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Abstract  

  

Trees in green areas offer numerous benefits for the environment and human health. Up-to-date, information about trees in urban green 

areas is crucial for sustainable urban planning. Traditionally, the detection and inventory of urban trees have been conducted through 

field surveys and terrestrial measurements. However, this labour-intensive approach can be replaced with the more efficient LiDAR 

(Light Detection and Ranging) systems, an active remote sensing technology.  Urban trees can be quickly and automatically determined 

using 3-dimensional (3D) LiDAR point cloud data. The objective of this study is to acquire trees in densely populated areas of large 

cities using raw LiDAR data. The urban study area was chosen in the Fatih district of Istanbul, which includes Sultanahmet Square, a 

site registered on the UNESCO World Heritage List. To detect urban trees, initially, eight classes representing the ground surface were 

obtained from LiDAR data with a point-based classification approach which is called hierarchical rule-based classification, and the 

high vegetation class was separated from the other classes. Noise points, which did not correspond to urban trees within the high 

vegetation class, were removed using the machine learning-based Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) clustering algorithm. The remaining high vegetation points were subsequently segmented using the machine learning-

based Mean Shift clustering algorithm to obtain individual tree crowns. An accuracy assessment was conducted through completeness 

and correctness analyses, demonstrating the effectiveness of the proposed point-based approach for the automatic detection of urban 

trees from LiDAR data. According to the proposed Mean Shift clustering approach, the completeness was 60% and the correctness 

was 77.42% in test area A, while in test area B, the completeness was 62.30% and the correctness was 80.85%. The much higher 

completeness (78.26%) and correctness (100%) values were obtained for street trees with regular structure in test area B in comparison 

with the proposed Mean Shift clustering approaches.  

 

 

1. Introduction  

 

Urban trees, which are the most dominant element of green areas 

in cities, are of great importance for urban ecology. In addition to 

their critical effects such as improving air, water, and land 

quality; preventing noise, dust, gas, and wind damage; 

maintaining soil and water balance; reducing carbon 

accumulation; saving energy; and climate control, urban trees are 

fundamental elements of urban landscapes due to their socio-

cultural (monumental trees, endemic species, etc.), aesthetic, and 

psychological functions (Pu and Laundry, 2012; Tigges et al., 

2013; Li et al., 2014; Mustafa et al., 2015; Dian et al., 2016; 

Shojanoori et al., 2016). Besides their numerous positive effects, 

some urban trees can cause negative effects such as causing 

allergic reactions due to pollen (Xu et al., 2016), creating 

environmental pollution, damaging urban structures and 

historical texture due to excessive rooting, and disrupting the 

silhouette of cities due to excessive branching and growth. The 

tree culture in cities is one of the main activity areas for local 

governments in the planning of sustainable cities. Detailed and 

accurate information about trees is of great importance for local 

governments in activities such as disaster management, 

environmental protection, urban development policy creation, 

geographic information system applications, or 3D city model 

production (Iovan et al., 2008). In order to fulfil the functions 

expected from trees, actions such as planning and managing 

afforestation efforts must be carried out in accordance with the 

appropriate techniques. Therefore, first of all, the current 

situation of urban trees must be known well (Mustafa et al., 2015, 

Wallace et al., 2021).  

  

The identification of urban trees and inventory studies are 

traditionally carried out by experts through fieldwork and 

terrestrial measurements (Wallace et al., 2021). However, 

fieldwork and measurements for identifying trees are 

timeconsuming, expensive, and often do not cover large areas 

comprehensively. Although using aerial photographs or satellite 

remote sensing images, which have the advantage of collecting 

data over a large area simultaneously, has emerged as an 

alternative method for identifying urban trees, these methods also 

have some limitations due to the vertical structure and complex 

crown structures of the trees (Pu, 2009; Pu and Landry, 2012; 

Moradi et al., 2016).   

  

Today, LiDAR (Light Detection and Ranging), an active remote 

sensing laser technology, provides a significant advantage over 

field measurements and many other remote sensing technologies 

in urban tree identification and inventory studies due to its 

detailed 3D location data (Cao et al., 2016). LiDAR enables 

automatic, fast and cost-effective collection of 3D point cloud 

data of urban trees without the need for field studies (Wu et al., 

2013). The ability of LiDAR to directly provide threedimensional 

information, its high capability to receive multiple return signals 

from vegetation, and its ability to collect intensity data have made 

LiDAR data a significant alternative to aerial photographs and 

satellite imagery (Moradi et al., 2016).  

  

Accurate individual tree segmentation is an important basis for 

many applications that involve trees. In recent years, significant 

advancements have been observed in tree detection and 

segmentation (Xie et al., 2019; Wan et al., 2023; Li et al., 2023). 

While many individual tree segmentation methods have been 

developed, it remains a challenging task especially for LiDAR 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-6-2025 
ISPRS, EARSeL & DGPF Joint Istanbul Workshop “Topographic Mapping from Space” dedicated to Dr. Karsten Jacobsen’s 80th Birthday 

29–31 January 2025, Istanbul, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-95-2025 | © Author(s) 2025. CC BY 4.0 License.

 
95



data (Yang et al., 2020). Selecting an appropriate algorithm for 

individual tree segmentation is very important for accurate tree 

detection results. Summaries and comparisons of some existing 

methods for segmenting individual trees can be found in 

Kaartinen et al. (2012) and Eysn et al. (2015). A major drawback 

of many segmentation methods is the loss of information caused 

by interpolating the initial 3D point cloud into a grid structure 

(Vega et al. 2014; Yastikli and Cetin, 2021; Cetin and Yastikli, 

2023).  

  

In this study, it is aimed to automatically detect urban trees in 

densely populated areas from 3D raw LiDAR point cloud data. 

To this end, firstly, a point-based classification approach, called 

hierarchical rule-based classification, is proposed for automatic 

classification of point cloud to obtain ground, low vegetation, 

medium vegetation, high vegetation, building, low point, air point 

and default classes. The high vegetation class has been separated 

from other classes, and noise points that do not belong to urban 

trees within this class have been removed using the machine 

learning-based Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN) clustering algorithm. In the next step, a 

point-based segmentation approach using the machine learning-

based Mean Shift clustering algorithm has been proposed to 

obtain individual tree crowns from high vegetation points. 

Finally, an accuracy assessment has been conducted using 

completeness and correctness analyses to evaluate the 

performance of the proposed point-based approach for the 

automatic detection of urban trees from LiDAR data.  

  

2. Study Area and Dataset  

 

Sultanahmet, situated in the Fatih district of Istanbul and 

registered on the UNESCO World Heritage List, was chosen as 

the urban study area (Figure 1). Sultanahmet is a very dense urban 

area with several complex structures, roads, pavements, trees, etc. 

Test area A and test area B were used to obtain individual urban 

trees in the dense urban study area (Figure 2).  

  

LiDAR data, obtained from the Istanbul Metropolitan 

Municipality and acquired in September 2013, was used for this 

study. The LiDAR data was obtained with a “Riegl LSMQ680i” 

laser scanner, which mounted on an “Eurocopter AS350” 

helicopter. The used full-waveform LiDAR data is in Log ASCII 

Standard (LAS format) with an average point density of 16 

points/m².  

  

Trees obtained using field measurements and panoramic street 

views of 2013 were taken as reference data. For the reference data 

collection in the field, a data collection application was developed 

using the API library provided by the Istanbul Metropolitan 

Municipality City Map for all users. On the frontend, the City 

Map API was used, while the back-end utilized the Django and 

NGINX web application frameworks.  

  

Figure 1. Urban study area, Sultanahmet, Istanbul (2013).  

  

 
(a)  

 
(b)   

Figure 2. Test area A (a) and test area B (b) in urban study area. 
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3. Materials and Methods  

 

In this study, the point-based processing steps in order to obtain 

individual urban trees are divided into two groups as 

classification and segmentation (Figure 3).   

  

 
Figure 3. Point-based processing steps to obtain individual 

urban trees. 

  

3.1 Point-based Classification  

 

Point-based classification methods which use LiDAR points aim 

to assign an object class to each individual laser point (Yastikli 

and Cetin 2016). Various point-based classification techniques 

including both machine learning- and rule-based approaches are 

available for classifying LiDAR point clouds (Cetin and Yastikli, 

2023). In the rule-based classification algorithms, terrain surface 

information is converted into a series of rules (Mehta et al. 2014, 

Gevaert et al. 2018). Classification is then carried out based on 

these predefined sequential rules (Cetin and Yastikli, 2022). The 

classification rules are created with different classification 

features according to terrain characteristics such as height 

features, eigenvalues, surfacebased features, local plane features, 

multiple returns features, echo amplitude, echo width, etc. which 

are calculated for all individual LiDAR points (Chehata and 

Bretar, 2008; Mallet et al., 2011; Kim and Sohn, 2013).   

  

In this study, the proposed hierarchical rule-based classification 

of LiDAR point cloud was performed to obtain high vegetation 

points. A hierarchical rule set was created using the selected 

geometric features for point-based classification, and after 

conducting parameter analysis, the ground, low, medium, and 

high vegetation, building, low point, air point, and default classes 

were obtained using the defined parameters (Table 1). The high 

vegetation class was separated from the other classes. The point-

based classification was conducted using TerraScan module of 

Terrasolid software.  

    

  

  

  

  

  

  

  

 

 

 

  

Point-based classification  

Rules  Classes  

By class  Default  

Low points  Low point  

Ground  Ground  

Below surface  Low point  

Air points  Air point  

By height from ground 1  Ground  

By height from ground 2  Low vegetation  

By height from ground 3  Medium vegetation  

By height from ground 4  High vegetation  

Building  Building  

By height from ground 5  Air point  

Multiple returns  Building  

Table 1. Hierarchical rule set and obtained classes.  

  

3.2 Point-based Segmentation  

 

Point-based segmentation approaches divide data into groups by 

using the individual characteristics of the points. Point-based 

methods primarily segment data based on geometric features 

(Che et al., 2019). Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) and Mean Shift, which are 

unsupervised machine learning clustering methods, can be used 

in point-based segmentation applications. The DBSCAN 

algorithm evaluates points within a specified neighbourhood 

around a random point and initiates a cluster if there is sufficient 

density of points in that neighbourhood. Otherwise, the point is 

labelled as noise (Nasiboglu et al. 2019). Mean Shift clustering, a 

widely used segmentation method, is a nonparametric, iterative 

technique that shifts each data point according to the local 

maximum density function (Wen and Cai, 2006). The Mean Shift 

algorithm begins by selecting a random point from the dataset as 

the initial cluster center (Du et al., 2019), and then updates the 

cluster center candidates to be the average of the points within a 

specified region.  

  

After the point-based classification of the LiDAR data with 

hierarchical rule-based classification method, noise points, which 

did not correspond to urban trees within the high vegetation class, 

were removed using DBSCAN clustering algorithm. The LiDAR 

points remaining in the high vegetation class were segmented 

with the widely used Mean Shift clustering algorithm. The Mean 

Shift segmentation process was performed after a thorough 

parameter analysis to achieve the best segmentation results. The 

2D tree segmentation, aimed at detecting individual urban trees, 

was implemented using the Python programming language 

(Python 3.6.4) in Jupyter Notebook.  

   

3.3 Accuracy Assessment  
 

Accuracy assessment is an important part of information 

extraction applications and determines the quality of the resulting 

products. In this study, the accuracy assessment of the proposed 

segmentation methods was conducted based on detection rates, 

which is completeness and correctness analyses. The equations 

for completeness and correctness are given as follows:  

  

                          Completeness = (TP)⁄(TP+FN)                         (1)  

                          Correctness = (TP)⁄(TP+FP)                             (2)  

 

TP (True Positive), FP (False Positive), and FN (False Negative) 

represent perfect segmentation, over segmentation, and under-

segmentation, respectively (Li et al., 2012; Cetin and Yastikli, 
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2023). TP refers to the entities that were correctly segmented, FP 

denotes the entities that appeared in the segmentation but do not 

correspond to any entity in the ground truth data, and FN refers 

to the entities present in the ground truth data but not identified 

in the segmentation process (Yastikli and Cetin, 2020; Cetin and 

Yastikli, 2023).  

   

4. Result and Discussion  

 

The automatic 3D point-based classification results of the LiDAR 

point cloud in the test area A and test area B, based on geometric 

features within the hierarchical rule set (see Table 1), are shown 

in Fig. 4. The high vegetation points, separated from the other 

terrain classes, are displayed in Fig. 5. It is clear from the 

classification results (see Fig. 4 and Fig. 5) that the high 

vegetation points are accurately identified for tree crown 

segmentation of individual trees in the urban study area.  

  

  
(a)  

 
(b)  

  
Figure 4. Classification result of test area A (a) and test area B  

(b) with hierarchical rule set.  

 

 

 

 

  

  

  
(a)  

 
(b)   

Figure 5. High vegetation points in test area A and test area B. 

  

The results of removing noise points, which do not belong to 

urban trees in the high vegetation class, using the machine 

learning-based DBSCAN clustering algorithm are provided for 

test area A and test area B in Fig. 6 and Fig. 7, respectively. After 

the removal of noise points, the 2D segmentation results of 

individual tree crowns in the high vegetation class, obtained using 

the Mean Shift clustering algorithm, are given in Fig. 8 and Fig. 

9 for test area A and test area B, respectively.  

  

 
                           (a)                                             (b)  

Figure 6. The noisy high vegetation points color-coded by 

height (a), and the noise points (in black) and the remaining high 

vegetation points (b) in test area A. 
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(a) 

 
(b) 

Figure 7. The noisy high vegetation points color-coded by 

height (a), and the noise points (in black) and the remaining high 

vegetation points (b) in test area B. 

  

  

  

                             
                           (a)                                           (b)  

Figure 8. Individual urban trees segmented using the Mean  

Shift clustering algorithm (a) and Individual urban trees overlaid 

with grayscale DSM (b) in test area A  

  

  

  

  

 

 

 

  

  

  

  

  
(a) 

 
(b) 

Figure 9. Individual urban trees segmented using the Mean Shift 

clustering algorithm (a) and individual urban trees overlaid with 

grayscale DSM (b) in test area B. 

 

In Fig. 10 and Fig. 11, the reference urban trees, along with the 

TP, FP, and FN values obtained using the Mean Shift clustering 

algorithm, are presented as the results of the accuracy assessment 

for the detected trees in Test Area A and Test Area B, 

respectively. In addition, the reference urban street trees, along 

with the TP, FP, and FN values obtained using the Mean Shift 

clustering algorithm, are presented for the detected street trees in 

Test Area B in Fig. 12. 

 

                  
(a)                                                      (b) 

Figure 10. Reference urban trees (a) and TP, FP, and FN trees 

(b) overlaid with grayscale DSM in test area A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference urban trees 

TP FP FN Reference urban trees 
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Figure 11. Reference urban trees (a) and TP, FP, and FN trees 

(b) overlaid with grayscale DSM in test area B.  

  

 
Figure 12. Reference urban street trees (a) and TP, FP, and FN 

street trees (b) overlaid with grayscale DSM in test area B. 

  

In test area A, 72 clusters were correctly segmented as individual 

urban trees (TP), 21 clusters were incorrectly identified as 

individual urban trees (FP), and 48 urban trees could not be 

segmented as individual tree clusters (FN) using the Mean Shift 

segmentation. Based on this, the completeness was 60% and the 

correctness was 77.42% according to the Mean Shift 

segmentation in test area A (Table 2). The completeness value 

was relatively lower than the correctness value due to the 

segmentation of overlapping, complex crownshaped trees as 

single trees using the proposed segmentation approach in test area 

A.  

  

76 clusters were correctly segmented as individual urban trees 

(TP), 18 clusters were incorrectly identified as individual urban 

trees (FP), and 46 urban trees could not be segmented as 

individual tree clusters (FN) using the Mean Shift segmentation 

in test area B. The results of the segmentation were 62.30% 

completeness and 80.85% correctness for Mean Shift clustering 

algorithm (Table 2). Similar to the results in test area A, the 

completeness value is lower than the correctness value in test area 

B.  

  

In test area B – street trees, 36 clusters were correctly segmented 

as individual urban street trees (TP), no clusters were incorrectly 

identified as individual urban street trees (FP), and 10 urban street 

trees could not be segmented into individual tree clusters (FN) 

using the Mean Shift clustering algorithm. The completeness was 

78.26% and the correctness was 100% according to the Mean 

Shift segmentation in test area B – street trees (Table 2). In the 

case of street trees with a discrete, regular structure, the 

completeness value is lower than the correctness value. However, 

both the completeness and correctness values are significantly 

higher than those in test area A and B.  

  

  
Mean Shift Segmentation  

Completeness  Correctness  

Test area A  60%  77,42%  

Test area B  62,30%  80,85%  

Street trees in Test area B   78,26%  100%  

Table 2. Completeness and correctness values. 

  

5. Conclusion  

 

In this study, an approach has been proposed for the automatic 

detection of urban trees using airborne LiDAR data. Raw LiDAR 

point cloud data has been classified using a point-based 

classification method with hierarchical rules. Noise points in the 

high vegetation class, which do not correspond to urban trees, 

were removed using the DBSCAN clustering algorithm. In test 

area A and test area B, high vegetation points, cleared of noise, 

were segmented using the Mean Shift clustering approach to 

obtain individual urban trees. An accuracy assessment has been 

performed based on the detection rate of individual urban trees.  

  

In test area A, the completeness was 60% and the correctness was 

77.42% according to the Mean Shift clustering approach. The 

completeness was 62.30% and the correctness was 80.85% in test 

area B according to the Mean Shift clustering approach. Finally, 

the completeness was 78.26% and the correctness was 100% 

according to the Mean Shift clustering approach in test area B – 

street trees. Due to the segmentation of overlapping, complex 

crown-shaped trees as single trees using the proposed 

segmentation approach, the completeness values were relatively 

lower than the correctness values. However, in the case of street 

trees with a discrete, regular structure, both the completeness and 

correctness values are quite high. For better results, different 

features can be used during the segmentation of individual urban 

trees, or different clustering algorithms can be tested. The urban 

trees obtained with the proposed approach can be easily used in 

various studies, such as disaster management, urban planning, 

environmental protection, or urban development policy 

formulation.  
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