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Abstract 

 

Mud volcanoes are geological formations resulting from the expulsion of mud, gases, and fluids from deep underground. Monitoring 

these formations provides critical insights into subsurface processes and geological hazards. This study focuses on detecting recent 

mud extrusions in mud volcano environments using high-resolution aerial imagery acquired by unmanned aerial vehicles (UAVs). 

Using UAV-based surveys instead of satellite imagery, we obtain finer spatial detail suitable for identifying subtle textural and 

chromatic variations in relatively small sites.  A binary image classification pipeline was developed to distinguish recent mud from 

non-mud areas. Traditional machine learning algorithms, including Support Vector Machine (SVM), Random Forest, and Extreme 

Gradient Boosting (XGBoost), were compared with deep learning architectures such as Convolutional Neural Networks (CNNs), 

both leveraging transfer learning and custom models. Traditional algorithms rely on handcrafted features, while CNNs learn 

hierarchical representations directly from raw data. Feature extraction methods were selected based on their ability to distinguish 

between the two designated classes effectively. To enhance model robustness and generalization, a designed augmentation pipeline 

was applied before each training epoch or cross-validation fold. This strategy introduced controlled and random variations to 

simulate real-world imaging conditions, such as varying viewpoints and lighting, ensuring the models generalization, moreover it 

also minimized data leakage by presenting distinct image variations throughout training. CNNs achieved the highest accuracy, 

outperforming traditional algorithms and demonstrating the advantages of combining deep learning with effective data augmentation. 

These findings underscore the potential of CNNs for accurate and efficient monitoring of dynamic geological environments. 

 

 

1. Introduction 

Mud volcanoes are geological structures formed by pseudo-

volcanic phenomena caused by over-pressured multiphase pore 

fluids, generally high-salinity water and methane gas, trapped in 

sedimentary basins by an impermeable top layer of rock. 

(Napoli et al. 2020). In Sicily, mud volcanoes are quite 

widespread both onshore and offshore (Etiope et al., 2002; 

Cangemi and Madonia, 2014). The main vents are located in the 

central-southern part of the island, with the exception of the 

groups located on the southwest flank of Mt Etna volcano, the 

main of which is named “Salinelle di Paternò” (Napoli et al., 

2020). Understanding and monitoring recent mud extrusions are 

essential for several geoscientific and environmental objectives, 

including evaluating geological hazards, supporting 

environmental management, and informing hydrocarbon 

exploration strategies (Martinelli and Judd, 2004). Reliable and 

timely detection of fresh mud deposits can help researchers and 

policymakers assess risks, implement safety measures, and 

make informed decisions regarding resource development. 

Conventional methods for monitoring mud volcanoes have 

relied heavily on field surveys and satellite imagery analysis. 

While these approaches can yield valuable insights, they often 

involve certain limitations. Field surveys, for instance, are time-

consuming, labour-intensive, and can pose logistical challenges, 

especially in remote or hazardous locations. Satellite imagery, 

although useful for large-scale observations, frequently lacks 

the spatial resolution needed to detect subtle features or small-

scale changes in mud volcano environments (Laliberte et al., 

2011). High spatial resolution is particularly crucial for 

identifying recent mud extrusions in relatively small and 

structurally complex sites, where minor textural differences 

between fresh mud and non-mud areas can be difficult to 

discern with coarse-scale imagery. To overcome these 

limitations, advancements in unmanned aerial vehicles (UAVs) 

and remote sensing technologies have provided new 

opportunities for high-resolution data acquisition (Colomina 

and Molina, 2014; Nex and Remondino, 2014).  Of the 

revolutionized fields, topographic surveying is prominent 

because many low cost UAVs with on/board light weight 

optical payloads often deliver mapping products such as ortho-

photos with centimetre level accuracy that had been exclusively 

bounded to the expensive field surveying methods earlier. 

(Perera and Nalani, 2022). UAVs can be deployed at low 

altitudes and flexible flight plans, enabling the capture of 

detailed aerial imagery that can reveal fine-scale geological 

features and variations both in texture and color. Nevertheless, 

the images taken during the surveys can provide valuable 

dataset to be used in computer vision tasks other than just for 

digital elevation model or orthomosaic. Machine learning and 

deep learning methods have shown remarkable potential in a 

variety of remote sensing and environmental monitoring 

applications, particularly in tasks like land use and land cover 

classification, object detection, and scene interpretation (Zhao et 

al., 2017; LeCun et al., 2015). Traditional machine learning 

algorithms, such as Support Vector Machines (SVM) (Cortes & 

Vapnik, 1995) and ensemble method including Random Forest 

(Breiman, 2001), and Extreme Gradient Boosting (XGBoost) 

(Chen & Guestrin, 2016), have long been employed in 

classification tasks involving handcrafted features. Such feature 

are extracted through methods that emphasizes edges, textures, 

frequencies or chromatic distributions, moreover their 

combination may provide inputs that can improve the 

performance of classifiers. However, traditional machine 

learning techniques face certain challenges. The design and 

selection of handcrafted features is task-dependent and may not 

capture all the nuances required for accurate classification, 

especially in a complex geological context like mud volcano 
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environments. In contrast, deep learning methods, particularly 

Convolutional Neural Networks (CNNs), learn features directly 

from raw pixel data, enabling them to discover hierarchical 

representations that can better capture subtle patterns 

(Krizhevsky et al., 2012; LeCun et al., 2015). As a result, CNN-

based approaches have often outperformed traditional methods 

in various computer vision tasks, including those in remote 

sensing and environmental analysis. 

 

2. Materials and Methods 

2.1 Dataset 

The dataset was constructed based on the INGV archive of 

drone surveys conducted around three selected mud volcano 

areas: Salinelle of Paternò, Maccalube of Aragona and 

Maccalube of Santa Barbara. Drone surveys for topographic 

purposes typically recommend an 80% front overlap and 70% 

side overlap. To minimize redundancy and ensure diversity 

among the instances, the images were manually searched, 

resulting in a total of 830 images being selected for inclusion in 

the study (Paternò 280 images: Mud 152, No Mud 128; 

Aragona 277 images: Mud 135, No Mud 142); Santa Barbara 

273 images: Mud 128, No Mud 145). Each of the three mud 

volcano sites was chosen for its unique environmental context. 

Notably, the Aragona and Santa Barbara sites are situated far 

from inhabited areas, thereby eliminating the presence of 

buildings which could potentially confound the classification 

process due to the common gray hue shared between 

constructions and recent mud flows. In contrast, the Paternò 

site, which is embedded within urban settings, feature 

residential buildings and other constructions. The Paternò site, 

for example, is located within a stadium and surrounded by 

houses. Including images from these environments was a 

strategic choice aimed at assessing the model's performance in 

complex scenarios, with the ultimate goal of developing an 

autonomous system capable of accurate detection, despite 

potential challenges. The DJI Phantom 4 drone was employed to 

capture nadiral images using a 12.4-megapixel RGB camera 

equipped with a 1/2.3-inch sensor. To optimize data acquisition 

and enhance the accuracy of terrain reconstruction, a 

photogrammetric survey was conducted with a frontal overlap 

of 85% and a lateral overlap of 75%. 

 

2.2 Feature Extraction Method 

A critical step in the methodology was the comparative analysis 

of different feature extraction methods. While deep learning 

models can learn feature representations automatically, 

traditional machine learning algorithms require handcrafted 

features derived from the imagery. The feature extraction 

methods including Histogram of Oriented Gradients (HOG) 

(Dalal and Triggs, 2005), Gabor filters (Gabor, 1946; Granlund, 

1978),Color histograms (Swain and Ballard, 1991), Local 

Binary Patterns (LBP) (Ojala et al. 1996, 2002), Scale-Invariant 

Feature Transform (SIFT) (Lowe 1999, 2004), Speeded-Up 

Robust Features (SURF) (Bay et al, 2008), Oriented FAST and 

Rotated BRIEF (ORB) (Rublee et al., 2011) and Canny Edge 

(Canny, 1986) were tested in order to evaluate their 

performance and the capabilities to discriminate between these 

two classes effectively. HOG captures local shape and texture 

by analyzing the distribution of intensity gradients, making it 

ideal for detecting nuanced patterns in mud flow textures. Gabor 

filters, renowned for their proficiency in texture analysis, are 

instrumental in identifying the fine details in surface textures 

due to their sensitivity to orientation and scale. Color 

histograms provide a robust analysis of color distribution, which 

varies significantly between fresh mud and its surrounding 

terrain, thereby aiding in distinguishing recent volcanic activity. 

Lastly, LBP is employed for its ability in texture classification, 

capturing local texture patterns that are prevalent in areas of 

recent extrusion versus older, settled formations. The 

parameters for each feature extraction method included are 

showed in table 1. The exclusion of SIFT, SURF, ORB, and 

Canny edge detection from our methodology was driven by 

their limited applicability to the specific textural and 

colorimetric nuances of mud volcanoes. While these techniques 

are highly effective in general image analysis applications, they 

lack the discriminative power necessary for accurately 

classifying the unique geological features of mud volcanoes. 

Specifically, keypoint-based methods such as SIFT, SURF, and 

ORB identified only a few points of interest in areas covered by 

recent mud, with the majority of keypoints detected in zones 

without recent extrusions. Additionally, the Canny edge 

detector was adept at recognizing the cracked textures typical of 

dried mud; however, such features are also present in the 'recent 

mud' class images in areas not affected by recent extrusions. 

Given these observations, we decided to omit these methods 

from our feature vector construction for traditional machine 

learning algorithms, as they did not contribute effectively to 

distinguishing between our designed classes. 

 

2.2.1 Color Histograms: A color histogram is a graphical 

representation that illustrates the distribution of colors within an 

image (Swain and Ballard, 1991). It operates by dividing the 

image's color space into discrete bins and counting the number 

of pixels that fall into each bin. This process results in a 

histogram where the x-axis represents the color bins, and the y-

axis indicates the frequency of pixels in each bin. Color 

histograms are versatile and can be constructed for various color 

spaces, as a matter of fact are widely used in image processing 

tasks, such as image retrieval, segmentation, and enhancement. 

Color histograms are effective tools in geological studies for 

classifying rock images. By analyzing color distributions and 

edge features, they enable precise differentiation between 

various rock types (Joseph et al. 2017). Combining color 

histograms with statistical and frequency-based methods further 

enhances the extraction of visual textural and colorimetric 

features (Vangah et al., 2023). 

 

 

2.2.2 Histograms of Oriented Gradients (HOG): The 

histogram of oriented gradients (Dalal and Triggs, 2005) is a 

feature descriptor employed in computer vision and image 

processing for object detection and image classification tasks 

(Leonardis et al. 2006). This method shares similarities with 

edge orientation histograms, scale-invariant feature transform 

(SIFT) descriptors, and shape contexts. However, it differs by 

being calculated on a dense grid of uniformly spaced cells and 

incorporating overlapping local contrast normalization to 

enhance accuracy. The HOG method operates on the premise 

that the local appearance and shape of an object in an image can 

be effectively described by the distribution of local intensity 

gradients or edge orientations, which are inherently 

perpendicular to the gradient's direction. Hog was widely used 

in computer vision tasks in particular for hand gesture 

recognition (Freeman and Roth, 1994), human detection (Zhu et 

al, 2006), sketches for searching and indexing digital image 

libraries (Hu et al, 2010), interstellar molecular formation (Soler 

et al, 2019). 
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2.2.3 Local Binary Pattern (LBP): Local Binary Pattern 

(Ojala et al. 1996, 2002) is a robust texture descriptor that has 

gained prominence in image analysis due to its discriminative 

power and computational simplicity. LBP effectively captures 

local spatial patterns by comparing each pixel's intensity with its 

neighbors, encoding this relationship into a binary number. 

Specifically, it describes the pixels of an image by using a 3x3 

neighbourhood area around each pixel. The central pixel 

subtracted from its eight neighbours. If the resulting value is 

negative, the pixel is set to ’0’, otherwise it is set to ’1’ which 

concatenate together to give an 8-bits code corresponding an 

interger ranging from 0 to 255 (Lizé et al, 2020) In geological 

and geophysical applications, LBP has been instrumental in 

enhancing the analysis and classification of complex textures 

inherent in geological formations, also in combination with 

color descriptors (Long et al., 2019; Vangah et al., 2023). 

 

2.2.4 Gabor Filter: Gabor filtering (Gabor, 1946; Granlund, 

1978) is a widely adopted computer vision technique for texture 

analysis. Gabor filters perform a local Fourier analysis and are 

essentially sine and cosine functions modulated by a Gaussian 

window (Idrissa & Acheroy, 2002). Their key properties include 

invariance to illumination, rotation, scale, and translation, which 

make them highly versatile in various applications. These 

characteristics are directly controlled by the parameters of the 

Gabor filters themselves (Kamarainen et al., 2006). However, 

this flexibility comes with a drawback: the high number of 

parameters that need to be carefully tuned, such as frequency, 

orientation, and the width of the Gaussian envelope, which can 

complicate optimization and increase computational costs 

(Bianconi & Fernández, 2007). Despite this challenge, the 

ability of Gabor filters to capture multi-scale and multi-

orientation information makes them invaluable in domains such 

as texture classification, edge detection, and feature extraction 

in remote sensing and medical imaging. 

 

2.2.5 Scale-Invariant Feature Transform (SIFT): The 

Scale-Invariant Feature Transform (Lowe 1999, 2004) is a 

computer vision algorithm, notable for its ability to robustly 

detect and describe local features invariant to scale, rotation, 

and moderate affine distortion. At its core, SIFT operates by 

convolving an image with Gaussian filters at multiple scales, 

then identifying extrema in the resulting difference of gaussian 

images. Each extremum undergoes a detailed characterization 

process that estimates its precise location, scale, and orientation, 

generating a set of highly distinctive keypoints. The orientation 

assignment is derived from the local gradient distribution, 

which allows the descriptor to maintain rotational invariance. 

These keypoints are then encoded into a signature (the SIFT 

descriptor), which captures the gradient magnitudes and 

orientations in a region around each keypoint; this descriptor is 

both discriminative and robust to photometric changes, making 

SIFT highly effective for tasks such as object recognition, 

image stitching, and 3D scene reconstruction (Hang Zhu et al 

2022). Beyond its traditional domains, SIFT and its variants has 

also been applied to a variety of geological and geophysical 

problems, where the detection of scale and rotation-invariant 

features is critical for analyzing remote sensing data or high-

resolution imagery of Earth’s subsurface and surface structures 

(Rong, 2024; Yu, 2013). 

 

2.2.6 Speeded-Up Robust Feature (SURF): The Speeded-

Up Robust Features (Bay et al, 2008) algorithm is a fast and 

efficient method for detecting and describing keypoints in 

images, offering scale and rotation invariance. The SURF 

feature point detector utilizes a Hessian matrix approach, 

approximating the Laplacian of Gaussian with a difference of 

Gaussian. Key points are located as maxima in this determinant 

across scales, ensuring robustness to varying image sizes. 

Unlike SIFT, which uses Gaussian filters, SURF leverages box 

filters for speed, and its descriptors are simpler, resulting in 

faster computations. SURF assigns an orientation to each key 

point by analysing Haar wavelet responses in the surrounding 

area, enabling rotation invariance. The local neighbourhood of 

each key point is then divided into grids, and wavelet responses 

are used to create a compact descriptor vector for matching. Its 

speed and robustness make it ideal for applications like image 

matching, object recognition, and remote sensing, particularly 

when computational efficiency is critical. The advantages of the 

SURF algorithm find place in real-time UAV control systems, 

where being faster is a key aspect for such systems (Wang et al. 

2021). 

 

2.2.7 Oriented FAST and Rotated BRIEF (ORB): The 

Oriented FAST and Rotated BRIEF algorithm (Rublee et al., 

2011)  is a highly efficient feature descriptor, developed as an 

alternative to SIFT and SURF, with the goal of achieving 

comparable performance but at a significantly reduced 

computational cost. The algorithm builds upon the FAST 

keypoint detector (Rosten and Drummond, 2006) and the 

BRIEF descriptor (Calonder et al., 2010), introducing 

robustness to rotational variations and reducing susceptibility to 

noise. ORB enhances the FAST detector by incorporating an 

orientation component, which is computed using the intensity 

centroid method. This method evaluates the asymmetry of pixel 

intensities around the corner, providing a consistent orientation 

estimate. Additionally, ORB modifies BRIEF (creating 

rBRIEF) by adding a learning step to select the most 

uncorrelated binary tests, optimizing the descriptor for 

distinctiveness and efficiency. This combination enables ORB 

to perform real-time feature matching on low-power devices, 

achieving results that are on par with SIFT in terms of accuracy 

while being almost two orders of magnitude faster in execution. 

The ORB algorithm uses Fast to detect feature points and Brief 

to compute the descriptors of feature points, and its feature 

point performance is between SIFT and SURF, but it runs much 

faster than SURF (Qinjun et al., 2022). It is used in similar 

computer vision tasks as SIFT and SURF. Rarely employed in 

the geologic context unless for specific task involving both 

autonomous mapping of geologic features (Chen et al., 2021). 

 

Figure 1. Feature extraction methods with poor class distinction 

were excluded, while those with clear separation were included. 
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2.2.8 Canny Edge Detector: The Canny edge detector is a 

feature detector in image processing, designed to identify edges 

by optimizing detection, localization, and minimizing multiple 

responses to a single edge (Canny, 1986). Edge detection is an 

essential technology for obtaining the edges of remote sensing 

images (Huang et al. 2017,) and the role it plays is of paramount 

importance in numerous Earth observation applications, and its 

extensive utilization can be observed in domains such as 

national defense and security, land use, urban planning, and 

geographic image retrieval, among others (Zhou et al., 2024, 

Cheng et al., 2020, Cheng et al., 2017). The process starts by 

applying a Gaussian filter to the image to reduce noise, which 

could interfere with the detection of edges. Then, the gradient 

magnitude and direction at each pixel are calculated using 

derivative filters, like the Sobel operator, to detect regions with 

significant intensity transitions. Non-maximum suppression is 

applied next, which eliminates non-maximum values in the 

gradient direction to refine the edges, retaining only the most 

important ones. Lastly, hysteresis thresholding is used: pixels 

with a gradient magnitude higher than a set high threshold are 

considered strong edges, while those below a low threshold are 

disregarded. Pixels that fall between the two thresholds are 

considered weak edges and are preserved only if they are 

connected to strong edges, which helps in maintaining the true 

edges while minimizing false positives. 

 

2.3 Traditional Machine Learning Algorithms 

2.3.1 Extreme Gradient Boosting (XGBoost): XGBoost, 

short for Extreme Gradient Boosting, is a highly efficient and 

scalable implementation of gradient boosting algorithms. At its 

core, gradient boosting combines multiple weak learners, 

decision trees, into a strong ensemble model by iteratively 

adding new trees that correct the residual errors of the previous 

ones. XGBoost distinguishes itself from traditional gradient 

boosting methods by incorporating a range of optimizations 

designed to improve both computational speed and predictive 

performance. One of its key innovations is the use of a sparsity-

aware split finding algorithm, which leverages efficient data 

structures to handle missing values and sparse data in a more 

effective manner. Moreover, it employs an advanced tree 

learning approach called the weighted quantile sketch, enabling 

the algorithm to handle large datasets with high dimensionality 

(Chen & Guestrin, 2016). These optimizations make XGBoost 

particularly popular for large-scale machine learning tasks, 

where it balances speed, accuracy, and memory efficiency. 

Another critical aspect of XGBoost is its built-in regularization 

mechanisms, which help combat overfitting by penalizing the 

complexity of individual trees. The algorithm introduces two 

regularization parameters: one that controls the L2 norm of the 

leaf weights and another that controls the depth and structure of 

each tree. By carefully tuning these parameters, practitioners 

can strike a balance between model complexity and 

generalization performance, leading to robust and reliable 

predictive outcomes. XGBoost also provides flexibility by 

supporting various objective functions, ranging from regression 

and classification to ranking, and offers parallelization 

capabilities that take advantage of modern hardware 

architectures. Thanks to these features, XGBoost has become a 

go-to method in a wide array of industries, including finance, 

healthcare, and e-commerce, where the capacity to efficiently 

handle massive datasets without sacrificing accuracy is crucial. 

 

 

2.3.2 Random Forest: Random Forest is a versatile and 

powerful ensemble learning method primarily deployed for 

classification and regression tasks. Developed by Breiman 

(2001), it operates by constructing a multitude of decision trees 

during the training phase and combining their predictions, 

typically through a majority vote or an average in the case of 

regression. This approach, known as bootstrap aggregation or 

“bagging,” involves drawing multiple bootstrap samples from 

the training dataset and fitting a separate decision tree to each 

sample. By aggregating the outputs of numerous, slightly varied 

trees, Random Forest effectively reduces the variance of single 

decision-tree models, thereby improving predictive accuracy 

and robustness against overfitting. In addition to bagging, 

Random Forest introduces randomness in the feature selection 

process when determining splits. Rather than considering all 

available features at each node, the algorithm selects a random 

subset of features, thereby reducing the correlation between 

individual trees. This feature randomness further bolsters the 

model’s capacity to generalize, making Random Forest well-

suited for datasets with high dimensionality or complex feature 

relationships. Another practical strength lies in its ability to 

provide estimates of feature importance by measuring how each 

feature contributes to decreasing the impurity in the nodes of the 

ensemble trees. Consequently, Random Forest not only offers 

strong predictive performance but also yields valuable insights 

into the underlying structure and relevance of the input 

variables. These characteristics have made it a ubiquitous tool in 

applications ranging from biology and finance to computer 

vision and recommender systems. 

 

2.3.3 Support Vector Machine (SVM): Support Vector 

Machines (SVMs) are supervised learning models widely used 

for both classification and regression problems, though they are 

perhaps most famous for high-performance classification tasks. 

The fundamental principle behind SVMs is to find an optimal 

hyperplane or set of hyperplanes in higher dimensions that 

maximizes the margin between the data points of different 

classes (Cortes & Vapnik, 1995). By focusing on the data points 

that lie closest to the decision boundary (known as support 

vectors), SVMs seek to create a robust separation that not only 

classifies current data accurately but also generalizes well to 

unseen data. This margin-maximization approach is critical to 

reducing overfitting, as it emphasizes the most challenging 

training examples. A notable strength of SVMs lies in their use 

of kernel functions to address non-linearly separable data. 

Kernels allow the model to project input data into higher-

dimensional feature spaces, where a linear separating 

hyperplane may exist even if one does not in the original input 

space. Commonly used kernel functions include the linear 

kernel, polynomial kernel, and the radial basis function (RBF) 

kernel, each designed to capture different forms of data 

complexity. This flexibility makes SVMs particularly adept at 

handling intricate and high-dimensional datasets. However, they 

can be computationally expensive for very large datasets, and 

the selection of the optimal kernel and associated 

hyperparameters often requires careful tuning. Despite these 

challenges, SVMs remain a cornerstone of machine learning, 

prized for their theoretical foundations, strong empirical 

performance, and elegant mathematical framework. 

 

2.4 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) have emerged as a 

cornerstone in image recognition and classification tasks due to 

their ability to automatically learn spatial hierarchies of features 

from input images. This characteristic makes CNNs particularly 

effective in domains requiring high-level abstraction of visual 
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patterns (Krizhevsky et al., 2012). This kind of network operate 

by hierarchically extracting features from grid-like data, such as 

images, by using a combination of convolutional, activation, 

pooling, and fully connected layers. Convolutional layers play a 

central role by employing small, learnable filters that convolve 

across the input data, detecting spatially local patterns such as 

edges, textures, or gradients, which are vital for constructing 

hierarchical feature maps (LeCun et al., 1998; Krizhevsky et al., 

2012). The non-linear activation functions, commonly ReLU, 

introduce essential non-linearity, enabling the network to model 

complex interactions and representational capabilities (Glorot et 

al., 2010). Pooling layers follow the convolutional layers to 

progressively reduce the spatial dimensions of feature maps, 

preserving the most critical features while reducing 

computational complexity, thus achieving translational 

invariance (Scherer et al., 2010). As the network deepens, 

higher-order layers aggregate these features into more abstract 

representations, which culminate in fully connected layers that 

combine all extracted features for classification or regression 

tasks (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015).  

The training of CNNs employs backpropagation and stochastic 

gradient descent, iteratively adjusting the weights to minimize 

the loss function. This powerful approach has demonstrated 

state-of-the-art performance across diverse domains, including 

image recognition, object detection, and medical imaging (He et 

al., 2016). Unlike traditional machine learning methods, which 

depend heavily on manual feature extraction, CNNs utilize 

convolutional layers to extract features hierarchically, capturing 

both local and global patterns (LeCun et al., 1998). One 

particularly notable architecture component is the Inception 

block, introduced by Szegedy et al. (2015), which employs 

parallel convolutional paths of different filter sizes and pooling 

operations to capture multi-scale information within the same 

layer. This design, sometimes referred to as the GoogLeNet 

module, effectively increases the width of the network while 

maintaining efficient computation, thus improving the 

representational power of CNNs (Szegedy et al., 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Representative samples from the two classes in the 

dataset. The first row contains images of recent mud extrusion, 

while the second row shows areas without recent mud deposits. 

These aerial images, captured by drone, highlight the visual 

differences used for classification in the study. 

 

 

 

2.4.1 Transfer Learning (ResNet5050, VGG16, 

EfficientNet): Transfer learning, an extension of deep learning, 

leverages pre-trained models on large datasets, such as 

ImageNet, to improve the performance of models on domain-

specific tasks with limited data (Pan and Yang, 2010). By 

reusing learned weights from pre-trained networks, transfer 

learning accelerates convergence and reduces the risk of 

overfitting in tasks where data scarcity is a challenge (Zhan et 

al., 2020). The practical implementation of CNNs often 

involves architectures designed to balance computational 

efficiency with feature extraction capabilities. For instance, 

residual networks (ResNet5050) address the vanishing gradient 

problem by introducing skip connections, enabling the training 

of very deep networks without degradation of performance (He 

et al., 2016). In the context of balancing computational 

efficiency with feature extraction capabilities, the VGG16 

architecture small 3×3 filters to capture intricate features while 

maintaining manageable computational complexity (Simonyan 

and Zisserman, 2015). Similarly, architectures like EfficientNet 

employ compound scaling to optimize model size, accuracy, 

and computational cost (Tan and Le, 2019). These 

advancements underscore the adaptability and robustness of 

CNNs in tackling a wide array of image classification 

challenges. Transfer learning has proven to be invaluable in 

applications where domain-specific labeled datasets are scarce. 

By fine-tuning pre-trained CNN models on smaller datasets, is 

it possible to achieve state-of-the-art results with significantly 

reduced training time. This approach has been successfully 

applied in diverse fields, including medical imaging, remote 

sensing, and environmental monitoring (Yang et al., 2020). For 

instance, in UAV-based image classification tasks, transfer 

learning enables the adaptation of general-purpose visual 

features to specific contexts, such as detecting recent mud 

deposits in mud volcanoes. Nevertheless the importance of 

selecting appropriate models for practical applications is 

mandatory to obatin good performances (Zhuang et al. 2021). In 

our study all layers except the classification layer were frozen, 

while the classification head was replaced with a fully 

connected layer for binary classification. 

 

2.4.2 Custom CNN Models: Parallel to the transfer learning 

experiments, four custom CNN architectures were trained from 

scratch: CNN_2, CNN_3, CNN_4, and Inception_CNN, were 

developed and trained from scratch to assess their performance 

in the specific context of mud volcano detection. Unlike the 

more complex networks such as ResNet50, VGG16, and 

EfficientNet, these models employ a simplified design aimed at 

capturing essential spatial and textural features with reduced 

computational complexity. CNN_2 provides a baseline with two 

convolutional layers employing ReLU activations and max 

pooling to extract basic features, while CNN_3 deepens the 

architecture through additional convolutional blocks with batch 

normalization to enhance stability and feature representation. 

CNN_4 refines this approach further by adding an extra 

convolutional layer and substituting standard ReLU with Leaky 

ReLU, thereby maintaining gradient flow in deeper layers. In 

contrast, the Inception_CNN incorporates inception-style 

modules that perform parallel convolutions with multiple kernel 

sizes (1×1, 3×3, and 5×5 convolutions), enabling simultaneous 

extraction of both fine and coarse details. This systematic 

progression in architectural design underscores the potential of 

tailored, less complex CNNs to effectively capture the subtle 

color and texture variations characteristic of fresh mud deposits 

in UAV imagery. 
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2.5 Data Augmentation 

Data augmentation is a fundamental strategy to enhance the 

performance of deep learning models by artificially expanding 

the size of training datasets. It introduces variability to the data, 

helping models generalize better and reducing the risk of 

overfitting. This technique has been demonstrated to improve 

classification accuracy significantly, particularly in cases of 

imbalanced or small datasets, as it creates synthetic data 

variations while preserving the original data's integrity (Shorten 

& Khoshgoftaar, 2019). In satellite imagery applications, data 

augmentation is crucial as the variability in lighting, angles, and 

atmospheric conditions can influence model predictions, 

necessitating transformations that maintain physical plausibility 

(Buslaev et al., 2020). Augmentation techniques can range from 

basic transformations, such as rotation, flipping, and scaling, to 

advanced approaches like domain-specific modifications or 

even the synthesis of entirely new images. For example, 

geometric and photometric augmentations are widely used to 

simulate variations observed in real-world scenarios (Zhong et 

al., 2020). Moreover, studies suggest that augmentation 

methods tailored to specific data domains, can significantly 

improve model robustness and accuracy (Perez & Wang, 2017). 

In this study a pipeline of random augmentation was employed 

before each training epoch or cross validation fold. Specifically, 

each image has a 50% probability of entering an augmentation 

stage. If selected, a series of operations are applied, each with a 

50% chance of execution, ensuring at least one transformation 

per image and potentially multiple transformations in a single 

pass. Below are reported the details of augmentation steps: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The diagram illustrates the augmentation pipeline 

applied for training the classification model. Each input image 

has a 50% probability of entering the pipeline. In that case at 

least one of the transformations is applied. 

 

2.6 Training Parameter and Optimization Process 

For traditional machine learning models, training employed a 

stratified K-Fold cross-validation with five splits to maintain 

class distribution consistency across folds. In stratified K-Fold 

cross-validation, the dataset is divided into k folds so that each 

fold has nearly the same percentage of minority and majority 

class samples as the entire set (Szeghalmy and Fazekas, 2023). 

Hyperparameter optimization relied on Bayesian search, 

running 30 iterations per fold to identify optimal model 

parameters. Most machine learning models have 

hyperparameters that require tuning via black-box optimization 

(Wu et al., 2020), and these kinds of optimization problems are 

often solved through Bayesian Optimization (Frazier, 2018). 

This approach uses a probabilistic surrogate model for the 

objective function to determine the most promising next 

evaluation point, where a popular criterion is expected 

improvement (Wu et al., 2020; Jones et al., 1998). Bayesian 

search optimization surpasses random and grid search by 

leveraging probabilistic models to prioritize promising regions 

in hyperparameter space, minimizing the number of evaluations 

required to find optimal configurations. Unlike exhaustive or 

purely random exploration, it focuses on regions most likely to 

contain ideal hyperparameters. The dataset was partitioned 

70%–30% for training and validation. In deep learning models, 

training used the cross-entropy loss function to address binary 

classification tasks. Cross-entropy coincides with logistic loss 

when the softmax is used (Mao et al., 2023), measuring 

classification performance based on predicted probabilities 

between 0 and 1. All training employed the Adam optimizer 

with a learning rate of 0.001 and a weight decay of 10−4. A step-

based scheduler reduced the learning rate by an order of 

magnitude every seven epochs. The batch size was 64, and 

training was capped at 100 epochs, with an early stopping 

criterion (patience 20) triggered if validation performance failed 

to improve for several consecutive epochs. Adam is a first-order 

gradient-based optimization algorithm that computes adaptive 

learning rates for each parameter by estimating the first and 

second moments of gradients. It is computationally efficient, 

memory-efficient, invariant to gradient rescaling, and effective 

for large-scale problems with noisy or sparse gradients. By 

combining the strengths of AdaGrad for sparse gradients and 

RMSProp for non-stationary objectives, Adam employs bias-

corrected moment estimates to ensure robust updates (Kingma 

and Ba, 2017). Batch normalization layers followed each 

convolution in deeper architectures to stabilize the learning 

process, and dropout (set to 0.5) was introduced to mitigate 

overfitting. Max-pooling operations were also placed after 

convolutional sequences to reduce spatial dimensions. A similar 

70%–30% split was employed for transfer learning experiments. 

In this setup, all layers of the pre-trained models were frozen 

except for the classification layer, which was replaced by a fully 

connected layer configured for binary classification. This 

arrangement leveraged the pre-trained feature representations 

while refining only the task-specific output layer. 

 

3. Results 

Three pretrained architectures were initially explored 

(ResNet50, VGG16, and EfficientNet), each fine-tuned on the 

binary dataset by freezing the convolutional blocks of the 

original models and replacing the final classification layer. Data 

augmentation implemented randomly before each training 

epoch was integral in enhancing generalization and mitigating 

overfitting, as a matter of fact the train and validation loss are 

comparable. ResNet50 and EfficientNet both demonstrate stable 

training processes with minimal gap between training and 
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validation losses, which is indicative of good generalization 

capabilities. However, the VGG model shows an initial spike in 

validation loss, which quickly stabilizes. Among the pre-trained 

networks, VGG16 achieved the highest validation accuracy of 

93%. It balanced predictions, with very few misclassifications 

of both mud and non-mud labels. On the test set, VGG likewise 

achieved a precision of 92% and a recall of 95% for mud, and a 

precision of 94% with a recall of 92% for no mud. ResNet50 

stabilized at 85% accuracy, while EfficientNet reached 88%. 

Correspondingly, ResNet50’s final test metrics show mud 

precision and recall at 85%, while EfficientNet reaches 90% 

precision and 86% recall for mud; both models maintain 

similarly high figures for no-mud predictions (84%/84% for 

ResNet50, 86%/89% for EfficientNet). These differences 

suggest that deeper or more specialized feature extractors do not 

necessarily guarantee higher performance on this particular 

dataset. Instead, VGG16’s simpler stack of 3×3 convolutions, 

proved particularly effective for discerning the nuanced visual 

signatures of mud deposits.  

Figure 4. Training and validation loss curves for three transfer 

learning models: ResNet50 (top-left), VGG16 (top-right), and 

EfficientNet (bottom). 

Parallel to the transfer learning approach, four simpler custom 

CNN architectures were trained from scratch to evaluate the 

viability of dedicated networks. The most basic approach, 

CNN_2, highlighting the limitations of a shallow design with 

fewer convolutional layers and no batch normalization. In final 

testing, this approach reached 76% accuracy overall, with mud 

precision at 82% and recall at 68%, and no-mud precision at 

71% and recall at 84%. CNN_3 improved on this performance, 

reaching 81%, by introducing multiple consecutive 

convolutions, batch normalization layers, and slightly deeper 

feature representations. Its test precision/recall also climbed to 

around 82%/80% for mud and 79%/82% for no mud, indicating 

more balanced classification. CNN_4, which incorporated four 

blocks of two convolutional layers each alongside leaky ReLU 

with a small negative slope to maintain nonzero gradients for 

negative inputs and thereby alleviate the “dying ReLU” 

problem, achieved 90% accuracy on the validation set. Notably, 

its test performance stands at 90% accuracy, with mud precision 

of 92% and recall of 89%, and no-mud precision of 89% and 

recall of 92%. This significant boost reflects the benefit of 

increased network depth, careful architectural choices, and 

adequate regularization. Further experiments led to the 

inception-style network (Inception_CNN), which adopted multi-

branch feature extraction in each block by combining multiple 

filter sizes in parallel. This design sought to capture both broad 

and fine-grained spatial features within the same layer. The 

Inception_CNN converged to a performance equal to that of the 

best transfer learning approach, reaching a validation accuracy 

of 93%, showing equally robust detection for both classes, with 

only a handful of misclassifications. Its final test performance 

likewise mirrors VGG at 93% accuracy overall, supported by a 

mud precision of 93% and recall of 94%, plus a 93% precision 

and 93% recall for no mud. The Inception_CNN, despite its 

fluctuations, the overall variation is small relative to the range 

(0.2–0.6).  

Figure 5. Training and validation loss curves for the four 

custom CNN models trained from scratch: CNN_2 (top-left), 

CNN_3 (top-right), CNN_4 (bottom-left), and Inception_CNN 

(bottom-right).  

This indicates that the model isn't experiencing severe 

instability. Similarly, the CNN_4 and CNN_3 exhibit consistent 

downward trends in their loss curves, in spite of higher values at 

the beginning of the training. The simplest model (CNN_2) 

showed a gap between training and validation loss suggests 

some level of underfitting. Training loss doesn't go below 0.6, 

indicating that the model lack the complexity needed to capture 

all patterns in the training data. Additionally, classical machine 

learning models provide a useful comparative baseline: SVM 

achieves 67% accuracy (precision and recall in the mid-to-high 

60s for both mud and no mud), Random Forest reaches 79% 

with balanced mud/no-mud metrics around 79–81%, and 

XGBoost improves further to 83%, featuring mud precision of 

84% and recall of 83%, as well as 82%/83% for no mud. 

Model 
Test 

Acc. 

Precision

Mud 

Recal

l Mud

Precision 

No Mud 

Recall 

No Mud 

SVM 67 69 64 64 69 

Random F. 79 79 81 79 78 

XGBoost 83 84 83 82 83 

ResNet50 85 85 85 84 84 

VGG 93 92 95 94 92 

Eff.Net 88 90 86 86 89 

CNN_2 76 82 68 71 84 

CNN_3 81 82 80 79 82 

CNN_4 90 92 89 89 92 

Inception_CNN 93 93 94 93 93 

Table 1. The table presents the evaluation results of various 

classification models applied to the drone imagery dataset. 

Metrics include test accuracy (Test Acc.), precision and recall 

for both the "Mud" and "No Mud" classes. 

4. Discussion

The study's performances across both traditional and advanced 

CNN models highlight the critical role of high-resolution UAV 

imagery and analytical methods in geological monitoring. The 

performance of traditional machine learning algorithms raises 
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important considerations. Despite their historical success in 

various classification tasks, algorithms like SVM, Random 

Forest, and XGBoost were less effective in handling the 

complex and subtle distinctions required for accurate mud 

classification in UAV imagery.  The performance of traditional 

machine learning algorithms was found to be comparable to that 

of simpler CNN models employed, such as CNN_2 and 

CNN_3, demonstrating that even basic convolutional 

architectures can achieve the same results. This highlights a 

critical limitation of traditional methods: their dependence on 

handcrafted features and their accurate choice based on the 

application environment. The results thus emphasize the 

necessity for more adaptive and sophisticated analytical tools in 

environmental monitoring and geological assessments, pointing 

towards deep learning as a more capable approach in contexts 

characterized by high variability and complexity in visual data. 

The VGG16 and Inception_CNN models, which achieved top 

accuracies, demonstrate that both transfer learning and custom-

designed CNN architectures can efficiently handling the 

specific challenges posed by mud volcano imagery. These 

findings underscore the potential of deep learning in enhancing 

geospatial analysis and risk assessment in volatile geological 

settings. However, the misclassification of certain samples, 

suggests room for improvement. This could be addressed by 

expanding the dataset to include more varied geological 

contexts or by integrating multimodal data sources that might 

provide additional discriminative features not visible in 

conventional RGB imagery. Future studies could explore the 

inclusion of thermal or multispectral imagery, which may 

capture subtle differences in material composition not 

discernible in visual-spectrum images. Furthermore, while data 

augmentation significantly bolstered model generalization, the 

approach might benefit from more sophisticated augmentation 

techniques such as generative adversarial networks (GANs) that 

can produce more realistic image variations. This could be 

particularly useful in environments where UAV access is 

limited or where environmental conditions rapidly change. The 

study also highlights a critical insight into the scalability of 

model architectures. While more complex models like 

EfficientNet offered some improvements, the simpler VGG16 

and custom inception architecture's success points to the 

importance of model selection based on the specific 

characteristics of the dataset rather than the complexity alone. 

This suggests that for certain context and applications, simpler 

architectures trained from scratch may be preferable, especially 

when deploying models in real-time monitoring systems where 

computational resources are at a premium. 
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