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Abstract 

 

Hyperspectral Images (HSI) reveal the secrets of land cover at a granular level, capturing hundreds of narrow spectral bands rich in 

detailed information. However, the sheer dimensionality of these data poses significant challenges to traditional Machine Learning 

(ML) methods. This research tackles the high-dimensional challenge of HSI classification with an advanced hybrid framework, 

leveraging the power of Deep Learning (DL), ML and Evolutionary Algorithms (EA) to conquer this challenge and achieve accurate 

HSI classification. We unleash the data's inherent wisdom via deep Features Extraction (FE) and optimize the representation through 

EA. Experiments on the Hyperion Earth Observation-1 (EO-1) show that our approach outperforms state-of-the-art ML based methods 

in analyzing Earth's diverse landscapes. In addition, the experiments conducted on simulated benchmarks validate the superior 

performance of the proposed approach compared to the baseline ML model in terms of prediction accuracy and F1-score. 

 

 

1. Introduction 

Hyperspectral sensors capture incredibly high-dimensional data 

by detecting hundreds of narrow spectral bands across the 

electromagnetic spectrum. However, this rich information 

contains a large amount of redundancy, posing challenges for 

interpretation and analysis. Features Extraction (FE) techniques 

tackle this challenge by transforming the original data into a new 

set of features that effectively represent key information. It 

reduces the complexity of the data while retaining its essential 

properties to become significantly more informative and suitable 

for various analytical objectives in Remote Sensing (RS) 

applications. 

Features Learning (FL) plays a fundamental role in analyzing RS 

imagery by identifying and extracting distinct elements that 

represent specific phenomena of interest. These elements, the 

building blocks of the image, can take various forms, including 

geometric shapes, textured patterns, spectral signatures, or 

statistical measures. Extracting meaningful features is critical for 

a variety of RS tasks, such as mapping land cover, detecting 

changes, detecting objects, and classifying spectral data. The 

choice of features depends largely on the specific application and 

its goals. Essentially, FL aims to create concise and informative 

representations of the HSI content, enabling in-depth analysis 

and unlocking valuable insights. 

Supervised FL offers a diverse toolbox for extracting informative 

features from HSI. Established techniques like Principal 

Component Analysis (PCA) and Linear Discriminant Analysis 

(LDA) (Khalid et al., 2014) offer dimensionality reduction and 

discriminative feature, respectively. Additionally, Autoencoders 

(Kim et al., 2021) and Independent Component Analysis (ICA) 

(Khalid et al., 2014) can uncover hidden patterns and 

independent features within the data. Decision Trees (DT) (Kim 

et al., 2021) provide interpretable rules for features selection, 

while Convolutional Neural Networks (CNNs) (Kim et al., 2021) 

excel at automatically learning complex, hierarchical features 

from spatial and spectral information. 

In the realm of RS, (Li et al., 2019) introduced ASSFL (adaptive 

spatial-spectral features learning network), a Deep Learning 

(DL) model for HSI classification. ASSFL leverages two key 

components: a CNN that learns spatially-adaptive weights for 

each pixel, amplifying relevant features based on local context, 

and a Stacked Autoencoder (SAE) that extracts progressively 

deeper, abstract features from the data. Building upon existing 

efforts, (Quan et al., 2020) proposed a CNN architecture for HSI 

classification capable of extracting informative spectral-spatial 

features (SSF). (Ladi et al., 2023) introduced PKNNET 

(Polynomial Kernel Kervolutional Neural Network), a novel DL 

model designed for spatial FE from HSI. Subsequently, the 

extracted features are fed into a Support Vector Machine (SVM) 

for robust classification. (Petrovska et al., 2020) developed a two-

stream DL architecture for aerial image scene classification. This 

architecture leverages: (1) pre-trained CNNs for robust FE, (2) 

dimensionality reduction techniques to handle high-dimensional 

features vectors, and (3) features concatenation to create a 

comprehensive representation for SVM-based classification. 

(Amri et al., 2024) proposed an innovative approach to improve 

water body classification from PRISMA hyperspectral data by 

combining FE with a convolutional extreme learning machine 

(CELM) and EA, the goal is to simplify complex data while 

retaining essential information and then automatically optimize 

model parameters to improve classification accuracy. 

This work presents a cutting-edge approach to FL from HSI 

Hyperion Eo-1. We leverage a CNN trained on a binary 

classification task to automatically extract discriminative 

features. Subsequently, these features are employed in 

conjunction with established Machine Learning (ML) 

algorithms, further optimized through Evolutionary Algorithms 

(EA) like Genetic Algorithm (GA) (Holland, 1992) and Particle 

Swarm Optimization (PSO) (Kennedy and Eberhart, 1995), for 

comprehensive HSI classification. 
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This paper is structured in the following manner. Section 1 

presents a comprehensive literature review, delving into the 

recent advancements in FL techniques specifically within the 

context of HSI analysis. Section 2 meticulously details our 

proposed methodology, encompassing the design of the CNN 

architecture, the employed ML algorithms, and the integration of 

EA for parameter optimization. Section 3 outlines the 

experimental setup, including the selected hyperspectral 

databases and pre-processing procedures. Section 4 then presents 

and elucidates the obtained results from our experiments, 

demonstrating the efficacy of our novel approach. Finally, the 

concluding section summarizes the significance of the study, 

outlining potential implications and exciting avenues for future 

research endeavors. 

 

2. Proposed Methodology 

This section delves into the application of CNNs for FE, followed 

by precise classification leveraging a hybrid ML framework 

complemented by EA. This innovative approach synergistically 

combines the inherent advantages of CNNs in deciphering and 

interpreting intricate visual data with the resilience and 

adaptability of ML and EA for robust classification. Equation (1) 

represents the raw data extracted from the EO-1 HSI, while 

Figure 1 visually depicts the proposed methodology adopted in 

this work. 

 

𝑅𝑑 =  {𝑥1, 𝑥2, , … … … … . . 𝑥𝑁} (1) 

 

Where N is number of spectral bands. 

 

 

 

 

Figure 1. Description of the proposed approach. 

 

2.1 Features Learning 

Initially, attention is drawn to CNNs due to their remarkable 

effectiveness in this domain. This efficacy stems from their 

innate ability to automatically and hierarchically extract spatial 

features from raw data. Notably, FE via CNNs involves 

leveraging these networks to transform raw data into a collection 

of features that are demonstrably more informative and valuable 

for diverse tasks, including classification. The CNN architecture 

used in this work is designed for image classification, it’s 

composed of several layers that progressively extract 

increasingly extract features from input data. it uses 

convolutional layers to detect local patterns and pooling layers to 

reduce dimensionality and fully connected layers for the final 

classification.  

layers are typically followed by non-linear activation functions 

to introduce non-linearity into the model. This architecture can 

be adapted to various image classification problems.   

 

2.2 Classification 

In ML, several classifiers are commonly used for image 

classification, each with its own advantages and specific areas of 

application. These include the Support Vector Machine (SVM) 

which is effective for high-dimensional problems, the Decision 

Tree (DT) known for its ease of interpretation, the k Nearest 

Neighbors (k-NN) appreciated for its simplicity and effectiveness 

on well-separated datasets and the random forest (RF) a set of 

decision trees that work collaboratively to improve overall 

accuracy.   

In this contribution, we opted for the RF due to its robustness, its 

ability to handle noisy data and above all its high accuracy widely 

demonstrated in the scientific literature and through numerous 

experiments with other machine learning techniques (Kim et al., 

2021). In addition, RF has the advantage of limiting overfitting 

while offering good performance on complex data sets which 

makes it a particularly suitable choice for our problem. 

 

 

2.3 Evolutionary algorithms-based optimization  

EA can be used to optimize the parameters and architecture of 

ML model for image classification. The keys advantage of using 

EA in classification is their ability to efficiently explore the 

solution space, ability to process complex data, and search for an 

optimal representation. EA are a class of optimization and search 

algorithms inspired by the biological process of evolution. They 

used to solve complex problem and achieve accurate and reliable 

classification results by mimicking the process of biological 

evolution.  

 

2.3.1 Genetic Algorithms (GA): GA (Holland, 1992) are 

stochastic optimization methods that mimic the natural process 

of biological evolution to efficiently solve complex problems. 

Inspired by the fundamental mechanisms of Darwin's theory of 

evolution, these algorithms are based on concepts such as natural 

selection, crossover (recombination), mutation, and adaptation. 

The process (Figure 2) begins with the generation of an initial 

population composed of random individuals, each representing a 

potential solution to the problem in the form of chromosomes. 

Each individual is evaluated using an evaluation or fitness 

function that measures the quality of the proposed solution.  

During each iteration, called a generation, a natural selection 

process is applied to select the best-performing individuals with 

a greater probability of passing their characteristics on to the next 

generation. Then, the selected individuals undergo crossover, 

where parts of their chromosomes are exchanged to produce new 

individuals called offspring. This mechanism allows the best 

characteristics of each parent to be combined and new regions of 

the search space to be explored. 

To maintain genetic diversity and avoid the risk of premature 

convergence towards a local optimum, a mutation process is 

introduced, consisting of randomly modifying a part of the 

individual. The selection, crossover, and mutation process are 

repeated over several generations until a stopping criterion is 

reached, such as a maximum number of generations or a desired 

performance level. 
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Figure 2. GA algorithm steps. 

 

2.3.2 Particle Swarm Optimization (PSO): PSO (Kennedy 

and Eberhart, 1995) is an optimization metaheuristic inspired by 

the collective behavior of swarms of birds or fish searching for 

food. In this algorithm, each particle represents a potential 

solution in the search space, and the set of particles constitutes a 

swarm. Each particle moves through this space, adjusting its 

position and velocity at each iteration, guided both by its own 

experience (its best position found) and by the collective 

experience of the swarm (the best position found by all particles). 

Key parameters of PSO include the number of particles, their 

initial position, their velocity, as well as their personal and global 

inertia coefficients and attraction factors. A particle's velocity is 

updated according to an equation that takes into account its 

previous velocity, the distance from its own best-known position, 

and the distance from the swarm's best position.  

The particle's position is then adjusted based on its new velocity. 

These two updates are generally expressed by equations (2) and 

(3) in classical PSO formulations. This simple yet powerful 

mechanism allows particles to gradually converge toward 

optimal regions of the search space making PSO an effective tool 

for optimizing complex functions particularly for problems 

where the exact solution is difficult to find using deterministic 

methods. 

 
𝑣𝑖𝑑

𝑡+1 = 𝑤𝑣𝑖𝑑
𝑡 +  𝑐1𝑟1𝑖(𝑝𝑖𝑑 −  𝑥𝑖𝑑

𝑡 ) +  𝑐2𝑟2𝑖(𝑝𝑔𝑑 −  𝑥𝑖𝑑
𝑡 ) 

 

(2) 

 𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝑣𝑖𝑑
𝑡+1 (3) 

 

Where t is tth iterations and d is the dimensional search space. The 

mass of inertia is represented by w, constant coefficients by c1 

and c2, r1i, r2i represent random values uniformly distributed in 

the range [0,1]. Pid and Pgd represent the best individual (Pbest) 

and global (Gbest) elements, respectively. During each iteration, 

both velocity and position are updated in order to search the 

optimal solution.  

Due to its high classification on HSI, in this work RF classifier 

have been optimized through the EA GA and PSO with the aim 

of automatically tuning the classifier and extracting the best 

 
1https://github.com/bilelamri687/EO-1_Vegetation_Mapping 

performance for the considered classification task. The PSO steps 

are detailed in Figure 3. 

 

 

 
 

Figure 3. PSO algorithm steps. 

 

This hybridization explores improving the accuracy of EO-1 

hyperspectral RS data by optimizing the hyperparameters of a RF 

model using GA and PSO. The adjusted hyperparameters include 

the number of trees, the maximum depth, the minimum number 

of samples to split a node and the minimum number of samples 

per leaf. These evolutionary algorithms inspired by natural 

selection are used to efficiently search for optimal combinations 

of these hyperparameters. This approach improves model 

performance facilitating more accurate classification. 

 

 

3. Experiments  

This study aims to improve the performance of the EA for the 

Hyperion EO-1 HSI classification. This will result in obtaining a 

high-performing classification system by leveraging both the FE 

capabilities of CNN and the generalization ability of ML 

classifiers, jointly optimized by EA. 

 

3.1 Dataset  

The Hyperion EO-1 HSI dataset is a valuable resource for Earth 

observation. This instrument on board the EO-1 satellite captures 

hyperspectral images of remarkable precision, with 242 

continuous spectral bands covering wavelengths from 0.4 to 2.5 

μm The spatial resolution of 30 meters allows for detailed terrain 

analysis (ALI, 2003). The selected study area is located in the 

Oran region, a major metropolis in northwestern Algeria, 

characterized by a diversity of urban, agricultural and natural 

landscapes. This region is of particular interest due to its rapid 

urban development and varied ecosystems. Figure 4 presents a 

false-color visualization of the data; a technique that can 

highlight certain terrain features that would not be visible in a 

natural-color image. This representation is accompanied by its 

corresponding ground truth1 which serves as a validated 

reference for assessing the accuracy of the analyses. The ground 
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truth was established through in situ observations and expert 

validation, thus ensuring the reliability of the reference data for 

subsequent analyses.     

 

     

  

Figure 4. The false color composite from EO-1 HSI. The first 

column represents the training data, while the second one 

represents the manually labeled ground truth. 

 

3.2 Performance 

To evaluate the performance of our model, it is common to use 

multiple metrics in order to obtain a more comprehensive 

understanding of its effectiveness. Among these metrics 

accuracy, precision, recall and F1-score (Amri et al., 2022) as 

depicted in equations (4),(5),(6), and (7) respectively. 

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 

(4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(6) 

𝐹1 = 2 ∗  
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 

(7) 

 

TP, TN, FP and FN are true positive, true negative, false positive 

and false negative respectively. 

 

 

4. Results and Discussion 

This section presents various experimental results to assess the 

performance of our approach. Figure 5 and 6 show the evolution 

of the loss function and accuracy on the training set over the 

epochs of learning for our CNN model respectively. In the loss 

function (Figure 5), The blue (training) and orange (testing) 

curves decrease rapidly at first and then more gradually. Their 

convergence towards similar values indicates good 

generalization of the model without apparent overfitting. In the 

accuracy function (Figure 6), we observe a rapid increase in 

accuracy at the beginning of training (within the first 25 epochs), 

starting from around 90% and reaching nearly 97%. The 

progression then becomes slower but continues, with both curves 

reaching around 99% accuracy towards the end of training.  

 

The fact that the test and validation curves follow similar 

trajectories and converge towards very close values indicates that 

the model generalizes well to data it did not see during training. 

This excellent performance suggests a robust model with a very 

low error rate.  

Figure 7 illustrates example of test image from the Hyperion EO-

1 HSI used to evaluate our classification approach while Figures 

8, 9 and 10 show the obtained classification results from random 

Forest algorithm, random forest with GA and the random forest 

with PSO respectively.  

Figure 11 shows the evolution of the fitness function of our GA 

over successive generations; the fitness function is defined as the 

accuracy achieved by the RF classifier on the validation set. We 

observe a rapid and significant improvement in fitness in the first 

5 generations, going from approximately 0.986 to over 0.993. 

After this initial phase of rapid improvement, the curve stabilizes 

and forms a plateau, indicating that the algorithm has reached 

convergence. This trend is typical of genetic algorithms where 

the greatest improvements occur in the first generations, followed 

by a phase of slower refinement and then stabilization. 

Table1 presents the evolution of accuracy on the training set 

during the use of the RF classifier, with and without optimization 

by GA and PSO. We observe the evolutionary approach achieve 

better generalization on the training set with a final accuracy of 

0.997 for RF-GA, 0.995 for RF-PSO compared to 0.990 for 

baseline model.  

The table 2 illustrates and compares the performance metrics of 

different classification models on the test set (Figure 7). The 

results show interesting differences in their performances. The 

standard RF, applied on raw data, achieves high precision (0.951) 

with an excellent precision/recall balance (0.990/0.950) but its 

relatively lower F1-score (0.750) suggests limitations in its 

generalization ability. The approach in (Amri et al., 2023) using 

Wrapper Feature Selection (WFS) shows an overall accuracy of 

0.988 with a better F1-score (0.819). This improvement in F1-

score over standard RF indicates that features selection helps to 

better capture relevant information and reduce noise in the data. 

The RF-PSO and RF-GA methods based on FE show particularly 

interesting results. Notably, RF-GA achieves the best overall 

accuracy (0.994) and the best F1-score (0.832) of all models. This 

highlights the effectiveness of optimization algorithms such as 

GA, in improving model performance. 

 

 

 

 
 

Figure 5. CNN’s training evolution loss plot as a function of 

epochs. 
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Figure 6. CNN’s training evolution accuracy plots as a function 

of epochs. 

 

  

(a) (b) 

Figure 7. Test image of EO-1 HIS for model evaluation, (a) 

Original test data, (b) Ground truth. 

 

 

Figure 8. Examples of Classification results by RF. 

 

 

Figure 9. Examples of Classification results by RF-GA 

 

Figure 10. Examples of Classification results by RF-PSO. 

 

 

 

Figure 11. Evolution of the fitness function of genetic 

algorithm. 

 

Models Training accuracy 

Random Forest (RF) 0.990 

RF-PSO 0.995 

RF-GA 0.997 

Table 1. Accuracy on the training set of different techniques 

 

Models Accuracy Precision Recall F1 

Random Forest 

 (RF) 
0.951 0.990 0.950 0.750 

Method (Amri 

et al., 2023) 
0.988 0.903 0.901 0.819 

RF-PSO 0.968 0.926 0.912 0.732 

RF-GA 0.994 0.956 0.952 0.832 

Table 2. Comparison of classification model evaluation metrics. 

 

5. Conclusion 

Beyond traditional methods, this research proposes a novel 

framework for HIS classification powered by Deep Features 

Learning and EA to optimize the hyperparameters of ML models. 

This innovative hybridization leverages the ability of deep neural 

networks to automatically extract relevant features from HSI data 

while leveraging the exploratory power of EA to efficiently tune 

model hyperparameters. By capturing the essence of important 

features and adaptively optimizing model configurations, this 
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data driven approach produces a robust and generalizable model 

capable of better interpreting the complexity and spectral 

richness provided by HSI data. 

The resulting model exhibits increased robustness and better 

generalization significantly improving the ability to extract 

complex information from HSI data through intelligent 

exploration of the search space by EA thus avoiding stagnation 

in local optima. Future work could incorporate more 

sophisticated evolutionary mechanisms and explore new deep 

neural network architectures to further enhance performance and 

generalization. 
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