Hunt Jr, E.R., Daughtry, C.S.T., Eitel, J.U., Long, D.S., 2011. 

Remote sensing leaf chlorophyll content using a visible band 

index. Agronomy Journal, 103(4), 1090-1099. 

doi.org/10.2134/agronj2010.0395. 

 

Saponaro, M., Tarantino, E., 2022. LULC Classification 

Performance of Supervised and Unsupervised Algorithms on 

UAV-Orthomosaics. In International Conference on 

Computational Science and Its Applications, 311-326. 

doi.org/10.1007/978-3-031-10545-6_22. 

 

Shehadeh, A., Alshboul, O., Al Mamlook, R.E., Hamedat, O., 

2021. Machine learning models for predicting the residual value 

of heavy construction equipment: An evaluation of modified 

decision tree, LightGBM, and XGBoost regression. Automation 

in Construction, 129, 103827. 

doi.org/10.1016/j.autcon.2021.103827. 

Shu, M., Fei, S., Zhang, B., Yang, X., Guo, Y., Li, B., Ma, Y., 

2022. Application of UAV Multisensor Data and Ensemble 

Approach for High-Throughput Estimation of Maize 

Phenotyping Traits. Plant Phenomics. 

doi.org/10.34133/2022/9802585.  

 

Wang, L., Duan, Y., Zhang, L., Rehman, T.U., Ma, D., Jin, J., 

2020. Precise estimation of NDVI with a simple NIR sensitive 

RGB camera and machine learning methods for corn plants. 

Sensors, 20(11), 3208. doi.org/10.3390/s20113208. 

 

Xiang, W., Xu, P., Fang, J., Zhao, Q., Gu, Z., Zhang, Q., 2022. 

Multi-dimensional data-based medium- and long-term power-

load forecasting using double-layer CatBoost. Energy Reports, 8, 

8511-8522. doi.org/10.1016/j.egyr.2022.06.063. 

 

Xuan, L., Lin, Z., Liang, J., Huang, X., Li, Z., Zhang, X., Zou, 

X., Shi, J., 2023. Prediction of resilience and cohesion of deep-

fried tofu by ultrasonic detection and LightGBM regression. 

Food Control, 154, 110009. 

doi.org/10.1016/j.foodcont.2023.110009. 

 

Zhong, W., Zhang, D., Sun, Y., Wang, Q., 2023. A CatBoost-

Based Model for the Intensity Detection of Tropical Cyclones 

over the Western North Pacific Based on Satellite Cloud Images. 

Remote Sensing, 15(14), 3510. doi.org/10.3390/rs15143510. 

 

Zhu, J., Su, Y., Liu, Z., Liu, B., Sun, Y., Gao, W., Fu, Y., 2022. 

Real-time biomechanical modelling of the liver using LightGBM 

model. International Journal of Medical Robotics and Computer 

Assisted Surgery, 18(6). doi.org/10.1002/rcs.2433. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-6-2025 
ISPRS, EARSeL & DGPF Joint Istanbul Workshop “Topographic Mapping from Space” dedicated to Dr. Karsten Jacobsen’s 80th Birthday 

29–31 January 2025, Istanbul, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-67-2025 | © Author(s) 2025. CC BY 4.0 License.

 
72




