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Abstract 

 

Meadow orchards represent critical components of European cultural landscapes and biodiversity, yet face significant threats from 

land-use intensification and management abandonment. Current studies show that the number of meadow orchards in Baden-

Württemberg; Germany has declined sharply in recent decades and that existing trees are inadequately maintained.  In this context, the 

aim of this study is to present an integrated remote sensing approach to monitor the ecological condition and management intensity of 

these cultural landscapes. Using high-resolution unmanned aerial system (UAS) imagery, we identified and assessed around 5,000 fruit 

trees in our study area near Bad Schönborn, Germany. Metrics such as canopy structure and spectral information such as NDVI were 

extracted, indicating high vitality (99%) but low maintenance (only 28% well maintained). Tree species classification accuracies ranged 

from 56% to 85%. The approach also emphasises stakeholder engagement and capacity building, embedding digital geo-information 

tools in community-based conservation. By combining UAS data with satellite imagery, the workflow is likely to be scalable across 

Baden-Württemberg to enable cost-effective, large-scale monitoring. Our findings highlight the role of advanced geospatial methods 

in meadow orchard conservation, bridging ecological knowledge with actionable landscape management. 

 

 

1. Introduction 

Central European cultural landscapes have been continuously 

altered by human activities for thousands of years, shaped by 

different economic and social systems (Job and Knies, 2001). 

Over time, many of these extensively used landscapes – such as 

alpine meadows, planter forests or meadow orchards – have 

evolved into ecologically valuable habitats, providing a wide 

range of niches for flora and fauna. 

 

Traditional meadow orchards, comprised of extensively 

cultivated fruit trees and meadows, are among the most 

biodiverse of these cultural landscapes, providing a habitat for 

more than 5,000 plant and animal species (Zehnder, 2020). 

These ecosystems provide numerous ecosystem services, 

including soil and groundwater conservation through the lack of 

pesticide use. Furthermore, they serve as recreational and tourism 

areas, contributing to the economic and social value of the local 

region (Heiland, 2017; Tengberg et al., 2012). 

 

Despite their ecological and socio-cultural value, traditional 

orchards have been subject to massive transformations in the last 

decades, driven by institutional, technological and economic 

changes (Gömann and Weingarten, 2018). Many traditional 

orchard areas were cleared during the second half of the 20th 

century, due to low economic profitability and agricultural 

modernization. The remaining meadow orchards increasingly 

compete with expanding settlement areas and intensively used 

agricultural land (Zehnder, 2020). 

 

One of the largest remaining traditional orchard areas in Europe 

is found in Germany, covering about 250,000 to 300,000 

hectares, with approximately 40% of them located in Baden-

Württemberg. Here, an estimated 7.1 million trees are still 

standing (Borngraeber et al., 2020). Yet even in this region, 

meadow orchard vitality and maintenance conditions are 

declining. Trees are dying without being replaced, insufficient 

meadow maintenance leads to bush encroachment, and mistletoe 

infestations are often ignored. These dynamics lead to a general 

loss of habitat quality (Henle et al., 2024). 

 

These developments are further amplified by demographic 

changes: Many owners of meadow orchards are elderly or have 

moved to other regions. As a result, maintenance is neglected, 

particularly given the lack of economic incentives (Bürckmann 

et al., 2022). Climate change, invasive species, and emerging 

diseases demand more intensive care, yet the number of people 

able or willing to provide it is declining (Henle et al., 2024; 

Zehnder, 2020). 

 

Although conservation efforts have increased over the past 15 

years (Borngraeber et al., 2020), they remain insufficient. 

Institutions such as NABU call for stronger political action, more 

training for caretakers, and integrated strategies to preserve these 

landscapes. Ultimately, the preservation of meadow orchards 

depends on socio-economic and political decisions, not solely on 

agricultural land use (Michlmayr-Gomenyuk, 2016). 

 

Accurate, high-resolution data on the location, number, vitality 

and tree species composition of meadow orchards is essential for 

targeted conservation and landscape planning. While Baden-

Württemberg maintains a dataset on tree numbers within meadow 

orchards, the last larger survey was conducted in 2018 

(Borngraeber et al., 2020) and lacks information on species, 

vitality or maintenance conditions 

 

Remote sensing technologies, particularly those involving 

unmanned aerial systems (UAS), offer significant potential for 

improving the monitoring and management of traditional 

orchards. UAS-derived data can meet the high spatial and 
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temporal resolution required for single-tree detection and vitality 

assessments (Pleșoianu et al., 2020). RGB and multispectral 

imagery can support object-based image classification to 

distinguish between fruit trees and other species, assess vitality 

and infer maintenance status. These approaches are already 

widely used in forestry and precision agriculture (Eltner et al. 

2022; Shen et al., 2019). 

 

Combining UAS imagery with existing geodata enables a 

comprehensive analysis of meadow orchard conditions, tree 

structure, and landscape dynamics. This approach also allows for 

the evaluation of potential replanting areas and supports adaptive 

landscape management strategies in light of climate change 

(Davis et al., 2020; Plieninger et al., 2015). 

 

Thus, the objective of this study was to establish a robust and 

cost-efficient UAS-based workflow to assess and monitor tree 

species composition, tree vitality and care needs of individual 

trees on meadow orchards. By developing such a monitoring 

concept, reliable and detailed information on the state of meadow 

orchards in Baden-Württemberg can be gained. 

 

2. Study Area and Methods 

2.1 Study Area 

For establishing the workflow, a pilot study was conducted in the 

municipality of Bad Schönborn, which is located in the 

Kraichgau region of Baden-Württemberg, Germany. The study 

area covers approximately 500 hectares within the cadastral 

districts of Bad Mingolsheim and Bad Langenbrücken. The 

region is distinguished by a mild climate with minimal ground 

frost and an extended growing season of around 240 days. The 

annual precipitation range is from 750 to 850 mm (Weber et al., 

2022). 

 

 

Figure 1: Study area Bad Schönborn in the North of Baden-

Württemberg, Germany 

 

The region's soil composition is predominantly characterised by 

decalcified, loess-covered sediments. These conditions provide a 

favourable environment for traditional orchard cultivation 

(Weber et al., 2022). which remains a prominent land-use form 

in this part of the Kraichgau. The highest concentrations of 

meadow orchards are found in the north-eastern part of Bad 

Mingolsheim and the south-eastern part of Bad Langenbrücken, 

where they often appear alongside vineyards. The municipality 

of Bad Schönborn is of particular significance for the 

preservation of orchard landscapes due to its favourable climatic 

and geological setting.  

 

2.2 Methods 

In order to monitor and evaluate the meadow orchards within the 

study area, a combination of UAS- and satellite-based remote 

sensing was used. Additionally, field data was collected for 

training and validation.  

 

2.2.1 UAV-based Data Acquisition: In the municipality of 

Bad Schönborn, a total of 20 representative sites were monitored 

throughout 2019 and 2020, with four flight missions per year. 

The acquisition followed a multi-phase flight campaign that was 

timed to match the phenological development stages of the 

meadow-orchard tree species (Figure 2). The selection of plots 

was guided by diversity in species composition, tree density, and 

management status. 

 

 

Figure 2: Images of the same patch of a meadow orchard taken at 

different dates in 2019. 

 

UAS equipped with optical and multispectral sensors were used 

to capture high-resolution aerial images of selected test sites. The 

routes were arranged in overlapping parallel strips to ensure 

stereoscopic coverage, with typical longitudinal and lateral 

overlaps of 90% and 70% respectively. Flight altitude was 

adjusted to the local terrain. The total amount of raw data 

collected was approximately 400 GB, comprising over 120,000 

individual images. 

 

For imagery in the visible spectrum, a ZENMUSE X5S camera 

was used, achieving a spatial resolution of 1.8 cm for the surface 

model (Orthomosaic, OM) and 3.6 cm for the digital elevation 

model (DEM). To capture reflectance in the RedEdge (~717 nm) 

and near-infrared (NIR, ~840 nm) wavelength ranges, a 

MicaSense RedEdge 3 multispectral camera with a downwelling 

light sensor (DLS) was installed. However, the multispectral data 

quality was found insufficient due to calibration issues and 

spatial misalignments between sensors, and further use was 

discontinued. 

 

Ground control points (GCPs) were established using high-

precision GNSS measurements. These permanent, visually 

distinguishable markers enabled accurate spatial referencing and 

alignment of multi-temporal datasets. Through the integration of 

these GCPs, consistent and location-specific datasets were 

produced across various surface models, elevation models and 

spectral layers. 

 

The image data were processed via Structure from Motion (SfM) 

methods using Agisoft Metashape to reconstruct three-

dimensional surface structures and produce orthomosaics 

corrected for geometric distortions. This workflow allowed for 

detailed terrain modelling and surface analysis at single-tree-

level. 
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2.2.2 Satellite-Based Data Acquisition: To supplement the 

UAS data and to compensate the calibration issues encountered 

with the multispectral camera, satellite imagery from 

WorldView-3 (acquisition data: June 4th, 2019) was used. These 

data offer a panchromatic resolution of 31 cm and a multispectral 

resolution of 1.24 m, covering key spectral bands such as 

RedEdge (705–745 nm), Near-IR1 (770–895 nm), and Near-IR2 

(860–1040 nm). 

 

2.2.3 Field Data: To allow for automated classification and 

enable a reliable interpretation of the UAS-based data, 

comprehensive field data were collected. On several designated 

test sites, structural condition and vitality data were recorded for 

existing fruit trees. This reference dataset, gathered at different 

times between autumn 2020 and 2021 by various surveyors, 

encompassed a total of 1,352 individual trees across the selected 

areas. Each mapped tree was assigned a unique ID and 

characterized by key attributes, including species, vitality, and 

maintenance condition. 

 

The vitality assessment employed a three-class system, adapted 

from (Weihs, 2017), to categorize tree health consistently. 

Class 1 ('vital') represented trees exhibiting good growth, a 

typical crown structure and leaf condition, minimal damage, and 

evidence of strong compensatory mechanisms. Class 2 ('ailing') 

denoted trees with noticeably reduced vigour, an increase in 

deadwood, or visible signs of damage or disease. Class 3 ('dying') 

included trees essentially lacking vitality indicators and showing 

no signs of compensatory growth. This classification scheme 

provided a repeatable framework, facilitating the reliable linkage 

of subjective field-assessed vitality with objectively derived data 

from the UAS imagery analysis. 

 

2.2.4 Object Based Analysis: To detect and classify 

individual fruit trees within the study areas, object-based image 

analysis (OBIA) was applied using the software eCognition 10.2. 

as well as ArcGIS Pro. Unlike pixel-based approaches, OBIA 

analyses spatial data in the form of image objects that reflect 

contextual relationships within the landscape. High-resolution 

orthomosaics and digital elevation models derived from UAS 

imagery as described earlier in section 2.2.1 provide the 

necessary data basis, offering spatial resolutions in the sub-

centimeter range and several centimeters, respectively. 

 

Initially, the datasets were segmented using the normalized 

digital surface model (nDSM) to delineate potential objects like 

tree crowns as shown in Figure 3.  

 

 

Figure 3: Example results for delineated objects: Information 

from the Orthomosaic (left) as well as the nDSM (middle) are 

used to delineate tree crowns (right) to identify single fruit trees 

 

 
1 MTVI2 as defined by ArcGIS 

The resulting tree polygons formed the basis for subsequent 

object-based attribute extraction. Subsequently, geometric and 

spectral attributes were calculated for each segmented object 

(Table 1). Geometric parameters included height (applying a 

minimum threshold of two meters to exclude shrubs), area, 

perimeter, roundness, and compactness. Spectral characteristics 

encompassed the mean and standard deviation of RGB values, 

offering information on object reflectance properties. 

Additionally, texture measures were derived for each spectral 

band to further characterize the objects. Finally, vegetation 

indices, notably the NDVI (Normalized Difference Vegetation 

Index), were integrated to assess photosynthetic activity and 

general vitality. Table 1 provides an overview of the spectral and 

geometric attributes of the single polygons which have been 

extracted via eCognition and ArcGIS. 

 

Attribute Description 

G
eo

m
et

ry
 

Height Max. pixel value nDSM 

Shape (pixels) Perimeter 

Shape 

(polygons) 
Shape Length 

Area (polygons) Shape Area 

Roundness 

Radius (smallest ellipse) – Radius 

(largest ellipse) 

[0,∞] ; 0 = ideal 

Compactness 
(Length*Width) / number of pixels 

[0,∞] ; 1 = ideal 

Mean nDSM 
The average intensity of all the 

pixels within the object 

σ nDSM 
Dispersion around the arithmetic 

mean value for each object 

S
p

ec
tr

al
 I

n
fo

rm
at

io
n

 

Brightness 

Arithmetic mean of the combined 

pixel values for each band as 

implemented in eCognition 

Max. 

Difference 
Max. Difference 

NDVI 
NIR − R

NIR + R
 

Green NDVI 
NIR − G

NIR + G
 

MTVI21 

1.5 ∗ (1.2 ∗ (NIR − G) − 2.5 ∗ (R − G))

√(2 ∗ 𝑁𝐼𝑅 + 1)2 − (6 ∗ 𝑁𝐼𝑅 − √𝑅
5

) − 0.5

 

Mean blue 

Average intensity of all the pixels 

within the object 
Mean green 

Mean red 

σ blue 

Dispersion around the arithmetic 

mean value for each object 
σ green 

σ red 

Table 1: parameters extracted from the dataset and used in the 

classification 
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For evaluating tree species, vitality, and maintenance condition, 

ground-truth data were collected within selected test sites as 

explained in section 2.2.3. These reference data subsequently 

guided the development of a classification model utilizing the 

previously extracted object attributes. Several classification 

algorithms were then tested to determine the most effective 

approach. Following this comparison, the most suitable 

algorithm was selected and applied to the entire dataset of 

segmented tree objects (Figure 4). 

 

As automated classification faced limitations, particularly with 

overlapping crowns and ambiguous spectral signals, a 

subsequent validation and correction process was necessary. This 

involved field verification to assess the accuracy of the 

classification results, including categories like 'fruit trees', 'other 

trees', and 'buildings'. Identified misclassifications were then 

manually corrected. This correction was particularly relevant in 

areas of dense vegetation where the automated algorithm had 

difficulty separating adjacent tree crowns distinctly.  

 

 

 

Figure 4: Workflow of the study starting with image collection, 

a single-tree detection and a subsequent object-based 

classification 

 

3. Results 

Applying the single tree detection approach across the study area 

resulted in the identification of approximately 5,000 potential 

fruit trees. Based on the model's classification of these detected 

trees, apple was the predominant species identified (68%), 

followed by pear (16%) and plum (7%). The assessment 

indicated high overall vitality across the detected trees, with 99% 

classified as vital. However, the maintenance status assessment 

revealed different results: only 19% of trees were classified as 

well-maintained without immediate care needs. A majority 

(53%) were assessed as requiring at least a low amount of care, 

while the remaining trees were identified as potentially needing 

urgent interventions (Figure 5). 

 

 

Figure 5: Results of the classification of a) tree species, b) vitality 

and c) care needs. 

 

The Random Forest classifier yielded the best performance for 

tree species classification based on the tested algorithms. The 

classification models for ‘tree species’, ‘vitality’, and ‘care need’ 

were trained and validated using the reference dataset of 1,352 

manually assessed trees. Comparison with this reference data 

showed an overall accuracy of 51.15% for species identification 

(Figure 6), 88,97% for vitality assessment (Figure 7), and 51,92% 

for the care-need classification (Figure 8). 

 

Further analysis of the species classification performance using a 

confusion matrix revealed variations between classes. For 

example, apple trees achieved a high Producer's Accuracy 

(recall) of 0.85, meaning most reference apple trees were 

correctly identified by the model. However, the User's Accuracy 

(precision) for apples was lower at 0.56, indicating that a 

considerable number of trees classified as apples belonged to 

other species in reality. Other species, such as cherry, showed 

considerably lower detection rates (e.g., Producer's Accuracy of 

0.03). 

 

 

Figure 6: Confusion matrix for the classification of tree species. 

Classifier: Random Forest, Cross-validation, Folds: 10. Overall 

Accuracy: 51,15 % and Kappa coefficient: 0,23 

 

For the prediction of the vitality by the Random Forest classifier, 

only class ‘vital’ was classified with a True Positive Rate of over 

0.9 whereas the algorithm performed poorly in predicting the 

other classes. The Kappa coefficient indicates the quality of the 

algorithm, which can be considered low for values below 0.01. 

With such a dominant class within the training data, this is hardly 

surprising. 

 

 

Figure 7: Confusion matrix for the classification of vitality. 

Classifier: Random Forest, Cross Validation, Folds: 10. Overall 

Accuracy: 88,97% and Kappa coefficient: 0,0044 
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Figure 8: Confusion matrix for the classification of care need. 

Classifier: Random Forest, Cross Validation, Folds: 10. Overall 

Accuracy: 51,92% and Kappa coefficient: 0,27 

 

The Random Forest classification of tree care need, evaluated 

using 10-fold cross-validation, yielded limited predictive power, 

achieving an overall accuracy of 51.9% and a Kappa coefficient 

of 0.27, indicating only fair agreement. Analysis of the confusion 

matrix (Figure 8) revealed varying performance across the three 

categories ('Well maintained', 'Low demand', 'High demand'). 

 

The 'low demand' class performed best relatively, with the 

highest Producer’s Accuracy (0.60) and User’s Accuracy (0.51). 

Conversely, both the 'well maintained' (User’s Accuracy: 0.21) 

and 'high demand' (User’s Accuracy: 0.39) classes suffered from 

low precision, indicating that many trees predicted to be in these 

categories actually belonged elsewhere. Overall, the model 

demonstrated limited reliability in accurately classifying specific 

care needs based on the employed features. 

 

 

4. Discussion 

This pilot study aimed to extend the common practice of single 

tree detection via UAS data by including the assessment of tree 

species, vitality, and care need — the latter two being considered 

particularly complex (Fraser und Congalton, 2021; Johnstone et 

al., 2013). The results indicated no direct correlation between the 

assessed vitality and care-need parameters; trees classified with 

high vitality could still exhibit characteristics indicating an urgent 

need for care interventions. These discrepancies between vitality 

and care needs could stem from the different parameters which 

are relevant here. While vitality is primarily measured and 

assessed through spectral parameters such as the NDVI, care 

need might also depend more on structural parameters such as 

crown shape. Although the spectral information might be linked 

to the 3D-structure of the tree itself (Jurado et al., 2020), 

structural parameters such as tree height and diameter are still 

considered important sources for assessing stand condition and 

potential maintenance needs (Eltner et al., 2022).  

 

However, given the overall low classification accuracies, several 

factors may have contributed to this outcome. The malfunction 

of the multispectral camera mounted on the UAS and the 

resulting use of WorldView-3 data likely introduced additional 

sources of error into the classification process. 

 

The biggest issue is likely related to the training data and tree 

structure in the study area, resulting in a strong imbalance within 

the training dataset. This mainly affects both vitality and species 

representation. Specifically, the vitality assessment was 

compromised, as approximately 90% of the reference trees were 

labelled 'vital'. This strong skew likely biased the classifier 

towards the majority class, significantly limiting its utility for 

reliably identifying trees in 'ailing' or 'dying' states (Chabalala et 

al., 2023). The resulting Kappa coefficient of approximately 

0.004 suggests performance no better than random chance for this 

specific task. Similarly, the dominance of apple trees in the 

training set (Figure 6) restricts the model's generalizability. This 

overrepresentation is likely to produce overfitting to apple-

specific features, potentially reducing classification accuracy for 

other fruit tree species and application in more heterogeneous 

orchard settings. These imbalances underscore the critical need 

for representative and balanced training datasets to develop 

robust ecological monitoring models, as skewed data can obscure 

underlying patterns. 

 

Another issue is likely related to the difference between data 

acquisition and field data collection. Comparison of the field data 

for same trees from different years showed that the collected 

parameters can differ at different points in time. It cannot be ruled 

out that in the time between differing dates, trees had been 

maintained or changed in their status of vitality. 

 

Adding to this, a decisive factor for the accuracy of the reference 

data is the subjectivity of the assessment of, e.g., maintenance 

requirements and especially vitality in the field. If, for example, 

the assessment of tree vitality is based on the length of new 

shoots, this can only be reliably evaluated if the same tree species 

is considered in a specific development phase at a similar location 

(Roloff, 2018). Even when assessing the proportion of 

deadwood, the subjectivity of the survey can strongly influence 

the classification (Johnstone et al., 2013; Tilly et al., 2020). An 

attempt was made to use an objective catalogue of criteria to 

estimate vitality using a set of parameters. However, significant 

inconsistency was observed between different surveyors, which 

led to reverting to a purely subjective assessment of vitality. This 

lack of uniformity, stemming from the involvement of different 

project staff and the absence of a single decisive factor for 

classifying a tree as ‘dead’, reduced comparability in the 

reference data on tree vitality. For instance, if the proportion of 

deadwood exceeded 75%, trees were sometimes classified as 

‘dead’ and sometimes as ‘ailing’ if living parts showed signs of 

vitality, such as new shoot growth. Given these inconsistencies 

in human assessment, an algorithm is unlikely to achieve 

significantly better performance in predicting tree vitality. 

 

Finally, the automatic tree detection process offers potential for 

further optimization, as indicated by necessary corrections 

identified in random verification samples. In some areas, trees 

were found during field verification that the detection algorithm 

did not recognize; the majority of these were very young trees. 

Several factors may explain these detection errors (Mohan et al., 

2017). It is possible that some trees were planted after the UAS 

survey and therefore do not appear in the drone image. 

Furthermore, the automatic recognition relies on surface 

structure to identify taller objects, meaning the less distinct crown 

structure of very small trees may not always be clearly detected. 

It is also possible that tall ground vegetation, such as high 

grassland present at the time of the survey, obscured small trees, 

preventing their recognition as distinct objects. Comparative 

studies by (Borngraeber et al., 2020) report similar difficulties 

with tree detection and subsequent classification using such 

methods. 

 

 

5. Conclusion 

The aim of this pilot study was to develop a cost-effective UAS-

based workflow for the assessment and monitoring of tree 

species, vitality and maintenance needs in traditional meadow 

orchards in Bad Schönborn, Germany. While a complete 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-7-2025 
44th EARSeL Symposium, 26–29 May 2025, Prague, Czech Republic

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-133-2025 | © Author(s) 2025. CC BY 4.0 License.

 
137



 

 

workflow from data acquisition to classification was established, 

the study encountered significant challenges that limited the 

reliability of the initial results. Key issues included technical 

problems with the multispectral sensor of the UAS, forcing the 

use of alternative satellite data, pronounced imbalances within 

the training dataset especially, in terms of vitality and species 

distribution, temporal mismatches between image acquisition 

and field surveys, as well as inherent subjectivity in the tree 

assessment leading to inconsistencies in the ground truth data. 

These factors led to low overall classification accuracies, 

particularly for tree species and care needs, and questionable 

performance in vitality assessment. 

 

Despite these limitations encountered in the pilot phase, the 

results indicate that the designed UAS-based workflow has 

considerable potential as a valuable tool for meadow orchard 

assessment and conservation efforts. The lessons learnt from this 

study are already being incorporated into a follow-up project 

focusing on targeted improvements to the methodology.  

These improvements include the use of a modern UAS with a 

reliable, high quality multispectral camera that provides more 

accurate data, synchronisation of field data collection with image 

acquisition to minimise temporal discrepancies, implementation 

of more sophisticated classification algorithms that are readily 

available, and a concentrated effort to create more balanced 

training datasets in terms of tree species and care need. These 

advancements are expected to address the primary limitations 

identified here, paving the way for a more robust and reliable 

UAS-based approach to support meadow orchard monitoring and 

management. 
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