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Abstract 

 

The Segment Anything Model (SAM) represents a significant advancement in image segmentation, with growing applications for 

LiDAR-based data alongside traditional RGB imagery. Recent work, such as Ošep et al. (2024) on Segment Anything in LiDAR (SAL) 

and Yarroudh (2023) on automatic unsupervised LiDAR segmentation with SAM, highlights its potential for enhancing segmentation 

accuracy in complex environments. Building segmentation, especially in forested areas, poses unique challenges due to difficulties in 

distinguishing structures from dense vegetation. Prior research indicates that utilizing height information from LiDAR digital surface 

models (DSM) and digital elevation models (DEM) is beneficial, suggesting SAM could improve forest building segmentation 

accuracy with LiDAR-based images. 

 

This study explores SAM's application for building segmentation using true orthophotos and LiDAR-derived DSMs and DEMs. Its 

performance is compared against the U-Net neural network (Ronneberger et al. 2015), which utilizes the same multi-modal data. While 

existing SAM studies often focus on RGB imagery or point clouds, this research specifically investigates its capabilities within 

challenging forest environments. 

 

A 72km² rural forested area, covering mapsheet L4211D near Karkkila and N3244E near Närpiö, Finland, was selected for testing. 

Both models were trained using datasets from multiple Finnish cities. Their performance was evaluated using F1-scores during training. 

For the test areas, which had true orthophotos, LiDAR DSMs, and DEMs from 2024, the number of correctly identified buildings was 

analyzed against the topographic database of Finland (1,380 buildings in Karkkila, 1,020 in Närpiö). Additionally, the shape and 

accuracy of segmented buildings were visually compared. This evaluation of SAM’s effectiveness aims to advance methodologies for 

building extraction in forested landscapes, ultimately seeking to reduce manual labor in future mapping tasks. 

 

 

 

1. Introduction 

Accurate building segmentation is critical for applications such 

as urban planning, disaster management, and environmental 

monitoring (Zhou et al., 2018). However, in forested landscapes, 

challenges such as occlusions from dense vegetation, challenges 

in differentiating tree canopies from rooftops, and complex 

terrain hinder the performance of traditional segmentation 

methods (Awrangjeb et al., 2013). Recent advances in remote 

sensing, particularly Light Detection and Ranging (LiDAR), 

have enabled the generation of high-resolution Digital Surface 

Models (DSMs) and Digital Elevation Models (DEMs), which 

capture 3D structural information that can be utilized as such or 

to complement 2D imagery like true orthophotos (Miliaresis & 

Kokkas, 2007). These datasets provide opportunities to overcome 

forest-related challenges by distinguishing buildings from 

vegetation through elevation analysis. 

 

Deep learning models, such as U-Net—a convolutional neural 

network (CNN) architecture with an encoder-decoder structure 

and skip connections—have demonstrated success in building 

segmentation by learning hierarchical representations from 

labeled datasets (Ronneberger et al., 2015). However, their 

reliance on extensive labeled training data limits scalability in 

diverse environments. The emergence of foundation models like 

the Segment Anything Model (SAM) (Kirillov et al., 2023), a 

vision transformer (ViT)-based architecture, offers 

transformative potential for automating geospatial tasks. Unlike 

CNNs, which prioritize local spatial patterns through 

convolutional filters, SAM employs self-attention mechanisms to 

model global contextual relationships across images, enabling 

generalization across domains with minimal input prompts. Pre-

trained on a massive corpus of 11 million images, SAM achieves 

robust zero-shot segmentation of generic objects. However, its 

performance in specialized contexts—particularly forested 

environments where spectral ambiguity between buildings and 

vegetation challenges ViT’s reliance on texture and color cues—

remains underexplored. 

 

This study evaluates SAM’s capability for building segmentation 

in forested landscapes using multi-modal LiDAR data (DSMs, 

DEMs) and true orthophotos, comparing its results against a U-

Net baseline. By addressing SAM’s adaptability to elevation data 

and occlusion challenges, this work aims to advance automated 

mapping methodologies, reduce manual labour, and provide 

insights into the integration of foundation models in remote 

sensing workflows. 

 

2. Background 

2.1 Deep Learning and SAM in Remote Sensing 

Accurate building segmentation in forested landscapes is 

complicated by occlusions from dense vegetation and spectral 

similarities between tree canopies and rooftops. Traditional 

methods, such as rule-based Object-Based Image Analysis 

(OBIA), have relied on LiDAR-derived DSMs and DEMs to 

mitigate these challenges by incorporating elevation and texture 

data (Miliaresis & Kokkas, 2007). Modern deep learning 

approaches, such as U-Net—a CNN with an encoder-decoder 

architecture—have improved segmentation accuracy by learning 
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hierarchical features from labeled datasets (Ronneberger et al., 

2015). However, U-Net’s dependency on large-scale annotated 

training data limits its adaptability to diverse or understudied 

environments. 

 

SAM, a ViT-based foundation model pre-trained on 11 million 

images, addresses this limitation through zero-shot 

generalization (Kirillov et al., 2023). SAM employs self-

attention mechanisms to model global contextual relationships, 

enabling segmentation of unseen objects with minimal prompts. 

Recent studies highlight SAM’s potential in remote sensing: for 

example, Zhang et al. (2024) fused SAM with LiDAR-derived 

DSMs and true orthophotos to extract building footprints in 

residential areas, demonstrating improved performance over 

RGB-only inputs. However, their work also revealed SAM’s 

struggles in forested regions, where spectral ambiguity between 

vegetation and buildings persists even with elevation data. In 

2024, Ravi et al. published a new, more advanced version of 

SAM, SAM2 (Ravi et al., 2024). SAM2 builds upon the 

groundbreaking foundation of SAM by refining its performance 

on images, making it a more powerful tool for segmentation 

tasks. 

 

2.2 SAM and LiDAR Integration 

LiDAR data provides critical 3D structural information to 

disentangle overlapping features in complex landscapes. While 

CNNs like U-Net process LiDAR-optical data through multi-

channel inputs (Xu et al., 2021), SAM’s ViT architecture lacks 

native support for 3D point clouds. To bridge this gap, Yarroudh 

et al. (2023) developed an open-source framework (segment-

lidar) that projects LiDAR point clouds into 2D depth maps 

compatible with SAM, enabling unsupervised segmentation of 

urban buildings. However, their method achieved only modest 

accuracy in densely vegetated areas, underscoring SAM’s 

limitations in non-urban contexts. 

 

Efforts to enhance SAM’s elevation-awareness include encoding 

DSM height bands as auxiliary input channels (Zhang et al., 

2024) and fusing SAM with synthetic aperture radar (SAR) data 

for cloud-penetrating capabilities (Liu et al., 2024). While these 

adaptations improve urban building detection, their performance 

in forested environments—where irregular building layouts and 

occlusions dominate—remains untested. 

 

2.3 Challenges in Forested Landscapes 

Forested environments pose unique challenges for SAM due to 

its reliance on RGB spectral cues and limited elevation-

awareness. For instance, Zhang et al. (2024) demonstrated that 

SAM struggles with detection between buildings and vegetation 

even when fused with LiDAR-derived DSMs, particularly in 

occlusion-heavy forested regions. Similarly, Yarroudh et al. 

(2023) observed that SAM’s unsupervised LiDAR-based 

segmentation framework achieved only modest accuracy in 

densely vegetated areas, where irregular building layouts and 

overlapping tree canopies dominate. These studies underscore 

the need for multi-modal adaptations of SAM that explicitly 

leverage LiDAR’s structural data to resolve ambiguities, such as 

encoding height thresholds or incorporating DEM-derived slope 

information as segmentation prompts. Studying the capabilities 

of SAM in the forested areas with 5-channel data, like RGB and 

height information from both DSMs and DEMs, remains 

unstudied.  

 

3. Material 

Data utilized in this study was collected by the National Land 

Survey of Finland (NLS). True orthophotos, LiDAR DSM and 

LiDAR DEM used for fine-tuning U-Net and SAM had a pixel 

resolution of 25cm and covered 9 different areas of Finland, with 

high-quality labels corrected with the help of both true 

orthophoto and LiDAR DSM data, the LiDAR DSM data helping 

to distinguish also building, for example, covered by trees and 

not visible in the true orthophoto data. The creation method for 

the LiDAR DSM was the last and only pulse. 

 

The area of data used for fine-tuning was 344.90 km ² of Finland 

from the 9 separate areas. The image sizes of each area and their 

total coverage is found from Table 1. 

 

Name of area Image size Area 

Lahti 11,048 x 11,632 px 8.03km ² 
Närpiö 28,000 x 28,000 px 49.00km ² 
Rovaniemi 46,819 x 21,108 px 61.77km ² 
Uusikaarlepyy 38,773 x 38,211 px 92.60km ² 
Vaala 28,066 x 48,762 px 85.53km ² 
Ylitornio 15,985 x 5,584 px 5.58km ² 
Oulu 24,000 x 12,000 px 18.00km ² 
Heinävesi 12,583 x 11,915 px 9.37km ² 
Varkaus 18,613 x 12,910 px 15.02km ² 

Table 1. The areas in the training dataset used for fine-tuning, 

their image sizes and areas covered. 

 

Validation set was a separate set of 512 x 512 pixel images 

carefully selected to include various types of buildings and 

environments from multiple Finnish areas to ensure the model 

performance with different kinds of buildings and areas. It 

included 752 images. 

 

The U-Net model was pretrained with Finnish datasets collected 

during earlier years, having 30cm pixel resolution and DSM and 

DEM data produced from aerial images instead of LiDAR data. 

The pretraining dataset included 24 different training areas of 

Finland, covering an area of 167.42km ². 
 

The versions of the original SAM used for fine-tuning were the 

ViT-B and ViT-L pretrained models. For SAM2.1, the newest 

version of SAM, baseplus model was selected to be fine-tuned.  

 

 

Figure 1. A true orthophoto and LiDAR DSM image from the 

test area of Karkkila, Finland. Water areas have been removed 

from the LiDAR DSM image for reducing false detections. 
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Figure 2. A true orthophoto and LiDAR DSM image from the test 

area of Närpiö, Finland 

 

For evaluating the performance of the models, mapsheets 

covering areas of 36km ² were selected from two different areas 

of Finland. These two areas were Karkkila and Närpiö, and they 

provided excellent forest environments for evaluating the 

performance of the models with occluded buildings. The 

evaluation areas are seen in Figures 1 and 2. 

 

 

 

4. Methods 

Three deep learning methods for building extraction were tested 

and compared; the U-Net introduced by Ronneberger et al. in 

2015, SAM introduced by Kirillov et al. in 2023 and SAM2 by 

Ravi et al. in 2024.  

 

Data augmentation of the training datasets included random 

cropping, as well as vertical and horizontal flipping. U-Net and 

original SAM models were fine-tuned with all available datasets 

corrected with RGB and LiDAR information. For SAM2, 6 of the 

available datasets were utilized. All the models used learning rate 

of 1e-4 for fine-tuning. For model training, the supercomputer 

Puhti of CSC, Finland, was utilized.  

 

4.1 U-Net  

The architecture of the U-Net trained is presented in Figure 3.  

 

U-Net with an almost identical structure to the original U-Net 

introduced in 2015 (Ronneberger et al. 2015) was used for fine-

tuning with building dataset with LiDAR DSMs and DEMs. The 

differences of the utilized model architecture and the original U-

Net architecture laid in the use of dropout with a rate of 0.25, 

always after a sequence of a convolutional layer, batch 

normalization, and ReLU. Upsampling was also done a little 

differently: It consisted of a sequence of PyTorch’s classes 

UpsamplingNearest2d, ConstantPad2d, and a 2d convolution. 

The model architecture utilized had only three layers in the 

expanding and contracting paths in addition to the bottom layer 

(Hattula et al., 2023). 

 

Figure 3. The architecture of UNet trained and fine-tuned 

(Hattula et al., 2023). Original UNet was developed by 

Ronneberger et al. in 2015 (Ronneberger et al., 2015). 

 

U-Net was trained with Adam optimizer with the images being 

randomly cropped and augmented from the large training areas 

until its performance stopped increasing. Tversky loss was used 

to weight between precision and recall, recall was given weigh of 

0.7 and precision weight of 0.3. Early stopping was utilized for 

saving the best model according to the validation F1-score.  

 

4.2 SAM 

4.2.1 Original SAM 

To leverage the capabilities of SAM (Kirillov et al. 2023) for 

building detection using 5-channel data (RGB+DSM+DEM), its 

architecture was adapted and fine-tuned. While the core SAM 

structure—comprising an image encoder, a prompt encoder, and 

a mask decoder—is retained, key modifications and a specific 

training strategy were employed. 

 

The ViT-based image encoder was modified to accept 5-channel 

input instead of the original 3 (RGB). This involved changing the 

`in_chans` parameter of the initial convolutional layer to 5. 

Correspondingly, 5-channel pixel mean and pixel standard 

deviation values, calculated from the fine-tuning dataset, were 

used for input normalization. As the goal was binary building 

segmentation, the mask decoder was configured to produce a 

single output mask. Components like the mask token embeddings 

and prediction heads were dimensioned accordingly. 

 

The standard SAM’s prompt encoder module was included in the 

architecture. The module contains learnable embeddings 

representing different prompt types (e.g., positive/negative 

points, box corners) and positional encoding capabilities. 

Crucially, it also includes a learnable embedding designed to be 

used as a default dense prompt when no explicit mask input is 

provided. 

 

A checkpoint loading mechanism allowing model initialization 

from pre-trained SAM weights (typically trained on 3-channel 

RGB data) was implemented. The mechanism loads weights 

where layer names and shapes match between the checkpoint and 

the modified model. Layers with shape mismatches, such as the 

input layer or parts of the mask decoder, are skipped during 

loading and retain their random initialization, enabling them to 

be fine-tuned on the target 5-channel task. 

 

The model was fine-tuned with the building detection dataset 

presented in Table 1. Binary Cross-Entropy with Logits loss was 

utilized for training with the AdamW optimizer. 

 

A key aspect of the implementation relates to how prompts are 

handled during this fine-tuning process, diverging from the 
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prompt-driven training of the original SAM: During the training 

phase, the input dictionaries supplied contained only the 5-

channel image tensor ("image") and its original spatial 

dimensions ("original_size"). Critically, no explicit sparse 

prompts (e.g., "point_coords", "point_labels", "boxes") or dense 

mask prompts ("mask_inputs") were provided from the dataset 

during training iterations. 

 

Despite the absence of external prompts in the training data, the 

prompt encoder was invoked for each input image. Given 

`points=None`, `boxes=None`, and `masks=None`, it executed as 

follows:  

 

1. It generates an empty tensor for the sparse embeddings, 

as no point or box coordinates are provided. 

 

2. It utilizes its internal learnable `self.no_mask_embed` 

parameter. This embedding is reshaped and tiled 

spatially to match the dimensions of the image 

encoder's output feature map, effectively creating a 

default dense prompt embedding. 

 

In summary, the adapted SAM model leverages the core 

architectural components of SAM, including the prompt 

encoder's mechanisms. However, the fine-tuning strategy 

implemented trained the model primarily as a prompt-agnostic 

semantic segmentation network for 5-channel building detection. 

It utilized the prompt encoder's default `no_mask_embed` 

internally but does not explicitly train the model to condition its 

output on user-provided sparse prompts like points or boxes. 

Therefore, while the architecture retains the potential for 

promptable segmentation, the trained weights are specialized for 

direct, prompt-free inference on this specific task. Early stopping 

was utilized based on the validation F1-score to save the best 

performing model during fine-tuning. 

 

4.2.2 SAM2  

 

SAM2.1 baseplus model was studied for fine-tuning with the 5-

channel data (RGB+DSM+DEM).  

 

The architecture of SAM2 was modified to handle 5-channel 

inputs and to produce segmentation of buildings. The main 

changes made included adding `sam2_image_predictor` a [1.0, 

1.0] standard deviation list for accepting 5 channels during 

preprocessing and not changing the values of DSM and DEM 

channels. For required asserts, 3 channels were modified into 5. 

In addition, for `SAM2Transforms` suitable mean and standard 

deviation values were added. SAM2’s input channel was 

modified for 5 channels and original weights were copied to it, in 

addition to adding the mean of the weights for the new fourth and 

fifth channels. Similarly to the original SAM, SAM2 was trained 

without prompts. 

 

For fine-tuning, AdamW optimizer was utilized together with 

Dice loss.  

 

4.3 Evaluation 

During training, the performance of the models was evaluated 

with F1-score.  

 

For the two evaluation mapsheets from Karkkila and Närpiö, the 

reference data was gotten from the topographic database. The 

Karkkila mapsheet had 1,380 buildings and the Närpiö mapsheet 

had 1,020 buildings. The number of correctly detected buildings 

by the models were inspected. 

 

5. Results 

5.1 U-Net results 

To adapt the U-Net to the forest environment as well as possible, 

precision and recall and their relation was inspected. The model 

achieved a recall of 0.96 on the validation set while the F1-score 

was 0.89. The model found 1,158 buildings from Karkkila test 

tile, meaning 84% of all buildings from the area, and 939 

buildings from Närpiö, mearning 92% of all buildings from the 

area. The model produced some false detections due to the high 

weight given for recall instead of precision. Model predictions 

with the evaluation areas can be seen in Figure 4. 

Figure 4. Results from the two test areas with the finetuned U-

Net: Karkkila on the left and Närpiö on the right. 

 

5.2 SAM results 

5.2.1 Original SAM 

 

Two different pretrained versions of the original SAM were 

tested to be fine-tuned with the Finnish datasets, both the smallest 

ViT-B model and the larger ViT-L model. After fine-tuning both 

models, the ViT-L model achieved slightly higher validation F1-

score and was selected to be evaluated with the Karkkila and 

Närpiö evaluation areas. The ViT-B pretrained model achieved a 

validation F1-score of 0.85 after training it for 15 epochs, the 

ViT-L model seemed to achieve higher performance while the 

training continued after that and finally achieved an F1-score of 

0.87. The model found 1,074 buildings from Karkkila test tile, 

meaning 78% of all buildings from the area, and 893 buildings 

from Närpiö, mearning 88% of all buildings from the area. Model 

predictions with the evaluation areas can be seen in Figure 5. 
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Figure 5. Results from the two test areas with the fine-tuned 

SAM, ViT-L model: Karkkila on the left and Närpiö on the right. 

 

5.2.2 SAM2  

 

Fine-tuned SAM2.1 baseplus model was evaluated. The fine-

tuned model found 1,086 buildings from Karkkila test tile, 

meaning 79% of all buildings from the area, and 927 buildings 

from Närpiö, mearning 91% of all buildings from the area. Model 

predictions with the evaluation areas can be seen in Figure 6. 

 

Figure 6. Results from the two test areas with the fine-tuned 

SAM2.1 baseplus model: Karkkila on the left and Närpiö on the 

right. 

 

5.3 Comparison 

The evaluation across the Karkkila and Närpiö test areas revealed 

distinct performance characteristics for each model (Table 2). 

The U-Net model, fine-tuned with a focus on recall (achieving 

0.96 on the validation set alongside an F1-score of 0.89), 

demonstrated the highest building detection rates, identifying 

84% and 92% of reference buildings in Karkkila and Närpiö, 

respectively. However, this high recall came at the cost of 

generating a significant number of false positive detections (81 

in Karkkila, 332 in Närpiö). 

 

Model Karkkila (1,380 

buildings) 

Närpiö (1,020 

buildings) 

U-Net 1,158 939 

SAM, ViT-L 1,074 893 

SAM2 1,086 927 

Table 2. Test areas, how many buildings they included in the 

forested areas and how many of the buildings each model found. 

 

The fine-tuned original SAM ViT-L model achieved a balance 

between detection and precision. While its detection rates were 

slightly lower than U-Net (78% in Karkkila, 88% in Närpiö), it 

achieved a competitive validation F1-score (0.87) and, notably, 

produced considerably fewer false detections than the U-Net (46 

in Karkkila, 286 in Närpiö). This suggests the ViT-L architecture, 

even when fine-tuned in a prompt-agnostic manner on 5-channel 

data, may possess good generalization capabilities or inherent 

regularization against spurious detections compared to the recall-

weighted U-Net in this setup. The smaller SAM ViT-B variant 

achieved a lower validation F1-score (0.85) and was thus not 

selected for the final test area evaluation. 

 

The SAM2.1 baseplus model, fine-tuned also with 5 input 

channels, yielded similar detection rates as the fine-tuned SAM 

ViT-L (79% Karkkila, 91% Närpiö). While it detected more 

buildings in comparison to the SAM ViT-L, it produced the most 

false detections (1,208 on Närpiö and 1297 on Karkkila), as the 

model tended to segment other objects from images near 

buildings. In Närpiö test area its performance was close to the U-

Net’s performance.  

 

Qualitatively, the building polygons generated by the SAM ViT-

L model tended to exhibit more rounded shapes compared to the 

U-Net outputs and were a bit more regular in comparison to 

SAM2.1 baseplus model’s outputs. All models struggled with 

detecting smaller, heavily occluded buildings, highlighting the 

persistent challenge of segmentation under dense forest canopies. 

 

Furthermore, a significant practical difference lies in the models' 

computational requirements. The U-Net model is lightweight 

(7.76MB), facilitating faster training and inference. In contrast, 

the SAM ViT-L model is substantially larger (1.25GB), 

demanding more computational resources and time for both 

training and deployment. The SAM2 model, while based on 

SAM, also involves a multi-step inference process that adds 

complexity while at the same time it offers faster image 

segmentation in comparison to SAM. These factors are crucial 

considerations for practical applications and large-scale mapping 

efforts. 

 

6. Discussion 

This study evaluated the effectiveness of U-Net, a fine-tuned 

original SAM (ViT-L), and a fine-tuned SAM2 for building 

segmentation in challenging forested environments using multi-

modal aerial imagery and LiDAR-derived elevation data. The 

findings indicate that while the established U-Net architecture, 

particularly when fine-tuned for high recall, achieved the highest 

raw building detection count, the foundation model SAM, 

specifically the ViT-L variant adapted for 5-channel input, 

presented a compelling alternative by offering a better balance 

between detection and precision with fewer false positives. The 

SAM2 offered a bit higher detection rate in comparison to the 

ViT-L variant with the cost of higher amount of false detections 

but shows potential especially for tasks like detection of 

demolished buildings. 

 

The superior detection rate of the U-Net can likely be attributed 

to two key factors: its pretraining on a large, geographically 

similar (though lower resolution) Finnish dataset, and the explicit 

fine-tuning towards high recall using Tversky loss. This 

pretraining likely provided a strong initialization advantage for 

recognizing building features common in the Finnish landscape. 

However, the high recall objective inevitably led to a higher rate 

of false positives, classifying non-building features as buildings. 

Conversely, the SAM ViT-L model, despite being initialized 

from a general-purpose checkpoint (not specifically pretrained on 

Finnish remote sensing data) and fine-tuned using a standard 

BCE loss without explicit recall weighting, demonstrated robust 

performance. Its ability to generate fewer false positives suggests 

that the ViT architecture's global attention mechanisms might 

capture contextual information more effectively, aiding in 

distinguishing buildings from spectrally or structurally similar 

forest elements, even when trained without prompts. The 

observed rounder polygon shapes from SAM could stem from the 

patch-based nature of ViTs or the interpolation during mask 

upscaling. 

 

A critical limitation acknowledged is the difference in pretraining 

histories. The U-Net benefited from pretraining on relevant 

Finnish data, whereas the SAM models were initialized from 
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checkpoints trained on general natural images. Fine-tuning SAM 

ViT-L and SAM2.1 baseplus models on the 30cm dataset prior to 

the 25cm data could potentially bridge this gap and further 

improve its performance. Furthermore, the prompt-agnostic fine-

tuning strategy employed for the SAM models, while successful 

for direct segmentation, did not leverage the model's inherent 

promptable capabilities. Exploring prompt-based fine-tuning, 

perhaps using initial U-Net predictions or height thresholds as 

prompts, could unlock additional performance gains. 

 

The tendency of the SAM models (and to a lesser extent, the 

recall-focused U-Net) to produce false detections underscores the 

difficulty of this task. While the evaluation focused on correctly 

detected building counts—valuable for applications like change 

detection (for example, identifying demolished buildings from 

different areas) where false negatives are critical—reducing false 

positives remains crucial for clean map generation. The lower 

false positive rate of SAM ViT-L is promising in this regard, 

while also the higher detection rate of SAM2.1 baseplus model 

shows promise. The significant difference in model size and 

computational cost between U-Net and SAM is a major practical 

consideration, potentially favouring U-Net for resource-

constrained applications or rapid large-area processing, while 

original SAM might be preferred where higher precision (fewer 

false positives) is paramount, despite the computational 

overhead. 

 

Especially the SAM models trained in the experiments tended to 

produce false detections. In the results the number of correctly 

detected buildings were focused on, as it has multiple promising 

applications where the false detections can be ignored, for 

example, studying the number of demolished buildings in the 

areas, where false negative building detection results are more 

dire. The U-Net produced 332 false detections on the Närpiö test 

area and 81 false detections on the Karkkila test area. SAM ViT-

L model produced 286 false detections on the Närpiö test area 

and 46 false detections on the Karkkila test area.  

 

Future research should prioritize several avenues. Firstly, 

investigating the impact of pretraining the SAM models on the 

larger 30cm dataset before fine-tuning could clarify the influence 

of domain-specific pretraining. Secondly, exploring different 

loss functions (e.g., Focal Loss, Lovász-Softmax) and learning 

rate schedulers could further optimize model convergence and 

performance. Incorporating additional LiDAR-derived features, 

such as slope or vegetation indices derived from NIR (which was 

available but excluded), could provide richer inputs. Refining 

prompt-engineering techniques for both original SAM and 

SAM2, potentially integrating geometric priors or height 

information directly into the prompting mechanism, holds 

significant potential for improving segmentation accuracy and 

robustness in complex forested landscapes. For example, 

exploring the usage of RGB remote sensing data together with 

other LiDAR-based products and incorporating DEM-derived 

slope information as segmentation prompts for SAM could offer 

new perspectives.  

 

3D point cloud data has been investigated together with SAM-

based approach (Yarroudh et al., 2023), but in the future, new 

SAM-based methods and even more accurate point cloud data 

could enhance the accuracy of building detection in the forested 

areas. 

 

7. Conclusions 

This study compared the performance of a U-Net, a 5-channel 

adapted Segment Anything Model (SAM ViT-L), and a 5-

channel adapted SAM2 for the challenging task of building 

segmentation in forested areas using true orthophotos and 

LiDAR-derived DSM/DEM data.  

 

The results demonstrate that while the U-Net, benefiting from 

relevant pretraining and recall-focused fine-tuning, achieved the 

highest building detection rate, the fine-tuned SAM models 

offered a strong alternative, achieving competitive detection 

rates. This suggests that foundation models like SAM and 

SAM2.1, when appropriately adapted for multi-modal remote 

sensing data, can effectively leverage combined image and 

elevation information for complex segmentation tasks, 

potentially offering better precision than traditional architectures 

fine-tuned solely for recall.  

 

The study highlights the persistent difficulties in segmenting 

small and occluded buildings under dense forest canopies for all 

tested architectures. While height information from LiDAR aids 

segmentation, occlusion remains a significant hurdle. The trade-

off between detection rate (recall) and precision, as well as the 

substantial differences in model size and computational 

requirements, are critical factors for selecting appropriate models 

for practical applications.  

 

Overall, while U-Net currently provides the highest detection 

count in our specific setup, the adapted SAM ViT-L demonstrates 

significant promise for balancing detection performance with 

reduced false positives in forested building segmentation and 

SAM2.1 baseplus model regarding the higher detection rate in 

comparison to the original fine-tuned SAM. Future work 

focusing on domain-specific pretraining, advanced prompting 

strategies, and exploration of alternative loss functions is 

warranted to further unlock the potential of foundation models 

for automated and accurate mapping in complex remote sensing 

environments. 
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