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Abstract 

This study introduces a novel machine learning (ML)-based framework for automated landfill site selection, applied to Türkiye’s 

Marmara Region, a vital area experiencing rapid urbanization and industrial growth. Traditional methods, often reliant on subjective 

expert opinions and constrained by data complexity, are reimagined using state-of-the-art ML techniques, including Logistic 

Regression (LR), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). Eighteen critical criteria—spanning 

hydrogeological, environmental, and infrastructural factors—were integrated into the framework. XGBoost achieved superior 

performance, with an accuracy of 0.8671, significantly outperforming LR and RF. Interpretability was enhanced using Shapley 

Additive Explanations (SHAP), which identified land use/land cover, distance to airports, and distance to industrial areas as the most 

influential factors. The resulting high-precision landfill suitability maps (LSMs) provide decision-makers with a reliable tool for 

selecting optimal landfill sites. This framework not only advances the technical rigor of landfill site selection but also supports 

sustainable waste management by addressing environmental, economic, and public health considerations. The study exemplifies the 

transformative potential of ML in tackling complex geospatial challenges, setting a precedent for integrating artificial intelligence into 

environmental planning and policy-making.  

1. Introduction

In today's era, urbanization, industrialization, population growth, 

and technological advancements have significantly increased 

waste generation. Specifically, the replacement of manual labor 

with technology in agricultural activities has accelerated urban 

sprawl, leading to the emergence of various waste types. The 

rapid consumption of resources and shifts in consumption habits 

have resulted in an increase in waste types that need to be 

managed, posing serious threats to both environmental and 

human health (Rahimi et al., 2020). Furthermore, the 

uncontrolled disposal of waste has led to the contamination of 

surface and groundwater sources, as well as risks such as fires, 

landslides, and explosions (Şimşek and Alp 2022). To promote 

sustainable and integrated waste management, countries 

implement various policies and measures, such as recycling, 

reuse, waste reduction, thermal treatment, and landfilling (Tercan 

et al., 2020). In terms of costeffectiveness, landfills are the oldest 

and most commonly used approach among all waste management 

methods (Kuhaneswaran et al., 2024).  

The selection of landfill sites involves the evaluation of 
engineering, technical, and economic protocols along with public 
health and environmental conditions. Moreover, multiple 
alternative criteria should be considered, such as land use, 
topography and soil characteristics, distance to various artificial 
structures, and hydrogeological features, including geological, 
groundwater, and surface water resources (Bilgilioglu et al., 
2022). As a result, selecting a suitable landfill site becomes a 
complex process, increasing uncertainties and making it 
challenging for decision-makers to make sound decisions. 

In the past decades, various methods such as diagramming, 
Geographic Information Systems (GIS), grey system theory,

multi-criteria decision-making (MCDM) approaches, and 

GISMCDM integration have been employed to identify the most 

suitable locations for landfills (Rezaeisabzevar et al., 2020). 

However, these methods face several challenges: (1) relying on 

expert opinions, potentially introducing biases; (2) lacking the 

capacity to process large and complex datasets; (3) not flexible 

enough to accommodate changes and updates in data; and (4) 

encountering generalization issues when assessing conditions 

with similar characteristics. A potential approach to examining 

the suitability analysis to overcome the problems introduced by 

these methods involves the use of artificial intelligence 

techniques which mimic the cognitive decision-making abilities 

of humans.  

1.1 Research Motivation and Objectives

To our knowledge, there is a lack of research specifically 

examining the application of machine learning (ML) approaches 

in the process of selecting suitable locations for landfill sites. 

Therefore, the primary objective of this study is to develop a 

pioneering machine learning-based framework to assist in the 

automated landfill site selection process to overcome the issues 

introduced by the traditional methods. The sub-aims of this study 

listed as follows: 

 To assess the efficacy of both traditional and state-

ofthe-art ML algorithms for identify suitable sites for

landfill siting.

 To improve the accuracy and precision of landfill

suitability maps (LSMs) by utilizing ML algorithms.

 To interpret the both local and global effects of the site

selection criteria on landfill site selection via

explainable artificial intelligence (XAI) methods.
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2. Study Area and Data 

 

The Marmara region, situated in northwestern Türkiye, was 

chosen as the experimental study area. This region covers an area 

of approximately 72,600 km² and is located between 25° 30′ and 

31° E longitude and 39° to 42° 30′ N latitude. The underlying 

reason for selecting this region for evaluating landfill suitability 

is that it comprises 30.6% of Türkiye’s population and more than 

50% of its economic activities, while also facing intense pollution 

due to rapid industrialization and population growth in parallel 

with recent economic and social development. Within the borders 

of the Marmara region, there are 11 provincial municipalities: 

Istanbul, Bursa, Kocaeli, Balıkesir, Tekirdağ, Sakarya, 

Çanakkale, Edirne, Kırklareli, Yalova, and Bilecik. All provincial 

municipalities offer disposal services by collecting solid waste 

from settlements and managing it in sanitary landfills. Figure 1 

demonstrates an illustration of the designated study area. 

  

  
Figure 1. Study area. 

  

2.1 Landfill Inventory  

 

The existing landfill sites in the study area are crucial for 

establishing LSMs. As the ML models learn from the already 

established landfill sites to evaluate suitability of potential sites. 

In this way, a suitability map over a greater area can be generated 

utilizing a finite number of landfill sites. In Türkiye, there is no 

such database that holds the records of existing landfill sites. 

However, the environment status reports established by Ministry 

of Environment, Urbanization and Climate Change of Türkiye 

(Environmental Status Reports, 2024) contain necessary 

information to find locations of existing landfill sites. 

 

The landfill sites were manually digitized according to these 

status reports into vector (polygon) format using ESRI ArcGIS 

Pro software, and they were labelled as suitable (labelled as 1).  

Conversely, ML models require data on unsuitable areas (labelled 

as 0) for landfill siting to effectively differentiate between 

suitable and unsuitable locations. To avoid bias, unsuitable land 

locations were randomly selected across the study area, ensuring 

an equal number of suitable and unsuitable sites.  

  

2.2 Site Selection Criteria 

 

Identifying potential candidate sites is a critical prerequisite for 

landfill siting. This process requires evaluating various 

assessment and restriction factors that enhance, reduce, or 

constrain the suitability of a candidate site.  In this work, eighteen 

site selection criteria, namely annual rainfall, annual temperature, 

distance to airports, distance to educational facilities, distance to 

faults, distance to healthcare organizations, distance to industrial 

areas, distance to main roads, distance to protected zones, 

distance to railways, distance to settlements, distance to water 

bodies, drainage density, elevation, geology, groundwater level, 

land use/land cover (LULC), and slope were used considering the 

relevant literature. The format and sources of the criteria were 

summarized in Table 1.  

  

 Criterion  Data Format  Resolution  Source  

Annual 

Rainfall  
Raster  1 km  

Fick and 

Hijmans (2017)  

Annual  

Temperature  
Raster  1 km  

Karger et al. 

(2017)  

Distance to 

Airports  
Vector  -  

Overpass Turbo 

(2024)  

Distance to  

Educational  

Facilities  

Vector  -  
Overpass Turbo 

(2024)  

Distance to 

Faults  
Vector  -  

Emre et al. 

(2013)  

Distance to  

Healthcare  

Organizations  

Vector  -  
Overpass Turbo 

(2024)  

Distance to  

Industrial  

Areas  

Raster  100 m  
CORINE Land  

Cover (2018)   

Distance to 

Main Roads  
Vector  -  

Overpass Turbo 

(2024)  

Distance to  

Protected  

Areas  

Vector  -  

Overpass Turbo 

(2024)  

Distance to 

Railways  
Vector  -  

Overpass Turbo 

(2024)  

Distance to 

Settlements  
Vector  -  

CORINE Land 

Cover  

Distance to 

Water Bodies  
Raster  100 m  

CORINE Land 

Cover (2018)  

Drainage 

Density  
Raster  12 m  

Zink et al. 

(2017)  

Elevation  Raster  12 m  
Zink et al. 

(2017)  

Geology  Raster  5 km  Asch (2005)  

Groundwater 

Level  
Raster  1 km  

Verkaik et al. 

(2022)  

Land  

Use/Land  

Cover  

Raster  100 m  
CORINE Land 

Cover (2018)  

Slope  Raster  12 m  
Zink et al. 

(2017)  

Table 1. Formats, resolutions, and sources of the landfill site 

selection criteria. 

  

After the initial processing, each criterion was upsampled or 

downsampled according to their original resolution into raster 

format with a spatial resolution of 30 meters. Then, the pixel 

values for each criterion were then combined with the landfill 

inventory to generate a data frame suitable for use in machine 

learning models.  
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3. Methodology 

 

3.1 Outline of the Proposed Approach  

 

The approach proposed in this work includes five main phases: 

(1) data collection of 18 criteria and existing landfill sites to serve 

as features and ground truth data respectively, (2) feature 

selection which involves correlation and multicollinearity tests to 

check for relationships between the features and Sequential 

Feature Selection (SFS) method to check whether there is an 

irrelevant feature contained in the dataset, (3) model training for 

three ML algorithms such as Logistic Regression- LR, Random 

Forest- RF (Breiman, 2001), and Extreme Gradient Boosting- 

XGBoost (Chen and Guestrin, 2016), and model evaluation 

through various performance metrics, (4) interpretation of the ML 

algorithms through Shapley Additive Explanations (SHAP) 

(Shapley, 1953) method, and (5) generation of the LSMs.   

  

3.2 Feature Investigation  

 

The reliability of LSMs generated by ML models largely depends 

on accurately identifying the site selection criteria that influence 

the automatic selection of suitable locations for landfills. The 

relevant criteria should be identified before the initial model 

training in order to minimize the hindering effects of those 

features (i.e., site selection criteria). Feature inspection methods 

such as Pearson correlation coefficient and multicollinearity tests, 

and feature selection techniques (e.g., sequential feature selection 

(SFS)) could help solve this issue.   

  

A multicollinearity test identifies the presence of interrelated 

measures within the data frame. Multicollinearity was assessed 

using the variance inflation factor (VIF) (Eq. (1)) and tolerance 

(TOL) metrics. Specifically, if the VIF value exceeds 10 or the 

TOL value is below 0.1, it indicates multicollinearity. If 

multicollinearity was detected, we utilized the Pearson 

correlation coefficient (Eq. (2)) as a check for the 

multicollinearity test. Two features are generally considered 

correlated if the Pearson correlation coefficient is greater than 0.7 

or less than -0.7. If two features exceed the threshold levels from 

either multicollinearity test or Pearson correlation, they are 

considered correlated, and one of them was removed from the 

landfill data frame.  

     

                  𝑉𝐼𝐹𝑖 =
1

1−𝑅𝑖
2                                      (1) 

  

where 𝑉𝐼𝐹𝑖  refers to Variance Inflation Factor for the i-th site 

selection criterion, and 𝑅𝑖
2 is the coefficient of determination of a 

regression model.  

 

       𝑟 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)
𝑛
𝑖=1

√∑ (𝑥𝑖−𝑥̅)
2∑ (𝑦𝑖−𝑦̅)

2𝑛
𝑖=1

𝑛
𝑖=1

 (2)  

  

where r is the Pearson correlation coefficient, xi, yi are the i-th 

samples for a criterion pair, and, 𝑥̅ , 𝑦̅ are the means of a site 

selection criterion pair.  

  

Sequential Feature Selection (SFS) is a wrapper-based feature 

selection method that can be performed either forward or 

backward. In backward elimination (which is utilized in this 

study), the process begins with all features in the dataset, and at 

each step, the least important feature is removed iteratively until 

removing any more features negatively impacts model 

performance. Hence, the best subset available features are 

obtained.  

3.3 Machine Learning Models  

 

Logistic Regression (LR) is a well-established statistical method 

primarily used for binary classification tasks. The algorithm 

predicts the probability that an input sample belongs to a 

particular class label by applying an S-shaped sigmoid function 

to a linear combination of input features. The output of the 

algorithm is a probability value between 0 and 1, which can later 

be used to assign class labels to the input according to a given 

threshold.   

  

Random Forest (RF) is an ensemble learning method that can be 

used for both classification and regression tasks. The algorithm 

constructs several decision trees during training process, where 

each tree is trained on a random subset of the data and features. 

The output of the model is determined by aggregating the 

predictions of all individual trees in a process called majority 

voting (Breiman, 2001). It is a very popular algorithm that is used 

for variety of applications as it provides high accuracy along with 

resistance to the overfitting problem.  

  

Extreme Gradient Boosting (XGBoost) is an ensemble learning 

method that is built on gradient boosting method. It builds a series 

of decision trees sequentially, where each new tree corrects the 

errors made by the previous one. The algorithm uses gradient 

boosting technique to optimize the model by minimizing the loss 

function through each iteration. Different from its predecessor 

gradient boosting machines, it uses second order approximation 

of the loss function which improves accuracy and efficiency. The 

output is determined by combining the predictions of all trees, 

typically through weighted voting. XGBoost is known for its high 

performance, scalability, and ability to handle complex learning 

tasks effectively. 

  

After the initial model training, the hyperparameters parameters 

of each algorithm was tuned through grid search cross validation 

method to generate final classifiers, and the performance of the 

classifiers were evaluated through several metrics such as overall 

accuracy, precision, recall, and F1 score. The outputs of each 

algorithm were also compared via Cochran’s Q and pairwise 

McNemar’s tests in order to check for statistically significant 

differences.  

  

3.4 Interpretation of the machine learning models  

 

In machine learning-based pipelines, the interpretation of models 

is achieved through the evaluation of feature importances, such 

as permutation feature importance. However, these methods only 

provide a general understanding of how a feature contributes to 

the model's prediction. On the other hand, SHapley Additive 

exPlanations (SHAP) (Shapley, 1953), a state-of-the-art 

explainable artificial intelligence (XAI) method, has the 

capability to provide both global and local insights regarding how 

a feature or sample affects the model's behaviour.  

  

4. Results 

 

Eliminating irrelevant features from the dataset is a crucial step 

for machine learning-based site selection pipelines, as they may 

hinder the model performance significantly. In order the address 

those multicollinearity tests, Pearson correlation test, and a 

sequential backward feature selection were performed. The VIF 

and TOL values for each criterion are given in Table 2. According 

to the results of the multicollinearity test, the highest VIF was 

15.713, while the least TOL value was 0.063 for elevation 

criterion, as presented in Table 2. The results of the Pearson 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-6-2025 
ISPRS, EARSeL & DGPF Joint Istanbul Workshop “Topographic Mapping from Space” dedicated to Dr. Karsten Jacobsen’s 80th Birthday 

29–31 January 2025, Istanbul, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-73-2025 | © Author(s) 2025. CC BY 4.0 License.

 
75



 

correlation tests are presented in Figure 2 as a correlation matrix. 

Based on these results, some of the correlation coefficients 

exceed the threshold value of 0.7. The highest coefficient value, 

computed at -0.91, is between the annual temperature and the 

elevation. Considering both multicollinearity and correlation 

tests, it can be inferred that elevation and annual temperature are 

interrelated. As one increases, the other decreases (i.e., negative 

correlation). Hence, due to its lower original resolution compared 

to elevation, the annual temperature criterion was removed from 

the data frame.  

  

  

  

 

Figure 2. Pairwise correlation matrix.

 Furthermore, according to the results of sequential backward 

selection the 12 criterion namely drainage density, distance to 

settlements, distance to water bodies, distance to protected 

zones, distance to main roads, distance to industrial areas, 

distance to faults, distance to educational facilities, distance to 

airports, land use/land cover, and geology were kept in landfill 

data frame while annual rainfall, distance to healthcare 

organizations, distance to railways, distance to settlements, 

and groundwater level were eliminated.  

  

A performance evaluation was conducted using several 

evaluation metrics. The confusion matrices of each ML model 

are shown in Figure 3. The evaluation metrics accuracy, recall, 

precision, and F1 score computed through these confusion 

matrices are presented in Table 3. For overall accuracy, the 

XGBoost model outperformed other models (0.8671). It was 

followed by RF (0.8513), and LR (0.8302).   

  

Moreover, Cochran’s Q and pairwise McNemar’s tests were 

conducted to investigate whether there are statistically 

significant differences among ML models. According to the 

results of Cochran’s Q test, there was a statistically significant 

difference between ML models (χ2(2) = 208.871, p < .000) as 

it exceeded the threshold value of 12.592 at the 95% 

confidence interval.  

 

 

 

 

 

 

 

Criterion  VIF  TOL  

Annual Rainfall  1.369  0.730  

Annual  

Temperature  

14.728  0.068  

Distance to Airports  3.301  0.303  

Distance to  

Educational  

Facilities  

3.726  0.268  

Distance to Faults  3.052  0.328  

Distance to  

Healthcare  

Organizations  

3.620  0.276  

Distance to  

Industrial Areas  

2.805  0.356  

Distance to Main 

Roads  

1.566  0.639  

Distance to  

Protected Zones  

1.939  0.516  

Distance to 

Railways  

1.875  0.533  

Distance to 

Settlements  

2.032  0.492  

Distance to Water 

Bodies  

1.628  0.614  

Drainage Density  1.845  0.542  

Elevation  15.713  0.064  

Geology  1.455  0.687  

Groundwater Level  2.307  0.433  

Land Use/Land 

Cover  

1.372  0.729  

Slope  1.241  0.806  

Table 2. VIF and TOL values of each site selection criterion. 
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Figure 3. Confusion matrices of the ML algorithms used in 

the study. 

  

Table 3. Evaluation metrics of the ML algorithms used in the 

study. 

 

The results of pairwise McNemar’s tests are given in Table 4. 

When the Table 4 is examined, it can be clearly seen that the 

output of all ML models is statistically significant. The greatest 

significant difference was between XGBoost and LR 

(173.574), and the least significant difference was between 

XGBoost and RF (43.092).  

 

  LR  RF  XGBoost  

LR  -  70.515  173.574  

RF    -  43.092  

XGBoost      -  

Table 4. Results of the pairwise McNemar’s tests. 

 

It is essential to explain how an input site sample influences 

the predictions of machine learning models to derive 

meaningful insights for the optimal site selection of landfills. 

The SHAP summary plots provides both sample-wise and 

criterion-wise explanations insights for ML models.  Figure 4 

shows the bee-swarm plots of three ML models used in the 

study. According to the SHAP plot of XGBoost, LULC, 

distance to airports, distance to industrial areas, and distance to 

protected zones are the top contributing criteria, while distance 

to water bodies, distance to main roads, geology, and distance 

to settlements were the least contributing criteria. Similar 

trends can be observed for RF and LR, except for LULC 

criterion. According to the SHAP summary plots of ML 

models, closer distances to airports and industrial areas and 

further distances from faults are more favourable for landfill 

sites.   

 

 

 

 

 

  

Figure 4. SHAP summary plots of the ML algorithms used in 

the study. 

  

5. Conclusion 

 

To promote sustainable and integrated waste management, 

countries implement various policies and measures, such as 

recycling, reuse, waste reduction, thermal treatment, and 

landfilling.  Landfills are the oldest and most commonly used 

approach among all waste management methods as they are 

efficient to retain a sustainable waste management process, and 

promote cost-effectiveness. One of the most crucial aspects of 

sustainable waste management through landfills are the 

choosing optimal locations for landfills as stakeholders should 

consider several engineering, technical, and economic 

protocols along with public health and environmental 

conditions.  

In this study, we developed a pioneering machine 

learningbased framework to assist in the automated landfill site 

selection process, contributing to the transition toward 

sustainable futures through effective waste management.   

  

The main findings of our proposed approach are summarized 

as follows:  

  

 According to results of multicollinearity tests and 

SFS, the twelve criteria were identified for training 

ML algorithms.  

 The performance of XGBoost is superior compared 

to the RF and LR, and statistically significant 

differences found between XGBoost-RF, XGBoost-

LR, and RF-LR.  

 LULC, distance to airports, distance to industrial 

areas, and distance to protected zones are top 

contributing criteria to ML model predictions.  

 The generated LSMs are convenient to use by 

decision-makers for selecting optimal landfill 

locations.  

Algorithm  Accuracy  Recall  Precision  F1 Score  

LR  0.8302  0.7808  0.8665  0.8214  

RF  0.8513  0.7642  0.9253  0.8371  

XGBoost  0.8671  0.8024  0.9216  0.8579  
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 Numerous potential sites for landfill siting have been 

identified, which are not yet established.  

  

The preliminary results suggest that our method is feasible for 

automatically selecting suitable landfill locations, promoting a 

sustainable and integrated waste management process.   
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