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Abstract 

 

Estimating land surface temperature (LST) in urban environments remains a complex task due to high surface heterogeneity and 

variations in material emissivity. This study compares LST products from four satellite sensors (Landsat 8 TIRS, ECOSTRESS, 

MODIS Terra, and Sentinel-3 SLSTR) with in-situ temperature measurements recorded by 27 ground-based sensors placed across 

diverse urban surface types in Kraków, Poland. 

To minimize cross-platform discrepancies, a harmonization workflow was applied, including spatial reprojection, temporal 

alignment within a ±15-minute window, and emissivity normalization. Residuals were assessed using standard validation metrics: 

RMSE, MAE, bias, and Pearson’s correlation coefficient. Among the examined datasets, Landsat 8 delivered the most consistent 

results (RMSE ≈ 7.7°C), while ECOSTRESS exhibited the highest positive bias and spatial variability. Residual errors were notably 

larger over vegetated areas, reflecting the effects of variable emissivity and canopy shading. 

Despite the observed errors, the harmonized dataset enables consistent comparisons between sensors and an effective thermal 

assessment of urban areas. The results highlight the methodological relevance of harmonization in thermal remote sensing, 

particularly in heterogeneous urban areas. 

 

 

1. Introduction 

Land surface temperature (LST) is a fundamental variable in the 

study of urban climate, surface energy balance, and thermal 

vulnerability assessment. In the context of rapidly urbanizing 

regions and intensifying urban heat island (UHI) effects, 

accurate and consistent LST measurements are essential for 

monitoring anthropogenic thermal dynamics, supporting 

sustainable urban planning, and mitigating health-related risks 

associated with heat stress (Weng et al., 2014; Zhou et al., 

2018). 

 

Satellite-based thermal infrared (TIR) sensors provide spatially 

extensive and temporally consistent measurements of LST. 

Platforms such as Landsat 8 TIRS, ECOSTRESS, MODIS 

Terra, and Sentinel-3 SLSTR have been widely used in both 

scientific and operational applications (Li et al., 2013; Martin et 

al., 2019). However, these datasets vary in terms of spatial 

resolution (70 m to 1 km), temporal revisit cycles, acquisition 

time, and emissivity correction methods. These inconsistencies 

pose challenges for inter-platform comparison and hinder the 

integration of multi-sensor thermal data into coherent long-term 

climate records. Several studies have reported that urban 

heterogeneity, including surface materials, built-up geometry, 

and vegetation cover, significantly affect the accuracy of 

satellite-derived LST products. Niclòs et al. (2023) showed that 

the variability of urban emissivity and atmospheric conditions 

may cause deviations exceeding ±5°C in ECOSTRESS 

retrievals, even under clear-sky conditions. Similarly, Weng et 

al. (2014) emphasized that retrieval geometry and land cover 

class influence LST performance, particularly in densely 

constructed areas. 

 

Ground-based temperature sensors provide critical reference 

data for validating LST products. However, global networks 

such as GSN, CRN, and FLUXNET are often spatially sparse in 

urban environments. Local sensor networks can capture the 

fine-scale thermal structure of cities and support the evaluation 

of satellite LST under realistic surface conditions (Zhou et al., 

2018). Direct comparison between satellite and ground 

measurements remains problematic due to differences in scale, 

observation geometry, and timing (Martin et al., 2019). 

Harmonization techniques have emerged as a necessary 

methodological bridge between satellite platforms and in-situ 

validation datasets. These include spatial resampling, temporal 

synchronization, and surface emissivity normalization. Such 

processes are indispensable for ensuring the comparability and 

usability of multi-sensor LST datasets in modelling, 

downscaling, and climate monitoring applications (Li et al., 

2013; Zha et al., 2024). 

 

This study aims to evaluate the harmonization of LST products 

from multiple satellite platforms through comparison with a 

dense network of ground-based observations in Kraków, 

Poland. The analysis aims to quantify cross-platform residuals, 

assess the impact of local surface characteristics, and evaluate 

the readiness of harmonized LST data for use in further 

predictive modelling and urban heat risk analysis. 
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2. Study area 

The survey was conducted in Krakow (population ~800,000), a 

central European city located in the southern part of Poland. 

Krakow is characterized by a heterogeneous urban fabric, 

including densely developed historic centre, modern residential 

zones, urban green spaces and industrial districts. The climate is 

classified as humid continental (Köppen classification - Dfb), 

characterized by warm summers and cold winters, and is 

increasingly subject to anthropogenically induced thermal 

anomalies (Peel et al., 2007). Recent observations indicate that 

Kraków experiences frequent summer heatwaves and elevated 

nighttime temperatures, contributing to local urban heat island 

(UHI) effects. Due to its compact urban morphology and 

pronounced land cover contrasts, Krakow was used as a 

representative case study for urban thermal heterogeneity and 

harmonization of satellite data with ground-based data. 

The observation date selected for this study was August 19, 

2023, chosen based on synoptic meteorological conditions 

indicating a cloudless sky scenario, negligible atmospheric 

perturbations (e.g., aerosol loading or convective cloud 

formation). 

 

 
 

 

Figure 1. Location of the study area. High-resolution satellite 

imagery of Kraków showing the distribution of in-situ 

temperature sensors (red points) used for validation of satellite-

derived LST data. The blue boundary denotes the extent of the 

urban study area. 

 

3. Data and methodology 

3.1 Satellite datasets  

To enable multi-resolution and multi-temporal LST analysis, 

four satellite platforms were utilized: Landsat 8 (TIRS), MODIS 

Terra, Sentinel-3 (SLSTR), and ECOSTRESS. The selected 

satellite sensors offered complementary spatiotemporal 

characteristics, allowing for a cross-platform comparison of 

thermal retrieval performance. Key technical specifications, 

including spectral range, spatial resolution, acquisition time, 

product level, and atmospheric correction methods, are 

summarized in Table 1. 

 

Landsat 8 Level-2 data were pre-processed using the LaSRC 

(Land Surface Reflectance Code) module, with land surface 

emissivity estimated via NDVI-based classification (Vermote et 

al., 2016). ECOSTRESS Level-2 products were obtained from 

NASA's LP DAAC and include emissivity corrections based on 

ASTER global surface emissivity datasets (Hulley& 

Freepartner, 2019; Meerdink et al., 2019). These products are 

designed for frequent thermal observations and are suitable for 

urban-scale monitoring. MODIS LST data were sourced from 

the MOD11A1 daily product and include pre-processed 

emissivity corrections (Pérez-Díaz et al., 2017). Sentinel-3 

SLSTR data were accessed through the Copernicus Open 

Access Hub and processed using dual-view geometry 

calibration (Li et al., 2023). 

 

Table 1. Overview of satellite-based LST data used in the study. 

 

3.2 In-Situ ground-based observations 

To validate satellite-derived LST products, a network of 27 

Thermochron DS1921G-F5 iButton sensors across urban 

Kraków were deployed. These sensors recorded surface-contact 

temperature at 10-minute intervals with a stated accuracy of 

±1.0°C and resolution of 0.5°C. Sensor locations were selected 

to reflect the dominant urban surface types, classified into three 

simplified Local Climate Zone (LCZ) categories: 

- vegetated surfaces (urban parks, lawns), 

- impervious surfaces (asphalt roads, concrete sidewalks), 

- mixed or transitional areas (vacant lots, gravel surfaces). 

Each sensor was positioned directly on the surface, shielded 

from direct solar radiation and reflective interference. Data 

quality was verified through post-processing to remove outliers 

and detect measurement dropouts. 
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3.3 Harmonization workflow 

The harmonization process aimed to align spatial, temporal, and 

physical discrepancies between satellite and in-situ 

measurements. A three-step framework was implemented.  

In the first step all satellite LST raster datasets were reprojected 

to the UTM Zone 34N coordinate system (EPSG:32634), 

ensuring precise geospatial alignment. Pixel values 

corresponding to sensor locations were extracted using a 

nearest-neighbor technique for coarse-resolution products 

(MODIS, Sentinel-3), and bilinear interpolation for higher-

resolution data (Landsat, ECOSTRESS). 

In the next step, temporal alignment was achieved by matching 

satellite acquisition times with the closest in-situ readings. A 

±15-minute tolerance window was applied to ensure 

consistency in atmospheric conditions. Finally, the residuals 

were computed as the difference between satellite-derived LST 

and ground measurements: 

 

     (1) 

  

 Statistical comparisons were performed using standard 

validation metrics. The agreement between satellite-derived and 

ground-based LST measurements was assessed using the 

following metrics (Pires et al., 2019): 

- Root Mean Square Error (RMSE) – measures overall 

deviation, 

- Mean Absolute Error (MAE) – indicates average magnitude 

of error, 

- Pearson’s correlation coefficient (R) – correlation strength 

between platform and in-situ data 

- Systematic bias (ΔT) – reflects the mean signed difference 

between satellite and ground measurements. 

To assess the influence of land surface type, residuals were 

grouped by LCZ category and analyzed via boxplots and mean 

RMSE per class. This allowed comparison of platform 

performance in response to surface emissivity variability and 

urban material heterogeneity. 

 

4. Results and discussion 

The spatial variability of retrieved LST across the study area is 

shown in Figure 2. Significant differences in spatial resolution 

and thermal contrast can be observed, particularly between 

Landsat/ECOSTRESS and MODIS/Sentinel-3 products. In-situ 

sensor locations, marked as black circles, were used to validate 

each raster product. The maps highlight intra-urban thermal 

variability, particularly between vegetated and impervious 

zones. 

 

 

Figure 2. Land surface temperature (LST) retrieved from each 

satellite platform. a) Landsat 8 (100 m), b) ECOSTRESS (70 

m), c) MODIS Terra (1 km), d) Sentinel-3 (1 km). Black dots 

indicate in-situ sensor locations (n = 27). 

 

4.1 Validation of Satellite-Derived LST 

The evaluation of satellite-based LST retrievals revealed 

considerable differences in accuracy across platforms. While 

some sensors performed within acceptable error thresholds, 

others displayed systematic biases and high spatial variability. 

These results reflect both sensor-specific characteristics and the 

challenges associated with measuring heterogeneous urban 

surfaces using orbital thermal data. 

To assess the accuracy of satellite-derived land surface 

temperature (LST), residuals between in-situ sensor data and 

satellite estimates were computed for all 27 locations. Summary 

statistics for each platform, including RMSE, MAE, Bias, and 

correlation coefficient (R), are presented in Table 2. 

Validation 

Metric 
Landsat 8 ECOSTRESS 

MODIS 

Terra 
Sentinel-3 

RMSE 7.72 11.05 7.79 9.71 

MAE 6.04 9.61 6.80 8.33 

BIAS -2.04 7.58 2.77 6.20 

R 0.17 0.10 0.18 0.06 

Table 2. Summary of validation metrics for LST products across 

four satellite platforms. 

Among the tested platforms, Landsat 8 exhibited the lowest 

overall error metrics, with RMSE = 7.72°C and MAE = 6.04°C. 

It also demonstrated a slight underestimation trend (bias = 

−2.04°C), consistent with findings reported in earlier literature 

(Li et al., 2013; Wan et al., 2004). In contrast, ECOSTRESS 

exhibited the highest residual error and a systematic warm bias 

of +7.58°C. While promising in terms of spatial resolution, the 

sensor exhibited high spatial inconsistency across locations. 

MODIS provided moderate agreement with in-situ data and a 

moderate positive bias. Sentinel-3 presented low correlation and 

scattered residuals, likely resulting from subpixel heterogeneity 

and coarse spatial resolution in the urban context. 

These results confirm that spatial resolution alone does not 

guarantee accuracy in urban LST retrievals, particularly without 

local emissivity calibration or contextual correction. 

 

4.2 Platform-specific residual distributions 

To assess the distribution of residual errors, Figure 3 presents 

boxplots of LST residuals (T_sat − T_ground) for each platform. 

Landsat 8 residuals are strongly clustered around zero, 

indicating stable and consistent performance across the sensor 

network. ECOSTRESS and Sentinel-3 display broad 

distributions and frequent outliers, confirming their higher 

variability. These differences underscore the sensitivity of 

thermal retrievals to both sensor design and urban surface 

composition. 
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Residuals were also analyzed in relation to surface cover types, 

grouped into simplified Local Climate Zone (LCZ) classes: 

Vegetated, Impervious, and Mixed. The results reveal that 

(Table 3, Figure 4.): 

- Over vegetated surfaces, overestimation was more evident 

in ECOSTRESS and Sentinel-3, likely due to complex 

shading and variable canopy emissivity. 

- Impervious surfaces exhibited relatively consistent 

performance, with Landsat 8 showing the lowest residuals 

across all LCZ types. 

- Mixed zones presented the highest variability, as expected 

due to their heterogeneous thermal behavior. These 

observations suggest that satellite-derived LST accuracy is 

influenced not only by sensor specifications but also by the 

spatial context of the surface being observed. 

 

 
Figure 3. Distribution of residuals (Tsat − Tground) for each 

satellite platform. 

 

Figure 5 illustrates the correlation between ground temperature 

and satellite-derived LST residuals. A slight positive trend is 

observed for ECOSTRESS and Sentinel-3, indicating that 

higher ground temperatures are associated with larger 

overestimations, particularly under clear-sky conditions. 

Landsat 8 and MODIS show flatter trends, consistent with more 

stable thermal retrieval algorithms. 

 

LCZ Platform RMSE 

(°C) 

MAE 

(°C) 

Bias 

(°C) 

 ECOSTRESS 10.27 8.84 5.62 

Impervious Landsat 8 9.61 7.59 -3.71 

 MODIS 8.93 7.92 2.10 

 Sentinel-3 10.29 8.54 5.39 

 ECOSTRESS 11.89 10.97 8.30 

 Landsat 8 7.00 4.80 -1.03 

Mixed MODIS 7.47 6.75 2.28 

 Sentinel-3 9.54 9.42 5.71 

 ECOSTRESS 11.26 9.58 8.96 

Vegetated Landsat 8 5.96 5.32 -1.08 

 MODIS 6.80 5.82 3.63 

 Sentinel-3 9.25 7.56 7.20 

Table 3. Residual distributions by LCZ type and platform. 

 

 

Figure 4. Boxplots of residuals grouped by LCZ and satellite 

platform. 

 

Figure 5. Scatterplots of residual vs ground temperature for each 

platform. 

Despite the relatively small number of ground sensors, the 

results provide a robust indication of platform-specific error 

patterns. Landsat 8 emerges as the most reliable source for high-

resolution urban LST mapping, while MODIS and Sentinel-3, 

due to their coarser resolution, are better suited for regional-

scale applications unless further corrected. ECOSTRESS, while 

promising due to its spatial resolution and temporal flexibility, 

requires careful local calibration due to its high bias variability. 

Future work should include multi-temporal analysis, sensor 

fusion, and integration of surface morphology data to improve 

LST accuracy in urban environments. 

 

4.3 Harmonization insights and implications 

While residuals may appear high in absolute terms, they are 

consistent with known inter-platform variability, particularly in 

complex urban environments. These discrepancies reflect the 

combined influence of spatial resolution, viewing geometry, 

emissivity assumptions, and the absence of localized 

atmospheric or emissivity corrections. Similar performance 

patterns have been reported in earlier LST validation studies, 

where even after preprocessing, systematic biases remained 

evident across platforms (Pires et al., 2019; Niclòs et al., 2023). 

 

In this study, harmonization included reprojection to a shared 

coordinate system (UTM Zone 34N), resampling to match the 
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spatial resolution of ground sensors, and temporal alignment 

using a ±15-minute window. These steps ensured that each 

satellite-derived LST product was directly comparable with in-

situ data under similar atmospheric conditions and spatial 

referencing. Residuals were evaluated across simplified LCZ 

categories, revealing platform-specific biases that were most 

pronounced in vegetated and transitional areas—consistent with 

findings by (Weng, 2009), who emphasized the influence of 

surface heterogeneity on thermal retrieval accuracy. 

 

Harmonization is not a mere preprocessing step, but rather the 

foundation for robust cross-platform comparison and integration 

of satellite thermal observations. It enables the identification of 

systematic retrieval biases, supports validation protocols, and 

prepares the data for more advanced applications, such as urban 

heat modeling or machine learning–based downscaling (Zha et 

al., 2024; Weng et al., 2004). 

 

As urban thermal monitoring becomes increasingly reliant on 

multi-source satellite observations, standardized harmonization 

workflows will remain essential for ensuring comparability, 

reducing uncertainty, and enhancing the usability of LST data in 

climate-sensitive urban planning. This approach follows 

recommendations proposed by (Pires et al., 2019; Niclòs et al., 

2023), emphasizing the need for temporal and spatial 

standardization prior to any inter-sensor analysis. 

 

5. Conclusion 

The results confirm that harmonization of multi-platform 

satellite LST data is achievable and methodologically beneficial 

for urban thermal applications. Four thermal datasets (Landsat 

8, ECOSTRESS, MODIS Terra, and Sentinel-3 SLSTR) were 

evaluated using in-situ ground measurements across diverse 

urban surface types in Kraków, Poland. The harmonized dataset 

showed moderate to high RMSE values, ranging from 7.7 to 

11.1 °C. Despite these discrepancies, it ensured consistent 

spatial alignment, temporal synchronization, and emissivity 

adjustment, allowing for meaningful and comparable cross-

platform validation. Among the evaluated platforms, Landsat 8 

showed the most stable thermal retrievals, whereas 

ECOSTRESS, despite its finer spatial resolution, exhibited the 

largest systematic overestimation. Observed differences across 

platforms reflect the underlying influence of spatial resolution, 

sensor geometry, and emissivity correction methods—factors 

previously identified as key determinants of LST retrieval 

accuracy (Weng et al., 2004; Niclòs et al. 2023). However, the 

limited number of ground-based sensors (n = 27) might slightly 

constrain the generalization of the results. Future studies should 

include broader sensor networks and multi-seasonal 

observations to enhance representativeness. 

 

Despite its limited direct measurement accuracy, the dataset 

highlights the methodological importance of cross-sensor 

harmonization workflows. These results support future efforts in 

LST calibration, urban thermal modelling, and data-driven 

planning. In the context of rising heat risks, harmonized thermal 

products offer a foundation for real-time monitoring, heat alert 

systems, and adaptive urban climate strategies. 
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